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We identified the phosphoglycerate transporter gene of Salmonella typhimurium and its polypeptide product
and determined the nucleotide sequence of the gene. The predicted translation product was a protein of 406
amino acid residues and was extremely hydrophobic, a feature that is consistent with its role in membrane
transport. Hydropathy analysis suggested that there are eight transmembrane segments of at least 20 amino
acid residues for the protein. The transcription start point was mapped to lie at position -44 relative to the
putative translational initiation start point. Comparison of PgtP with UhpT and GlpT, the membrane-bound
proteins involved in the transport of hexose-6-phosphate and glycerol-3-phosphate, respectively, revealed a
very high degree of amino acid sequence similarity among them, reflecting not only similar structures and
functions among these polypeptides but also a common evolutionary origin for them.

Phosphoenolpyruvate, 2-phosphoglycerate, and 3-phos-
phoglycerate (3-PG) are transported into Salmonella typhi-
murium via the inducible transport system pgt (14). Induc-
tion of transport occurs only when inducer is present
extracellularly; no induction occurs in the absence of in-
ducer, even though phosphoglycerates are present intracel-
lularly at millimolar concentrations (14).
The pgt system has been cloned previously (11). In this

report we describe the identification of the transporter gene
pgtP, its polypeptide product and cellular location, the
nucleotide sequence of the gene, and the transcription start
point. Expression of the pgtP gene requires a functional
pgtA gene. The nucleotide sequence of this gene, which
encodes an activator protein, has been determined previ-
ously (21).

MATERIALS AND METHODS
Bacterial strains and phages. The bacterial strains used in

this study were all Escherichia coli K-12 derivatives:
BK9MDG (F- thi hsdR hsdM endB metC) (13) and JM103
(thi pro leu endA). Phages M13mpl8 and M13mpl9 were
used for gene sequencing.

Plasmids. The plasmids used in this study were derivatives
ofpBR322, pACYC184 (2), and pT7-1 or pT7-2 (17) and were
constructed by standard methodologies. Plasmid pGP1-2
was a gift from S. Tabor and C. C. Richardson (Harvard
Medical School, Boston, Mass.).
Media. The bacterial strains were grown in nutrient broth,

YT, or medium E (18) containing 0.5% succinate or 0.4%
3-PG. When required, amino acids were added to final
concentrations of 30 to 50 ,ug/ml. The following antibiotics
were used at the indicated concentrations: ampicillin, 35 ,ug/
ml; tetracycline, 15 pxg/ml; chloramphenicol, 30 pug/ml.
Enzymes and chemicals. Restriction endonucleases and

DNA enzymes were obtained from Bethesda Research Lab-
oratories (Gaithersburg, Md.) and New England BioLabs,
Inc. (Beverly, Mass.). All chemicals were reagent grade and
were obtained from commercial sources.
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Manipulations of DNA. Plasmid DNA was prepared from
cleared lysates by CsCl-ethidium bromide centrifugation, as
described by Davis et al. (4). The methods described by
Maniatis et al. (12) were used for DNA manipulations.

Identification of gene products. The phage T7 RNA poly-
merase-T7 promoter coupled system of Tabor and Richard-
son (17) was used to identify gene products encoded by
pgtP, with the exception that labeling with [35S]methionine
was done for 10 min instead of 5 min.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

For sodium dodecyl sulfate-polyacrylamide gel electropho-
resis, 12% slab gels were used, and samples were boiled for
3 min prior to application. A series of cross-linked cyto-
chrome c's were used as molecular weight standards. Gels
were run at 30 mA of constant current for 4 h, stained with
Coomassie brilliant blue, treated with En3Hance (New En-
gland Nuclear Corp., Boston, Mass.), dried, and exposed to
X-ray film for autoradiography.
3-PG transport assays. Strain CSR603 harboring particular

plasmids was grown at 37°C in minimal medium (medium E)
that contained 0.5% succinate as a carbon source and that
was supplemented -with thiamine, threonine, leucine, pro-
line, arginine, and the appropriate antibiotics. When growth
reached the exponential phase, cells were collected by
centrifugation and washed twice with and suspended in
medium E to an optical density at 660 nm of 3.0. When
induction of the pgt transport system was required, 0.2%
3-PG was added to exponentially growing cells, and the cells
were harvested 2 h later.
3-PG transport was measured as follows. A portion (25 RIl)

of the cell suspension prepared as described above was
incubated at 37°C for 2 min, when 1 pAl of 250 mM glucose
was added. Fifteen seconds later, 1 ptl of 3-phos-
pho[14C]glycerate (2.3 mM; specific activity, 55 mCi/mM)
was added, and incubation was continued for the desired
time intervals. To terminate transport, the mixture was
diluted with 2 ml of medium E. Cells were collected on
cellulose acetate membranes (pore size, 0.45 ,um; Schleicher
& Schuell, Inc., Keene, N.H.) and washed once with 2 ml of
medium E. Membranes were dried and counted in toluene-
based Omnifluor (New England Nuclear) in a liquid scintil-
lation counter.

Determination of cellular locations ofpgt proteins. Cells (10
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ml) with [35S]methionine-labeled, plasmid pJH587-encoded
proteins synthesized in the T7 RNA polymerase-T7 pro-

moter coupled system (17) were pelleted by centrifugation,
suspended in 0.6 ml of 0.1 M Tris hydrochloride (pH 7.6),
and subjected to sonication 4 times for 15 s each time, with
a 1-min cooling interval between sonications. After low-
speed centrifugation (4,000 rpm in a rotor [RC-5B; Ivan
Sorvall, Inc., Norwalk, Conn.]) for 10 min to remove unbro-
ken cells, the supernatant was layered on top of a 0.2-ml-
thick cushion in a tube containing 0.25 M sucrose, 10 mM
Tris hydrochloride, (pH 7.6), 50 mM KCl, 10 mM MgCl2,
and 0.01% L-methionine and subjected to high-speed centrif-
ugation (37,000 rpm in an SW50.1 rotor) for 2 h. The
membrane fraction was suspended in 0.2 ml of 0.1 M Tris
hydrochloride (pH 7.6) containing 0.4 M NaCl and then
subjected to centrifugation as described above. Washing of
the membrane with the buffer containing 0.4 M NaCl was
repeated once.

Transcription start point determination. The site of tran-
scription initiation was determined by the primer extension
method of Hu and Davidson (10). RNA was isolated from
plasmid pJH6-harboring strain BK9MDG grown on minimal
medium containing 3-PG as the sole carbon and energy
source by the method of Chen et al. (3), with the modifica-
tion that phenol replaced m-cresol. The RNA was hybridized

to single-stranded M13mpl8 carrying the 3.0-kilobase-pair
(kbp) HindIII-PstI fragment, and the RNA-DNA complex
was used as a template for the extension by T4 DNA
polymerase of the 32P end-labeled hexadecameric primer
5'-TTCACCACACCCTTCA-3' (corresponding to positions
-157 to -142 in Fig. 2) that were annealed to it. The reaction
mixture was subjected to polyacrylamide gel electrophoresis
with a control from which RNA was omitted and in parallel
with corresponding sequence ladders, as described previ-
ously (10).

RESULTS AND DISCUSSION

Subcloning. We previously described (11) the cloning of
the phosphoglycerate transport system of S. typhimurium
LT-2 into pBR322. The plasmid, pBR322-pgt2, which con-
tained a 14.4-kbp insert in pBR322 at the BamHI site, was
found to be capable of conferring on E. coli K-12 the ability
to transport 3-PG and to utilize 3-PG as the sole carbon and
energy source, suggesting that the genes for the entire pgt
system are contained in the 14.4-kbp insert (11). This plas-
mid was renamed pJH5.

Subcloning of the 14.4-kbp insert was undertaken to
localize genes of the pgt system. A series of subclones was
constructed from plasmid pJH5, and their ability to confer
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FIG. 1. Construction ofpgt subclones from plasmid pJH5. Plasmids pJH12, pJH13, and pJH14 were derived from pJH5 by deleting EcoRI,

HindIll, and Sall fragments, respectively. Plasmid pJH6 was constructed by inserting the 7.6-kbp PstI fragment into pBR322 at the PstI site;
plasmid pJH71 was constructed by inserting the 5.1-kbp BamHI-HindIII fragment at the BamHI and HindIll sites of pBR322; and pJH72 was
constructed by inserting the 7.6-kbp EcoRI-SalI fragment at the EcoRI and Sall sites of pBR322. Plasmid pJH501 was constructed by cloning
the 4.5-kbp HindIII-SalI-PstI fragment from pJH6 into pACYC184. A 2.6-kbp Sall fragment was then removed from pJH501, to yield pJH502,
which then contained only a 2.7-kbp SalI-PstI fragment of the original 7.6-kbp insert of pJH6. Construction of pJH7 and pJH8 are described
in the text. Restriction sites are abbreviated as follows: B, BamHI; E, EcoRI; H, HindIII; P, PstI; Hp, HpaI; S, Sall; S3, Sau3A. The broken
bars indicate the locations of the pgtP and pgtA genes. Transport phenotypes are indicated as inducible (I), constitutive (C), or nonexpression
(-).
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Net Pro Lou Ale Het Ile Cye Not Al Lou Ile Pb. Val Cye Lou Ile Gly Tyt Trp Ly S:r Glu So: Lou Lou Net Val
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FIG. 2. The nucleotide sequences of the pgtP gene and its 5'-flanking region and the deduced amino acid sequence of PgtP polypeptide.
The antisense (mRNA-like) strand is shown. The 3.0-kbp PstI-HindIII and the 3.0-kbp PstI-BglII fragments from pJH6 were cloned into
M13mpl9 at the PstI and HindIII sites and the PstI and BamHI sites, respectively. A series of deletions from each clone was generated by
the method of Henikoff (9). Nucleotide sequences were determined by the M13-dideoxynucleotide chain-termination method (15). A
complementary universal 15-bp oligodeoxynucleotide was used as primer, and [35S]dATP was used to label the products. Fractionation of the
single-stranded DNA products of the primer elongation reaction was performed on 8% polyacrylamide gels. The numbers in parentheses
indicate amino acid residues beginning from the N terminus. TSP indicates the transcription start point (see Fig. 3). The potential catabolite
activator protein binding site is underlined with lines, with arrows, and the potential -10 and -35 promoter regions are indicated with thin
lines.

3-PG transport was examined (Fig. 1). Deletion of the
3.3-kbp EcoRI fragment from the left arm of pJH5 yielding
pJH12 had no effect on the inducible expression of 3-PG
transport, indicating that this fragment contains none of the
information needed for 3-PG transport or its regulation.
However, deletion of the 9.0-kbp HindIII fragment from the
left arm of pJH5, yielding pJH13, abolished 3-PG transport,
indicating that the right half of the deleted fragment, namely,
the 4.9-kbp EcoRI-IlindIII fragment, contains information
that is required for 3-PG transport, regulation, or both.

Deletion of the 3.9-kbp Sall fragment from the right arm of
pJH5, yielding pJH14, also abolished 3-PG transport. When
the 7.6-kbp Pstl fragment was subcloned into pBR322 at the
PstI site, the resulting clone conferred inducible 3-PG trans-
port. However, subclones with inserts containing less than
the full complement in pJH6, such as pJH71, pJH72,
pJH501, or pJH502, conferred no 3-PG transport. Thus, it is
evident that the genetic information necessary for inducible
expression of 3-PG transport is contained in a 7.6-kbp PstI
fragment. We have previously identified (21) a regulatory
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gene that is needed for the expression of 3-PG transport in
this region; this gene, pgtA, encodes an activator protein and
is located on the right arm of the 7.6-kbp PstI fragment.
Constitutive transport conferred by pJH7 and pJH8 (see
below) suggests that a regulatory sequence is localized in the
region of Sau3A-HindIII-SalI-PstI.

Localization of the transporter gene pgtP. To localize the
structural gene(s) for the 3-PG transporter pgtP, subclones
that were capable of conferring constitutive expression of
3-PG transport were sought. For this purpose, plasmid pJH5
was partially digested with Sau3AI. After electrophoresis
fragments of 2 to 3 kbp in length were purified and ligated to
pBR322 at the BamHI site. The ligation mixture was then
used to transform strain BK9MDG, and transformants that
were able to utilize 3-PG as a source of carbon and energy

were selected. Several of the 3-PG+ clones were grown on

minimal succinate medium in the absence of inducer (3-PG)
and assayed for their ability to transport 3-PG. The two
smallest plasmids, pJH7 and pJH8, which contained 2.2- and
3.3-kbp inserts, respectively, conferred a constitutive 3-PG
transport ability (Fig. 1). Restriction analysis indicated that
the inserts in these two plasmids correspond to the 1.6-kbp
left arm of the 7.6-kbp insert in pJH6, as shown in Fig. 1,
plus a short segment contiguous to its left end. For pJH7 this
segment was 0.6 kbp, and for pJH8 it was 1.7 kbp. Thus, the
structural gene(s) for the 3-PG transporter pgtP is contained
within the 1.6-kbp PstI-HpaI-HpaI-Sau3AI sequence. The
sequences to the left of the 1.6-kbp arm are not present in
pJH6 and are therefore not required for pgt expression. The
location of the pgtA gene reported previously (21) is also
indicated in Fig. 1. Located between the pgtP and pgtA
genes are two pgt genes that are involved in the induction
process of the pgtP gene expression (unpublished data).
Sequencing of these genes is in progress.

Identification of the gene product. To identify the pgtP
gene product that is encoded in the insert of plasmid pJH7
and the transcriptional direction of the gene, the 1.8-kbp
PstI-HindIII fragment of pJH7 was placed behind the phage
T7 promoter of plasmids pT7-1 and pT7-2 at the PstI and
HindIII sites, generating pJH586 and pJH587, respectively,
and the plasmid-encoded products were identified by the T7
RNA polymerase-T7 promoter coupled system of Tabor and
Richardson (17). Plasmid pJH587, which carried the insert
with the T7 promoter proximal to the Hindlll site, encoded
a rather diffused, 37-kilodalton product, but no product was

observed with pJH586, which carried the insert in the
opposite orientation (data not shown). Thus, it is evident
that the 37-kilodalton product is the 3-PG transporter en-

coded by pgtP and that the direction of transcription of the
pgtP gene is from right to left in Fig. 1.
The product of the pgtP gene is membrane bound. To

determine the cellular location of the pgtP gene product,
cells carrying plasmid pJH587 were labeled with [355]methi-
onine in the T7 RNA polymerase-T7 promoter coupled
system as described above, sonicated, and centrifuged to
separate the membrane fraction from the soluble fraction.
The transporter expressed by pJH587 was found to be
associated with the membrane fraction, whereas the mature
periplasmic P-lactamase was found in the soluble fraction, as

expected (data not shown). Repeated washing of the mem-

branes with buffer containing 0.4 M NaCl did not dissociate
the proteins from the membranes (data not shown).

Nucleotide sequence of pgtP gene. The entire nucleotide
sequence of the 3.0-kbp PstI-HindIII fragment containing
the pgtP gene was determined by using the M13-dideoxynu-
cleotide chain-termination method (15). Both strands were

sequenced. The sequences of the pgtP gene and its flanks are
presented in Fig. 2. The pgtP gene is encoded in the
sequence from positions 1 to 1218 with 406 amino acid
residues. A putative Shine-Dalgarno sequence AGGTG at
-10 to -6 precedes the coding frame. Sequences at posi-
tions -56 to -51 (5'-CACTCT) and -78 to -72 (5'-TT
GAATT) are potential -10 and -35 promoter regions. At 10
bp upstream from these sequences (positions -106 to -89) is
the 18-bp sequence 5'-TGAGTCAATTTTGACACA-3',
which is a potential catabolite activator protein-binding site.

Transcription start point. The transcription start point of
the pgtP gene was determined by the examination of RNA
transcripts by hybridization mapping ofmRNA isolated from
the pJH6-carrying strain grown on 3-PG. We used T4 DNA
polymerase to extend a radiolabeled primer annealed to a
single-stranded DNA template in the presence of mRNA
(10). Because of the inability of T4 DNA polymerase to
displace a RNA hybridized to DNA, primer extension
should stop at the 5' terminus of the hybridized mRNA, with
the 3' end of the growing DNA chain thereby marking its
position. The site of the first termination of primer extension
in the presence of mRNA was at position -44, whereas no
termination was observed in that region in the absence of
added mRNA (Fig. 3). Thus, the transcription start point of

em-

Wem.I = =u

FIG. 3. Mapping of the transcription start point of the pgtP gene.
The transcription start point was identified by primer extension
analysis with T4 DNA polymerase, as described in the text. Lane 1,
Primer extension in the absence of mRNA; lane 2, primer extension
in the presence of mRNA; lanes 3 to 6, sequence ladders made by
the dideoxynucleotide sequencing method with the same primer
(unlabeled). Part of the nucleotide sequence deduced from the
sequencing lanes is shown on the right, and the shortest extended
primer segment is indicated with an asterisk.
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Amino acid sequence and protein structure. Examination of

the deduced amino acid sequence of the PgtP polypeptide
indicates that the polypeptide is extremely hydrophobic,
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FIG. 5. Alignment of amino acid sequences of PgtP, UhpT, and GlpT polypeptides. Identical positions between a pair of polypeptides are

indicated by double dots, and those among the three polypeptides are boxed. Gaps were introduced to optimize the alignment, which was

generated as described by Wilbur and Lipman (20).
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terminus, which is relatively hydrophilic in composition
(Fig. 4), is assumed to lie in the cytoplasm.
Codon usage. Of the 61 codons, 2 (AGG and GAC) were

not used in the pgtP gene. From the analysis of Grosjean and
Fiers (8), the pgtP gene appears to preferentially use the
degenerate codons found in the weakly expressed genes and
has a codon preference statistic of 0.38, which was calcu-
lated as described by Sharp and Li (16). This suggests that
the pgtP gene belongs to a group of genes with a low codon
bias.
Amino acid sequence homology with components of hexose-

6-phosphate and glycerol-3-phosphate transport systems. The
PgtP polypeptide (406 amino acid residues) has a high degree
of amino acid sequence similarity with the UhpT polypeptide
(463 amino acid residues), the membrane-bound transporter
for the hexose-6-phosphate transport system, which, like the
pgt system, is expressed only in the presence of exogenous
inducers (7, 19); with the UhpC polypeptide (219 amino acid
residues), a membrane-bound regulatory protein that is
presumably involved in inducer recognition and binding in
the regulation of uhpT expression and which has a high
degree of sequence homology with UhpT (7); and with the
GlpT polypeptide (452 amino acid residues), a membrane-
bound glycerol-3-phosphate transporter (5). Allowing for a
few small gaps and a misalignment by one amino acid residue
at the N terminus, the sequences of PgtP and UhpT aligned
well, with identical amino acid residues occupying 31% of
the positions (Fig. 5). Approximately the same degree of
sequence similarity was observed between PgtP and UhpC
polypeptides (comparison not shown). The sequences of
PgtP and GlpT also aligned well, with identical amino acid
residues occupying 37% of the positions. As expected from
the pairwise similarity observed here and that between GlpT
and UhpT reported previously (5, 7), a high degree of
similarity was observed among GlpT, PgtP, and UhpT
polypeptides; 17% of the 406 positions were occupied by
identical amino acids (Fig. 5). In addition to the sequence
similarities among GlpT, PgtP, and UhpT, the hydropathy
profiles of these polypeptides were also extremely similar
(data not shown). Eiglmeier et al. (5) have noted previously
that the hydropathy profiles between GlpT and UhpT are
similar. These observations reflect not only similar struc-
tures and functions among these polypeptides but also a
common evolutionary origin for them.
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