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ABSTRACT A major event in the keratinization of epidermis is the production of the histidine- 
rich protein filaggrin (26,000 mol wt) from its high molecular weight (>350,000) phosphorylated 
precursor (profilaggrin). We have identified two nonphosphorylated intermediates (60,000 
and 90,000 mol wt) in NaSCN extracts of epidermis from C57/BI6 mice by in vivo pulse-chase 
studies. Results of peptide mapping using a two-dimensional technique suggest that these 
intermediates consist of either two or three copies of filaggrin domains. Each of the interme- 
diates has been purified. The ratios of amino acids in the purified components are unusual 
and essentially identical. The data are discussed in terms of a precursor containing tandem 
repeats of similar domains. In vivo pulse-chase experiments demonstrate that the processing 
of the high molecular weight phosphorylated precursor involves dephosphorylation and 
proteolytic steps through three-domain and two-domain intermediates to filaggrin. These 
processing steps appear to occur as the cell goes through the transition cell stage to form a 
cornified cell. 

Mammalian epidermis is a stratified tissue with dividing basal 
cells overlaid by a series of differentiating cells proceeding 
from spinous cells to granular ceils, and culminating in the 
dead cells of the stratum corneum. A histidine-rich protein 
called filaggrin has been isolated from stratum corneum (1, 
2). It appears to function as a matrix protein between the 
keratin filaments within the fully differentiated cells of the 
stratum corneum (3). Antibodies to filaggrin localize in the 
stratum corneum and in the keratohyaline granules of the less 
differentiated granular cells (4). Ultrastructural analyses show 
[3H]histidine preferentially incorporated into the granular 
layer where keratohyaline granules are being produced (5). 
Pulse-chase experiments with [3H]histidine show label in a 
high molecular weight precursor (>350,000) which is chased 
into filaggrin (6-9). The high molecular weight precursor is 
highly phosphorylated, while filaggrin is not (10). Electron- 
probe microanalysis has demonstrated high levels of phos- 
phate in keratohyaline granules, while the stratum corneum 
has virtually none (11 ). These data are interpreted to suggest 
filaggrin is made as a highly phosphorylated precursor, stored 
in the keratohyaline granules, and then dephosphorylated and 
proteolytically processed to form the matrix protein, filaggrin, 
during cornification of the cells. The large phosphorylated 
precursor is called profilaggrin as suggested by Harding and 
Scott (12). 
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Both the synthesis and processing of this large molecular 
weight phosphorylated precursor are complex multistep proc- 
esses that are probably tightly controlled by the cell. This 
paper addresses only the processing events that yield filaggrin. 
We have isolated two intermediates that appear to contain 
two and three copies of a filaggrin domain, and which we call 
2DI and 3DI, for two-domain intermediate and three-domain 
intermediate. 

MATERIALS AND METHODS 
Extraction of Tissue: We obtained epidermis from newborn C57/ 

B 16 mouse skin (0-2 d) by heating the skin for 3 min at 50"C in PBS containing 
10 mM EDTA and then chilling it in ice-cold EDTA-PBS and peeling the 
epidermis from the dermis. Typically 30-35 mg of tissue was obtained from 
each animal. The skins were homogenized in a tissue homogenizer in ice-cold 
1.0 M NaSCN, 50 mM HEPES, 10 mM EDTA, pH 6.8, containing 0.3 mM 
orthophenanthroline, 20 t~g/ml phenylmethylsulfonyl fluoride, and 0.1% iso- 
propanol. Filaggrin and its precursors were precipitated from the supernatants 
by dilution into 10 vol of ice-cold water and centrifugation (0°C) at 12,000 g. 
Alternatively, tissue was extracted in 8 M urea, 10 mM EDTA, 50 mM Tris, 
pH 8, containing the same concentration of inhibitors. In either case, homog- 
enates were centrifuged at 27,000 g for 30 rain at 0°C. Supernatants were either 
kept on ice for use on the same day or frozen at -20"C for later use. 

SDS PAGE and Western Blotting: Samples were dissolved and 
analyzed on SDS PAGE by the method of Laemmli (13) except that gradient 
gels from 4-16% acrylamide were used. Inclusion of 0.15 M NaSCN did not 
interfere with the electrophoresis. The upper running buffer contained 1 mM 
Na thioglycolate to scavenge free radicals and oxidants in the gel (14). Acid 
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urea gels (pH 2.3) were run as in Brewer and Ashworth (l 5), except that running 
buffer contained 2 mM cysteine as a savenger. Gels were stained with Coomassie 
Brilliant Blue in 10% acetic acid, 50% methanol and destained in the same 
buffer. Low molecular weight standards (Pharrnacia Inc., Piscataway, N J) were 
supplemented with 200,000-mol-wt myosin (16) and 335,000-mol-wt thyro- 
globulin (17). 

Antigenic proteins were analyzed by Western blotting onto nitrocellulose 
followed by reaction with the peroxidase/antiperoxidase procedure ( t 8). Excess 
binding sites were blocked with 3% BSA, and then blots were incubated 
successively with rabbit antibody to rat filaggrin, goat anti-rabbit lgG, and a 
rabbit antiperoxidase-peroxidase complex. Peroxidase was visualized with 
3,3'diaminobenzamidine and H202. 

In Vivo Radiolabeling: Histidine-rich proteins were labeled in vivo 
with 15 ul of a solution containing either 15 uCi of [3H]histidine (ICN Corp., 
Irvine, CA) or 150 tzCi of [32p]phosphate (New England Nuclear, Boston, MA) 
injected subcutaneously into the upper back of newborn or 2-d-old mice. 
Animals were returned to their mothers. The histidine label was chased at 2 h 
by injecting 15 ul of 1 mM histidine near the site of the first injection. At 
various times animals were killed by cervical dislocation, and the skins were 
removed and extracted with NaSCN as described above. Three litters were used 
for each experiment and two to three animals were taken for each time point. 

10 ~1 of supernatant from each time point was added to 90 ~1 of Laemmli's 
sample buffer, boiled 3 min, and analyzed by gradient SDS PAGE. In the 
phosphate labeling experiments, autoradiography was done with dried gels and 
XOMAT film (Kodak, Rochester, NY) at room temperature. In the histidine 
labeling experiments, stained gels were treated with ENHANCE (New England 
Nuclear) for fluorography using XOMAT film at -70"C. Western blots of 
labeled proteins were sprayed with Enhance for fluorography. 

Peptide Mapping: To compare proteins in extracts, we developed a 
method ofpeptide mapping by a two-dimensional modification of the technique 
of Cleveland et al. (19). A similar method has been used by Bordier and Crettol- 
Jarvinen (20). In this procedure, after a preliminary SDS PAGE separation, 
proteins in an entire lane were exposed to proteases during etectrophoresis at 
right angles in a second SDS PAGE. First, the proteins (precipitated by dilution 
in water) were resolved on a 4-16% gradient in SDS PAGE as described above. 
The gel was stained for 10 min in 1% Coomassie Blue in water and destained 
in water just until lanes could be clearly seen (~20 min). The whole lanes were 
cut out and placed in Laemmli's sample buffer containing 15 % glycerol instead 
of the usual 5%, for 15-20 min. Each strip was then placed horizontally in a 
slot above a l-cm stacking gel on top of a second SDS PAGE gel (5-20% 
gradient). As noted by T~ssen and Kurstak (21), variations in length of the 
stacking gel caused changes in the degree of proteolysis. Insertion of the strips 
was facilitated when the first gel was 1.2-mm thick and the second gel was 1.5- 
mm thick. A small amount of the sample buffer (containing 15% glycerol) was 
added to assure a level surface for the subsequent addition of 200 ~tl of a 
protease solution on top of the gel strip. N-tosyl-L-phenylalanine chloromcthyl 
ketone-treated chymotrypsin, generously provided by Dr. K. Titani (University 
of Washington), was dissolved in 5% glycerol, 50 mu Tris (pH 6.8), 0.01% 
bromphenol blue just before use. The most reproducible results were obtained 
when electrophoresis was not stopped at the stacking interface. The initial 
current was 50 mA in a gel 13-cm wide. When the bromphenol blue had passed 
through the sample strip, the current was adjusted to 35 mA. 

Purification of Filaggrin, Two- and Three-Domain Interme- 
diates, (2DI and 3DI), 1 and Profilaggrin: Proteins in NaSCN 
extracts from 10 skins were precipitated by adding 10 vol of distiUed water and 
chilling in an ice bath for 5 min before centrifugation 02,000 g for 30 rain). 
The pellet was extracted with 30 ml of 10% formic acid at room temperature; 
acid-soluble proteins were lyophilized, taken up in l0 ml of 6 M urea, 10 mM 
EDTA, 50 mM "Iris, pH 8, and applied to DEAE-sepharose as in Dale (1). The 
high molecular weight precursor bound to the column and was eluted later 
with 250 mM NaCI in the equilibration buffer. Filaggrin, 2DI, and 3DI did not 
bind to the column. This unadsorbed mixture of proteins was desalted into 
10% formic acid on a column of Bio-Gel P2, lyophilized, dissolved in 0.3 ml 
of 10% formic acid (adjusted to pH 2 with NaOH), and separated from insoluble 
material by centrifugation. The supernatant was applied to a column of Bio- 
Gel P200, 200--400 mesh (0.7 x 91 cm) equilibrated in 10% formic acid, pH 
2. The protein was eluted at room temperature at 1.2 ml/h. An aliquot of each 
fraction was lyophilized, taken up in sample buffer, and analyzed by SDS 
PAGE in order to locate the proteins of interest. 

Amino  Acid Analysis: Samples of 3DI, 2DI, and filaggrin for amino 
acid analysis were first dialyzed against 1% formic acid at 3"C for 8 h using 
Spectropore tubing (Spectrum Medical Industries, Inc., Los Angeles, CA) 
washed with hot EDTA/NaHCO3. Profilaggrin was desalted into 10% formic 

t Abbreviations used in this paper: 2DI and 3DI, two- and three- 
domain intermediates, respectively. 

acid on Bio-Gel P2. Aliquots were lyophilized and hydrolyzed in 6 N HCI at 
106"C for 22 h before analysis on a Dionex D-500 amino acid analyzer (Dionex 
Corp., Sunnyvale, CA). No corrections were made for destruction of serine. 
Low levels of amino acids (<0.2 nmol) were detected in blanks and were 
subtracted from the analyses. Analyses were repeated at two different concen- 
trations and normalized via alanine. 

RESULTS 

Extraction of Filaggrin-like Proteins 

Urea extracts of epidermis show a number of proteins that 
interacted with antibody to filaggrin and several that did not 
(Fig. 1, lanes 1 and 3). Since keratins contaminate this urea 
extract, an extraction method with NaSCN was developed 
which left the keratins in the tissue (Fig. 1, lanes 2 and 4). 
This had the additional advantage that filaggrin-related pro- 
teins are selectively precipitated by dilution with 10 vol of 
water. To check that all of the proteins of interest were 
extracted by this new method, we performed Western blots 
with antibody to filaggrin. Although the antibody used has 
some reactivity with nonfilaggrin proteins in the extract (e.g., 
the prominent 200,000-mol-wt band in Figs. 1 and 4), the 
blotting experiments clearly show the same cross-reactive 
proteins were extracted in NaSCN as in the traditional 8 M 
urea buffer. Preimmune serum also reacted with the 200,000- 
mol-wt protein, which was shown to be unrelated to filaggrin 
by peptide mapping. 

The relative selectivity of the NaSCN extraction procedure 
was confirmed by composition studies (Table I). The precip- 
itate has very nearly the same amino acid composition as the 
unusual one that characterizes pure filaggrin (2). For example, 
there is a high content of arginine, histidine, and serine, but 
none of the cystine or methionine characteristic of keratins. 

Time Course-labeling Studies 

Using [3H]histidine in a pulse-chase, in vivo labeling exper- 
iment, we examined the order of appearance of these proteins 
in newborn mice. The results of a 44-h time course are shown 
in the fluorograph in Fig. 2 and by densitometric analysis in 

FIGURE 1 SDS PAGE of extracts of newborn mouse epidermis. 
Lanes 1 and 3 are urea extracts; lanes 2 and 4 are NaSCN extracts. 
Lanes 1 and 2 are stained with Coomassie Brilliant Bue (CBB); lanes 
3 and 4 are Western blots using antibody to rat filaggrin. 
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TABLE I 

Mole Percent of Amino Acid Residues in Acid Hydtolyzates of Filaggtin-related Proteins 

Precipitate* Profilaggrin 3DI 2DI Filaggrin Filaggrin* 

Asx 5.4 6.3 4,4 5.3 6.0 5.2 
Thr 1.8 1.3 Trace Trace Trace 0,4 
Ser 15.3 15.6 18.3 19.2 19.6 20.4 
Glx 19.1 21.2 22.8 22.1 21.9 20,6 
Pro 3.25 2.8 6.7 3,4 3.1 3.1 
Gly 15.1 17.8 19.5 17.7 17.7 17.0 
Ala 8.8 7.8 6.1 8.6 9.1 8.6 
Val 3.4 3.0 2.0 2.5 2.5 3.0 
Met 0.1 0.4 s _ - -  0.1 
lie 0.54 1.8 - -  - -  - -  0.2 
Leu 1.55 2.4 - -  - -  - -  0.7 
Tyr 1.74 0.2 - -  - -  - -  0.6 
Phe 1 +02 0.9 - -  - -  - -  0.6 
His 7.4 8.9 8.4 8.5 8.9 8.4 
Lys 1.3 1.1 - -  - -  - -  0.1 
Arg 11.1 9.2 12.0 12.7 11.4 11.5 

"Material  that precipitates from the I M NaSCN extract upon 10-fold dilution in water. 
* Steinert el al., reference 2. 
s None detected (<0.2). 
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FIGURE 3 Densitometric data derived from the in vivo [3H]histi- 
dine pulse-chase experiment in Fig. 2C. 100 density units corre- 
spond to 3,100 cpm. 

5 0 -  

FtGure 2 SDS PAGE of epidermal NaSCN extracts of newborn 
mouse skin from in vivo pulse-chase experiments. (A) Proteins 
stained with Coomassie Brilliant Blue (CB8). (B) 32p-labeled proteins, 
precipitated from a 16-h NaSCN extract by 10-fold dilution. 19 
other timed samples (not shown) gave virtually identical results. (C) 
time course of [3H]histidine-labeled proteins. Time from injection 
of label is indicated under each lane. Longer exposure showed no 
label in intermediates until 4 h. Values at left equal molecular 
weight x 10 -3. 

Fig. 3. Label was first seen in a high molecular weight precur- 
sor (>350,000). By 4 h, label was detected in two pairs of 
bands at approximately 90,000 (hereafter referred to as 3DI) 
and 60,000 mol wt (2DI). The differences between the major 
and minor bands of each pair is not clear. Because of the 
similar kinetics of appearance and disappearance of label in 
all four bands, we grouped them together in the densitometric 
analysis of Fig. 3. After 8-10 h the label was first evident in 
filaggrin. The timing of the first detection of label was similar 
in three experiments. Newborn animals showed virtually com- 
plete disappearance of label from the high molecular weight 
precursor by 35 h, whereas 2-d-old animals required ~50 h. 
These data are consistent with a precursor-intermediate-prod- 

uct relationship from the >350,000-mol-wt precursor (profi- 
laggrin) through intermediates (3DI and 2DI) to the mature 
product, filaggrin. 

Most of the incorporated radioactivity is found in filaggrin- 
related proteins. The efficiency of uptake of the label was 
relatively uniform from animal to animal. In one experiment 
using three litters (27 animals), total incorporation was 1.05 
x 106 cpm/min per animal (SD = 0.18). After 80 h, fewer 
total counts were recovered, presumably owing to sloughing 
of dead cells. After acid hydrolysis of samples at 1 and 24 h, 
all label was found in histidine. After 45 h, label began to 
appear in trichloroacetic acid-soluble material which elutes 
with urocanic acid on thin-layer chromatography (J. Peschon 
and K. Resing, unpublished data). Of the incorporated counts, 
70% (0.73 x 106 cpm per animal) was extracted into 1 M Na 
thiocyanate, 85% (0.62 x 106 cpm per animal) of that in 1-h 
extracts precipitated upon dilution (Table II). Gel slicing 
experiments showed at least 90% of the label in the precipitate 
was in profilaggrin. 

Since the precursor (>350,000) is known to be phosphoryl- 
ated (8, 10), similar pulse-chase experiment was done with 
[32P]phosphate to see if any of the intermediates were also 
phosphorylated. In 20 samples collected over a 2-d period, 
only the high molecular weight precursor was labeled. Fig. 2, 
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lane B, illustrates one such analysis. No ohosohate was de- 
tected in the 2DI, 3DI, or filaggrin bands. 

Isolation and Characterization of 3DI, 2DI, 
and Filaggrin 

The major filaggrin-related proteins were precipitated by 
10-fold dilution of the thiocyanate extract in ice-cold water. 
At this stage of purification, they appeared to co-precipitate 
with a contaminant, possibly chromatin, because the purified 
proteins are soluble in dilute thiocyanate. The precipitate was 
dissolved in 6 M urea, 50 mM Tris, pH 8, and applied to 
DEAE-Sepharose. 

Fig. 4 shows that filaggrin and the intermediate forms, 2DI 

TAatE II 

Distribution of [3H]Histidine Label in Extracts of Epidermis 

Step cpm per animal Recovery 
x 106 % 

Labeled <_2 h 
Incorporated in homogenate* 1.05 (0.18) 
1 M NaSCN extract (<2 h)** 

Found in precipitates ! 
Labeled 25 h 

I M NaSCN extract 0.80 
Precipitate 0.53 

Found in profilaggrin I 0.03 
Found in 3DI and 2DI ! 0.10 
Found in filaggrin I 0.33 

0.73 (0.12) 100 
0.62 (0.09) 85 

100 
66 

4 
12 
41 

Values in parentheses represent standard deviation. 
* Estimated by counting aliquots of six homogenates. 
* Soluble material in I M NaSCN. 
! Precipitated by 10-fold dilution in water. Gel slicing experiments showed 

that at least 90% was profilaggrin. 
I Cpm recovered after 1 M NaSCN extract was analyzed by gel filtration. 

18% of counts ran in the very small size range (<8,000 mol wt). 

FIGURE 4 Western blot after SDS PAGE of fractions from DEAE- 
Sepharose (pH 8) chromatography (see Materials and Methods) 
using rabbit anti-rat filaggrin. (A) Sample as applied to column; (B) 
f low-through fraction containing 3DI, 2DI, and filaggrin; (C) fraction 
eluted by 100 mM NaCI; (D) fraction eluted by 250 mM NaCl (and 
used for amino acid analysis in Table I). 

FIGURE 5 Filaggrin-related proteins separated according to their 
size. The mixture of proteins in the f low-through fraction of  the 
DEAE-Sepharose column (Fig. 4, lane B) was separated on a Bio- 
Gel P200 column (see Materials and Methods) at 1.2 ml/h. Fractions 
collected hourly were examined by SDS PAGE and Coomassie 
Brilliant Blue staining. Lanes 1-I 1 correspond to fractions collected 
at 1t h through 21 h. Fractions sampled for amino acid analysis 
(Table I) correspond to lanes 2 (3DI), 4 (2DI), and 9 (filaggrin). 
Values at left are molecular weight x 10 -3. 

and 3DI, did not bind to DEAE-Sepharose at pH 8. These 
unbound proteins could be partly purified on Bio-Gel P200 
in 10% formic acid (Fig. 5). A 25-h time point was subjected 
to gel filtration on P300. 0.33 x 10 6 cpm per animal was 
recovered in filaggrin, 0. l0 x 106 cpm per animal in 2DI and 
3DI, and 0.03 x l0  6 cpm per animal in profilaggrin (Table 
II). These data suggest that 20-25% of the label has disap- 
peared during processing, which is in agreement with the 
densitometric analysis of fluorographs in Fig. 3. 

Amino acid analysis of the purest fractions (judged by SDS 
PAGE) showed that 3DI, 2DI, and filaggrin had nearly iden- 
tical compositions (Table I). The slightly low serine content 
for profilaggrin is probably due to destruction of phosphoser- 
ine. No correction was made because control peptides showed 
various degrees of destruction of phosphoserine (from 10 to 
40%). Chromatography on carboxymethyl-cellulose at pH 5 
showed little resolution of the three components. Phosphate 
analysis by the method of Itaya and Ui (22) showed <0.5 
phosphate/mol. This confirms the absence of phosphate in 
the intermediates as shown by in vivo [32p]phosphate labeling 
experiments in Figure 2B. The elution behavior on DEAE- 
and carboxymethyl-cellulose suggest that the larger interme- 
diates, 3DI and 2DI, are similar in net charge to filaggrin, a 
conclusion consistent with the absence of phosphate in all 
three proteins. 

Two-dimensional Peptide Maps of Filaggrin- 
related Proteins 

To determine the structural relationships among profilag- 
grin, filaggrin, and the intermediates, we performed peptide 
mapping using limited proteolysis during SDS PAGE by a 
modification of a method first described by Cleveland et al. 
(19). In this procedure, the proteins are first resolved by size 
on SDS PAGE in one dimension, then digested with a pro- 
tease as they enter a second dimension of SDS PAGE. Undi- 
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FIGURE 6 Two-dimensional lim- 
ited chymotryptic peptide maps of 
2DI and 3DI, suggesting domain 
substructure. In the first (horizontal) 
dimension, proteins precipitated by 
dilution of a NaSCN extract were 
first separated on SDS PAGE. in the 
subsequent second (vertical) di- 
mension limited proteolysis by ther- 
molysin in the stacking gel preceded 
separation (see Materials and Meth- 
ods). The gel was stained with Coo- 
massie Brilliant Blue. Chymotrypsin 
used was (A) 0.1 #g; (B) 1 #g; and 
(C) 10/~g. Values at left are molec- 
ular weight x 10 -3. 

gested proteins are found on a diagonal, while peptides gen- 
erated from each species are separated vertically. Using this 
technique, Lonsdale-Eccles et al. (8) showed that profdaggrin 
appeared to contain multiple copies of a phosphorylated form 
of filaggrin called ~, but the presence of keratins obscured 
analysis of the regions where 3DI and 2DI are now located. 
Fig. 6 illustrates that chymotrypsin cleaved 3DI to fragments 
co-migrating with 2DI or filaggrin, and cleaved 2DI to a 
peptide similar in size to filaggrin. In each case, the amount 
of mass, judged by densitometry of the Coomassie Blue 
staining of the original 3DI or 2DI regions, appeared similar 
to the mass of the proteolytically generated monomer. Taken 
together with the molecular weights, these data suggest that 
there are three fllaggrin-like domains in each 3DI and two 
such domains in each 2DI. The domains appear to be bound 
together covalently since they do not dissociate in SDS PAGE 
in 6 M urea at pH 7.8 or 2.5 (data not shown). Limited 
proteolysis with chymotrypsin appeared to separate the do- 
mains, presumably in interdomain regions. 

Upon more extensive digestion, profllaggrin, 2DI, and 3DI 
showed other differences (Fig. 7). Initially, each of the larger 
proteins was broken down to a filaggrin-sized peptide, from 
which peptides in the 20,000-24,000-mol-wt range were pro- 
duced. Peptide A is similar in filaggrin, profilaggrin, and the 
intermediates. An offset spot just above A of 2DI is from the 
minor 60,000-mol-wt kd component. Peptide B is unique to 
profilaggrin, and peptide C appears to be unique to 2DI. 
These differences probably reflect prior in vivo proteolytic 
processing in interdomain linker regions. The possibility that 
linker peptides are removed during processing is supported 
by the observation that ~20% of the [3H]histidine incorpo- 
rated into profllaggrin was not recovered in 3DI, 2DI, or 
filaggrin. 

DISCUSSION 

In the work presented here, we have shown pulse-chase evi- 
dence that filaggrin is produced in vivo from a high molecular 
weight phosphorylated precursor, profilaggrin (>350,000), via 
90,000- and 60,000-mol-wt protein intermediates. These in- 
termediates have several properties in common with filaggrin. 
Most important, they have nearly identical, and quite unu- 
sual, amino acid compositions. In addition, they are all cati- 
onic, contain no phosphate, show limited size heterogeneity, 
and have similar peptide maps after limited proteolysis. They 
differ from filaggrin in their sizes, which are approximately 
twice or three times the molecular weight of filaggrin. These 
molecular weights do not change in 10% formic acid, in acid- 

FIGURE 7 Fluorograph of a two-dimensional chymotryptic peptide 
map of proteins precipitated from a 1 M NaSCN extract of 12.5 mg 
of mouse epidermis labeled for 18 h with [3H]histidine (65,000 cpm 
per gel). After the first separation (horizontal), a large amount of 
chymotrypsin (100/~g) was added to promote extensive proteolytic 
digestion and the products displayed in the vertical dimension. 
Similar peptides are seen in profilaggrin, 3DI, 2DI, and filaggrin. 

urea-PAGE, in SDS PAGE, and in the presence of mercap- 
toethanol. Limited proteolysis suggests that the 90,000- and 
60,000-mol-wt proteins consist of three and two repeats of a 
filaggrin domain, which provides additional support for the 
hypothesis that the largest precursor, profilaggrin (>350,000 
mol wt), consists of many tandem repeats of a filaggrin unit 
(8, 24). The proposed polymeric structure for profilaggrin can 
be compared with examples of repeated copies of peptide 
hormones or to certain polyproteins, as found in viruses (cf. 
reviews in references 8 and 25). The polymeric profilaggrin is 
exceptional in the suggested length of the repeat size and in 
the larger number of copies of the repeat (at least 10). 

Intermediates in the processing of filaggrin precursor have 
been observed before but the kinetics of labeling have not 
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been reported. Profilaggrin was also seen by Ramsden et at. 
(9), who labeled filaggrin ("band 2 protein") in vivo with a 
pulse of [3H]histidine and observed label in a high molecular 
weight precursor ("350 K HRP") before that label appeared 
in filaggrin. A similar series of processing intermediates have 
also been observed in guinea pigs (26) and may be implied 
from work on rabbits (27) and humans (12). The unusual 
processing via intermediates such as seen in Fig. 2 has struc- 
tural implications that must be accommodated in any poly- 
meric model for profilaggrin. It is clear in Fig. 2 C that 2DI 
and 3DI can be generated from the polymeric profilaggrin 
without generating much monomer (particularly in the 4-10- 
h range). Possibly the filaggrin domains are joined by two 
different types of bonds. If one of these sites is processed early 
(at 4-8 h) to produce 2DI and 3DI, and another later (10-20 
h) to produce filaggrin, the pattern in Fig. 2C could be 
explained. Processing of the two types of sites could be con- 
trolled by timed release of proteases or by restricted access in 
the packed granule. 

Profilaggrin is not only the species with the highest molec- 
ular weight, but also the only species that is phosphorylated 
and anionic. Therefore, dephosphorylation must be an early 
processing step. Because no phosphorylated intermediate was 
detected in the 32p time course, dephosphorylation appears to 
precede proteolysis. Alternatively, the two events occur con- 
comitantly, or certain aspects of processing may occur so 
rapidly that intermediates are not observed. It will be shown 
separately (Resing, K., B. Dale, and K. Walsh, manuscript in 
preparation) that some but not all of the phosphate may be 
removed as phosphopeptides during processing of profilaggrin 
to 3DI and 2DI. One can speculate that the removal of 
phosphate (or phosphopeptides) unmasks protease sites or 
that the presence of phosphate prevents premature interaction 
of cationic filaggrin with anionic keratin filaments, but such 
ideas have not yet been tested. 

One can attempt to corgelate the time course of the exist- 
ence of the intermediates with the cellular events associated 
with this highly differentiated tissue. The relevant events occur 
between the granular cell stage and the fully differentiated 
stratum corneum cell, since profilaggrin is synthesized in the 
granular layer but only filaggrin is found in the stratum 
corneum (6, 7, 9, 10, 28). To correlate the cellular differentia- 
tion with the processing of profilaggrin (Fig. 3), estimates of 
the rate of upward movement of the cells is required. Since 
the granular layer is three to four cells thick, cells at various 
depths will undergo the transition at different times. Thus, 
profilaggrin made in the uppermost granular cell layer will 
reach the stratum corneum more quickly than that made in 
the lowermost layer. Fukuyama and Epstein (29) reported 
that granular cells labeled with [~H]histidine begin to migrate 
into the lowermost layer of the stratum corneum by 6 h and 
that the migration is essentially complete in 24 h. The time 
scale may be compared with that of our [3H]histidine-labeled 
cells, in which processing to 3DI and 2DI was first detected 
3-4 h after the histidine pulse (Figs. 2 and 3) and was complete 
some 25-40 h later. 

The experiments of Fukuyama and Epstein (29) also shed 
light on the physiological meaning of the 5-6-h lag time 
between the appearance of the intermediates and the appear- 
ance of filaggrin. The initial transport of label in their studies 
occurred into a transition cell, which we might now propose 
as the site of the enzymatic processing. 2DI and 3DI may 
appear early in such a transition, and the initial interaction 

with the keratins may occur at this stage. Subsequent produc- 
tion of filaggrin might then signal a condensation of the 
filaggrin-keratin macrofibril structures. 

The eventual disappearance of histidine label from the 
filaggrin band occurs long before the label is sloughed off the 
surface of the skin. Scott et at. (30) believe filaggrin is com- 
pletely degraded to free amino acids and that histidine is 
converted to urocanic acid. Filaggrin would thus appear to 
function as a "scaffolding" protein. In our system the break- 
down to amino acids (and urocanic acid) begins at -36  h (J. 
Peschon and K. Resing, unpublished observation), suggesting 
that the scaffolding is in place for - 3 0  h or during the passage 
through four to five cell layers. The lower layers of the stratum 
corneum show a progressive decrease in the amount of free 
sulfhydryl groups (31). Possibly the filaggrin scaffold is no 
longer required after the keratins have formed cystine disul- 
fides. 

The synthesis of a polymeric profilaggrin may be a common 
feature in mammalian epidermis. Studies of processing in this 
system have been complicated by the proteolytic lability of 
the profilaggrin and by the presence of massive amounts of 
keratins. The present use of high salt concentrations during 
extraction, and of the specific histidine label, together provide 
a clearer picture of events that occur in profilaggrin process- 
ing. These events constitute important cellular processes in 
epidermal differentiation. The relative ease with which proc- 
essing can now be followed make it ideal for closer study of 
the cellular mechanisms of terminal differentiation. It remains 
to be seen whether modulation of these events from tissue to 
tissue, during disease states and during fetal development, 
may correlate with the type and extent of epithelial differen- 
tiation. 
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