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ABSTRACT A new two-dimensional ribosome crystal, having the tetragonal space group P4212 
(a = 593 A), has been grown from ribosome tetramers extracted from hypothermic chick 
embryos. It is of particular interest because of its larger size (up to 3 x 3/~m 2) and greater 
stability compared to other related polymorphic forms, and because it can easily be grown in 
large amounts. X-ray diffraction shows the order in the crystal to extend to a resolution of at 
least 60 A. The crystalline ribosomes appear to contain a full complement of small and large 
ribosomal subunit proteins and an additional four proteins not characteristic of chick embryo 
polysomes. 

A good understanding of  the molecular mechanisms involved 
in protein synthesis will require a detailed crystallographic 
analysis of  the structure of  the ribosome by high resolution 
electron microscopy or by x-ray diffraction. Crystalline arrays 
of  ribosomes have been discovered in a number of  different 
organisms (e.g., 3, 13, 16), but none of  these are sufficiently 
well-preserved or extensive, when isolated, for a useful inves- 
tigation of  free features by either technique. The small crystal- 
line arrays of  procaryotic ribosomes and subunits which have 
been grown artificially (6, 7, 20) are potentially of  more value. 

We report here conditions that we determined for growing 
large crystalline sheets of  eucaryotic ribosomes, derived from 
chick embryos subjected to cold treatment. Several polymor- 
phic forms have been produced which are related to those 
found in vivo (4) and in cell extracts (1). We describe a new 
form, a two-dimensional crystal having the tetragonal space 
group P4212, that is more ordered and extensive than the 
others, and should be suitable for deriving accurate structural 
information by electron microscopy and diffraction. 

MATERIALS AND METHODS 

Chemicals and Solutions 

All chemicals were reagent grade unless otherwise stated. Spermine tetrahy- 
drochloride, HEPES, dithiothreitol (DTT), aspartic acid, EDTA, polyethylene 
glycol (PEG), Pepstatin, phenylmethylsulphonyl fluoride (PMSF), and gold thin- 
glucose were obtained from Sigma Chemical Co. (St. Louis, MO). Ultra pure 
sucrose was obtained from Schwarz/Mann (Mountain View Ave, Orangeburg, 
NY). Unless otherwise stated, all steps in the isolation and crystallization were 
carried out at 4°C. 

The solutions used were the following: A: 10 mM HEPES, 50 mM KC1, 10 
mM MgCI2, 1 mM NaNs, 0.5 mM EDTA, 1 mM DTT, pH 7.2; B: the same as A, 
but containing 0.25 M sucrose, 1 #g/ml Pepstatin, and 100/aM PMSF; C: 10 mM 
HEPES, 2 M sucrose, 50 mM KC1, 5 mM MgCI2, 1 mM NaNs, 0.5 mM EDTA, 
I mM DTT, pH 7.2; D: 10 mM HEPES, 400 mM KC1, 5 mM MgCI~, 1 mM 
NaNs, 0.5 mM EDTA, 1 mM DTT, pH 7.2; and E: 8% PEG 20,000, 10 mM 

HEPES, 120 mM KCI, 1 mM MgCI2, 1 mM spermine tetrahydrechloride, 1 mM 
NaNz, 0.5 mM EDTA, 1 mM DTT, pH 7.2. 

Isolation and Crystallization 

Typically, 15 dozen fertile chicken eggs were incubated for 5 d and then 
cooled at 40C for 12 h. Ribosomes were extracted by a modification of the 
method of Morimoto et at. (14). 

Embryos were removed from the eggs and washed thoroughly with solution 
A. The washed embryos were homogenized in an equal volume of solution B in 
a loose-fitting teflon/glass homogenizer. The homogenate was centrifuged at 
9,000 g for 5 min and the pellet re, xtracted as before. The first supernatant and 
the rehomogenized pellet were centrifuged at 9,000 g for 15 min and the resultant 
supematams pooled. 20 ml of solution C and sufficient solution B were added to 
make a total volume of 100 ml. This postmitocbondrial supernatant was layered 
on 10-ml aliquots of solution C in 32 ml polycarbonate tubes. After centrifugation 
in a Beckman Ti60 rotor at 40,000 RPM for 3.5-h, the supernatant was poured 
off and the clear, colorless pellets were rinsed thoroughly with solution A. The 
tubes were drained, and the pellets resuspended in a small volume of high salt 
buffer--solution D. This suspension was spun at ~ 12,000 g for 10 rain to remove 
large aggregates, and the supernatant was measured spectrophotometricaUy. The 
ratio of absorbances in 12 successive preparations at 280 and 260 nm was 0.56 
± 0.01. 

To determine the relative proportion of tetramers and single particles by 
electron microscopy, samples of the high salt-ribosome solution were sprayed 
with a nebulisor onto carbon-coated grids. For crystallization, ribosomes were 
adjusted to a concentration of 5 mg]ml (assuming 1 A~0 [1 cm path length] = 80 
/zg/ml ribosomes) by dilution in high salt buffer, and equilibrated, by slow 
dialysis, against modifications of solution E. Spectrapor dialysis membrane with 
a molecular weight cut off at 2,000 was used. The ribosomes crystallized over a 
period of 4 to 5 d. 

Protein Extraction and Two-dimensional PAGE 

Polysomes were isolated from 13-d-old chick embryos which had not been 
hypothermically treated. The isolation procedure ~bas as described in Isolation 
and Crystallization, except that centrifugation was done at 40,000 rpm for 4.25 h. 
The pellets were resospended in solution A at a concentration of 5 mg/ml before 
protein extraction. Examination of this solution in the electron microscope 
showed that the solution consisted of polysomes and single ribosomes. (Results 
not shown.) 
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FIGURE 1 Two-dimensional PAGE patterns of basic proteins from 
polysome (a) and washed crysta((b) preparations. In b, the four 
extra proteins (A, B, C, and D) and S10 are indicated. Protein A may 
be a degradation product of L4--the protein spot directly above it. 
B, C, and S10 may be similarly related. D is in a position normally 
occupied by protein L29. ]-his protein is not present in the polysome 
pattern. The duster of spots close to the origin in a may represent 
translation factors and nascent protein as the polysomes were 

Crystals were separated from mother Liquor by low speed centrifugation 
~2,000 g for 40 m / n - - a n d  washed once by resuspending in a small volume of  
solution A. The centrifugation was repeated. The pellet was resnspended in 
solution A at a concentration of  - 2  mg/ml.  

Proteins were solubilized and RNA was precipitated by the acetic acid method 
of Hardy et al. (8), as modified by Warner and Gorenstein (18). The solubilized 
proteins were dialyzed against 1% acetic acid, 0.2 mM DTT before lyophilization 
and storage at -20°C.  

Two-dimensional gel electrophoresis was carried out according to Lastick and 
McConkey (11). A typical load was 200/~g/gel. First-dimension ge]s were run for 
20 h at a constant 67 V towards the cathode (for separation of  basic protein) or 
towards the anode (for separation of  acidic proteins). The second-dimension gel 
was run for 36 h at 100 V towards the cathode. GeLs were stained in 0.2% 
Coomassie BriUiant Blue in 50% methanol, 10% acetic acid for 6 to 8 li, and 
destained in 10% methanol, 7% acetic acid. 

Electron Microscopy and Image Processing 
Crystals in mother liquor were diluted approximately l:100 in solution A, and 

carbon-coated copper grids were floated on this suspension for 60-90 s. Grids 
were then blotted and floated on 2% uranyl acetate solution for a similar period 
of time. When gold thioglucose was used as a stain, the crystals were fixed before 
staining by floating the grid on a solution of 0.1% glutaraldehyde in buffer A for 

prepared under conditions where these would be retained (2, 19). 
These spots are absent or greatly reduced in intensity in the crystal 
protein pattern. Gels of acidic protein from crystals and polysomes 
give identical results in terms of ribosomal proteins (results not 
shown). 

FIGURE 2 Crystal forms produced by equi l ibrat ion of high salt ribosome solution against solution E wi thout  spermine. Uranyl 
acetate stain. (a) The predominant crystal form under these conditions is the cylinder formed from a single P4 layer. This flattened 
cylinder measures 0.75 x 42 #m 2. Small portions of each side can be seen at either end of the cylinder. In the central region the 
two sides have collapsed onto the grid, resulting in a ~ 5b crystal (17). x 50,000. (b) An infrequently observed mixed crystal 
showing cylinder (A), P4212 crystal (B), and single P4 layer (C). The packing of tetramers is evident in the single layer which is in 
the right-hand configuration, x 48,000. 
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90 s. Images were recorded, under conditions of minimum irradiation, at a 
nominal magnification of 19,500 with a Philips EM400 operating at 80 kV. 

Micrographs were examined by optical diffraction and areas showing best 
specimen preservation, in terms of  resolution and symmetry present in the 
diffraction patterns, were selected for further processing. These areas were 
digitized with a Perkin-Elmer microdensitometer (Perkin-Elmer Corp., Instru- 
ment Div., Norwalk, CT) with a spot size of 25 × 25 #m 2. The array size was 512 
× 512, each step also being 25 #m. This corresponds to a resolution o f - 1 2  A at 
the specimen. Fourier transformation of  the arrays and further processing of the 
data were carried out essentially as described in Unwin and Taddei (17). The 
projection map (see Fig. 5) was calculated from peak amplitude and phase data 
with no symmetry imposed. 

X-ray Diffraction 

Specimens were prepared for x-ray diffraction by centrifugation of the crys- 
talline suspension at ~3,000 g for 10 h onto a flat mylar sheet. The resultant 
pellet was composed of crystals oriented with their flat face lying predominantly 
parallel to the mylar surface. To facilitate handling of the pellet, it was lightly 
fixed with 0.1% glutaraldehyde in buffer A for 12 h. It was mounted in a wet cell 
so that the flat faces of  the crystals were parallel to the incident x-ray beam and 
maintained wet and cool (4°C) throughout the exposure (1-5 d). 

The x-ray source was an Elliot GXI3  rotating anode x-ray generator with a 

1.0 mm × 100 ~m focal cup, and the camera was of  the Franks type, incorporating 
two 22-cm glass mirrors. Patterns were recorded on CEA reflex film and devel- 
oped in full strength Kodak D19 for 6 min. Film was digitized on a Perkin-Elmer 
microdensitometer and optical densities along the arcs and lying within a 40 ° 
sector centered on the equator were averaged using a program written by D. 
Austen (Stanford University). 

RESU LTS 
Protein Composition 

Electron microscope examination of the high-salt ribosome 
solution prepared as described in Isolation and Crystallization 
shows that -50% of the particles observed exist as tetramers, 
the remainder consisting of monomeric ribosomes and sub- 
units. Dialysis of this solution against modifications of solution 
E produces several different crystal types depending on the salt 
concentration, pH, and presence or absence of spermine. A 
comparison between the two-dimensional gel electrophoresis 
patterns of the crystalline ribosomes and chick embryo poly- 
somes is given in Fig, 1. The two preparations give similar 
overall patterns. The major differences are the occurrence of 

FiGUrE 3 (a) P4212 crystal grown by equilibration of high salt ribosome solution against solution E containing 1 mM potassium 
aspartate. Portions of one of the P4 layers making up the crystal can be seen at the edges. Gold thio-glucose stain, x 40,000. (b) 
Edge-on view of such a crystal. The location of the tetramers in one layer opposite the spaces in the other layer gives rise to the 
staggered arrangement of stain excluding regions in this view. x 82,000. (c) Optical diffraction pattern of P4212 crystal. With the 
exception of the 0,1 and the diffuse intensity at 0,5 the pattern displays systematic absences in the directions of the unit cell 
vectors. The first order corresponds to an object spacing of 593 A. 
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FIGURE. 4. (a)Lowanglex-raydi f f rac- 
tion pattern of oriented crystal pellet 
showing equatorial arcs to the 1,3. 
The diffuse meridional peak is at a 
spacing of 1/266 ,~-1. Strong first-or- 
der diffraction on the equator is due 
to imperfect orientation of the crys- 
tals and contributions from the small 
proport ion of crysta[s in the P422 and 
other configurations. (b and c) Com- 
parison of relative intensities of the 
equatorial peaks with intensities cal- 
culated from negatively stained crys- 
tal images. The latter are represented 
by vertical bars on the abscissa. (c) 
Shows the high angle region of the 
diffraction pattern. The predicted po- 
sitions of diffraction peaks are indi- 
cated by short vertical bars on the 
plot. The diffuse rings at 1/50 and 1/ 
38/~-I are also indicated. 

four additional spots, labeled A, B, C, and D, in the crystal 
protein pattern. Also, in this pattern there is a decrease in the 
staining intensity of a protein which we have labeled SI0 
following the convention of McConkey et al. (12). The crystals 
show no evidence of significant proteolysis. 

Effect o f  Crystal l iz ing Condi t ions 

All the crystal types observed are built up from a planar 
layer composed of  ribosomes arranged as tetramers on a square, 
P4 lattice (Fig. 2). This P4 layer may be described as right- or 
left-handed (4) depending on the face from which it is viewed. 
Small patches of  ribosomes in the P4 configuration were found 
under most crystallizing conditions early on in the process. 

Dialysis of the ribosome solution against solution E without 
spermine or at pH in the range 6.5-6.9 resulted in the P4 layer 
curving on itself to form a closed cylinder. These cylinders are 
similar to those observed in vivo when embryos are subjected 
to very slow rates of cooling (4). The cylinders, when adsorbed 
to grids and negatively stained, become flattened to form 
rectangular sheets 0.75 #m wide and up to 3 #m long (Fig. 2). 
Superposition of the two sides of  the cylinder, which in projec- 
tion have opposite hands, gives rise to complex moir6 patterns. 

Dialysis of the ribosome solution against solution E with the 
addition of 1 mM potassium aspartate led to the formation of  

sheets which are composed of two oppositely facing P4 layers. 
These sheets grow to a maximum size of 3 x 3/~m 2 and are 
stable for several weeks in mother liquor, or if stored in a small 
quantity of buffer A. They do, however, aggregate with time. 
A minor portion of  these sheets (<20%) is constructed accord- 
hag to the space group P422 (4), with the centers of  the tetramers 
in the two layers directly opposite one another. A still smaller 
portion is constructed according to the larger unit cell lattices 
found in the S. Italian lizard (17). The predominant crystal 
type, accounting for >80% of the crystals, has the tetramers 
composing one layer opposite the spaces between the tetramers 
in the other. This "staggered" packing, which can be deduced 
from inspection of  electron micrographs (Fig. 3), gives the 
crystal a distinctive pebbly appearance. 

Two-d imens iona l  P4212 Crystals 

Optical diffraction patterns of the latter crystals (Fig. 3) 
extend strongly to about the tenth order in negative stains (a 
resolution of 59/~). To this resolution and along the directions 
of  the tetragonal unit cell vectors they display systematic 
absences at odd values of h and k. There are weak intensities 
at the indices 0,1 and 0,5. However, the strength of these peaks 
is highly variable, suggesting that they arise artifactually, e.g., 
from unequal staining throughout the crystal thickness. Given 
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FIGURIE 5 Projection map of P4212 crystal calculated from specimen negatively stained with uranyl acetate. The F(0,O) term was 
not included in the Fourier synthesis, and no account was taken of the symmetry relationships of the crystal. Refinement of the 
Fourier terms assuming P4 symmetry gives an average phase error of 26 °, based on 32 comparisons. The shaded regions represent 
high concentrations of RNA and protein, i.e., regions where the stain is partially excluded. Because of superposition effects it is not 
possible to define the out l ine of a ribosome in either layer. The putative P4212 symmetry relationships are indicated. On the left 
half of the map, crosses (x) indicate the approximate center of ribosomes in the right hand P4 layer and circles {C)) those in the 
left hand P4 layer. 

the detail in the optical diffraction patterns and the observed 
face-to-face, staggered arrangement of the two P4 layers, the 
two layers of the crystal must be related both by twofold screw 
axes and by dyads lying in the central plane. The space group 
is therefore P4212. 

X-ray diffraction patterns were recorded from partially ori- 
ented pellets of  these crystals. With the plane of the sheets 
predominantly parallel to the beam they show a series of 
discrete arcs along the equator and diffuse intensities along the 
meridian (Fig. 4). The arcs along the equator, which arise from 
the crystalline packing within the plane of the sheet, index in 
accord with a square unit cell of dimension, a --- 593/~. They 
extend to a reciprocal spacing of  at least 1/60 ,~-1, at which 
point the arcs become difficult to resolve from one another at 
the 0.25 btm line-to-line resolution of  the x-ray camera. The 
strong meridional peak at a reciprocal spacing of 1/266/~-1 
must correspond to the center-to-center spacing between layers, 
since thin sections through the pellets show the sheets to be 
essentially randomly separated in this direction. We also ob- 
serve two rather diffuse, rotationally uniform, rings of intensity, 
centered at reciprocal spacings of 1/50 and 1/38 .~-1. 

In comparing the lattice peak intensities for the x-ray pattern 
with the Fourier transform intensities calculated from electron 
micrographs (Fig. 4), we observe a reasonably good corre- 
spondence between the two sets of data. Thus the projection 
map, based on structure factors determined from electron 
micrographs using negative stain (Fig. 5), gives a good approx- 

imation to the appearance of the crystal in its native environ- 
ment. 

DISCUSSION 

The effect of  slow cooling of  early chick embryos is to allow 
the termination of  nascent polypeptides and prevent reinitia- 
tion of translation (15). A large pool of inactive, presumably 
homogeneous, ribosomes is thereby created. These ribosomes 
have a propensity to aggregate in vivo into tetramers and 
subsequently into cylinders and ribosome crystals of the P422 
configuration (4). The tetramers have been shown to be func- 
tional in polyphenylalanine synthesis (5, 14). 

By extracting the tetramers from cooled embryos and sub- 
jecting them to slow changes in salt concentration we have 
been able to mimic the crystal types found in vivo and create 
a new type of tetragonal crystal of space group P4212, a -- 593 
A. These crystalline ribosomes appear to contain a full com- 
plement of large and small subunit proteins and in addition 
four other proteins not characteristic of chick embryo poly- 
somes. They may also lack appreciable amounts of  translation 
factors and nascent protein as suggested by the reduction in 
number and intensity of  spots close to the origin of the crystal 
protein pattern (2, 19). During cooling, the release of these 
proteins at the end of protein synthesis and the subsequent 
association of the four extra proteins with the ribosomes may 
be important in facilitating tetramer formation and crystalli- 
zation. 
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The low-angle x-ray diffraction pattern (Fig. 4) shows dis- 
crete arcs, corresponding to crystalline diffraction, to ~1/60 
A -1. The diffuse rings at 1/50 and 1/38 A -1 may be partly 
composed of sets of unresolved arcs from crystalline diffraction 
at 11-12 and 15-16 diffraction orders, respectively. Similar 
broad rings at 1/50 and 1/40 A -~ have been observed in 
patterns from rat liver ribosomes (9). Langridge (I0) has inter- 
preted the ring at 1/50 A -1 which he obtained from rat, rabbit, 
and Drosophila ribosome gels to originate from four or five 
parallel RNA double helices spaced ~50 A apart. Our results 
seem inconsistent with this interpretation since the rings show 
no evidence of orientation. 

The projection map (Fig. 5) shows a negatively stained 
crystal after averaging over ~ 100 U cells. The staggered pack- 
ing of the tetramers, which appears to confer extra stability on 
the P4212 crystals, prevents the outline or the internal structure 
of the ribosome from being observed in projection. These 
details should, however, become clear from a 3-dimensional 
analysis. This approach, together with labeling of the crystals 
with translation factors and monoclonal antibodies directed 
against ribosomal proteins, should prove valuable in localizing 
the functional domains of the eucaryotic ribosome. 

We are grateful to Dave Austen for writing the program used to process 
the x-ray diffraction patterns. 
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