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ABSTRACT The relationship between myosin organization and cell spreading in the preimplantation 
mouse embryo was studied by indirect immunofluorescence in embryos cultured on lectin-coated 
substrates. Binding of cell surface polysaccharides to substrate-bound concanavalin A and wheat 
germ agglutinin induced changes in myosin distribution that resembled those which occur during 
cell-cell contact interaction. This involved an initial loss of myosin from the contact region that was 
associated with the development of stable cell-substrate attachments. In addition, a ring of myosin 
was formed along the edge of the cells' contact to the substrate. The presence of such a ring may 
be related to the potential for subsequent cell spreading. A myosin ring was also identified in the 
apical junctional region of the outer morula cells where it similarly separated the cell periphery into 
contacted and free peripheral domains. Following these changes in myosin organization the embryos 
spread on the substrate by extension of lamellipodia. These movements were coupled to the 
dissolution of the myosin ring and the reorganization of myosin into filament bundles. The sequence 
of changes in the pattern of myosin distribution suggests that contact regulation of myosin organi- 
zation plays an important role in controlling the spreading behavior of blastomeres and perhaps 
more generally in the organization of cells into epithelia. 

A major morphological change takes place in the eight-cell 
mouse embryo when the rounded blastomeres spread and 
flatten against each other. This process of compaction has an 
important influence on blastocyst formation and differentia- 
tion of the epithelial trophoblast. It involves active cell move- 
ment (15) and appears to be related to changes in adhesiveness 
(14, 15, 25) and to cytoskeletal reorganization (6, 7). 

The cortex of compacting blastomeres contains a network 
of microfilaments (7) and immunofluorescent localization 
shows a continuous layer of cortical actin (16). Myosin, on 
the other hand, exhibits a polarized cortical distribution (22). 
It forms a continuous cortical layer in the uncontacted apical 
region of the cells and is not detectable in regions of cell 
contact. The loss of myosin from the contact regions is 
mediated by contacted interaction between the blastomeres 
and may play a role in the development of stable cellular 
associations (23). Contact modulated loss of myosin begins in 
the two-cell embryo and continues through the morula stages 
(23). It is therefore unlikely to serve as the only indication of 
myosin involvement during compaction. If myosin has a 
specific role in compaction one might expect to see a new 
pattern of myosin organization in which one element would 
be the missing patch of cortical myosin. 

The present study was designed to see if spreading is asso- 
ciated with such a specific pattern of myosin organization. 
Blastomeres spread on lectin coated substrates (14) and this 
system was adapted to examine the temporal relationship 

between myosin organization and spreading. The results show 
that binding of cell surface polysaccharides to substrate-bound 
concanavalin A (Con A) and wheat germ agglutinin (WGA) 
induces changes in myosin organization that resemble the 
changes which occur during cell-cell interaction (23). This 
involved an initial loss of myosin from the contact region, a 
response which seems to be related to the stabilization of cell- 
substrate adhesion. Secondly, a ring of myosin developed at 
the edge of the embryo's contact with the substrate. A myosin 
ring was also identified in the apical region of the outer cells 
of the morula where the junctional complexes are in the 
process of formation. The presence of such myosin rings may 
be related to a developing capacity to undergo active spreading 
movements. Thirdly, the active movements by the substrate- 
bound embryos took the form of lamellar projections. Their 
formation was associated with the dissolution of the myosin 
ring and the appearance of myosin-containing filament bun- 
dles. 

MATERIALS AND METHODS 

Collection of Embryos: 5-7-wk-old randomly bred ICR mice (West 
Seneca Breeding Facility, Roswell Park Memorial Institute, Buffalo, NY) were 
superovulated by intraperitoneal injection of 5 I.U. each of pregnant mare's 
serum (PMS) (gestyl, Organon Diagnostics, West Orange, NJ) followed by 
human chorionic gonadotropin (HCG) (pregnyl, Organon) 48 h later and mated 
with CB6F~/J males (Jackson Labs, Bar Harbor, ME). Two-cell embryos were 
recovered at 7-9 a.m. on the second day of pregnancy and eight-cell embryos 
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at 5-7 p.m. on the third day of pregnancy by flushing oviducts and uteri with 
modified Hank's balanced salt solution (BSS) (24). 

Culture Conditions: Zona pellucidae were removed with acid Ty- 
rode's solution (pH 2.5) 08) for 15-30 s followed by rinsing in a large volume 
of BSS. Some two-cell embryos were dissociated in calcium-free BSS. Two-cell 
embryos were cultured for 4-6 h and eight-cell embryos overnight on coverslips 
in modified egg culture medium (24) in a humidified atmosphere of air and 
COs at a medium pH of 7.3. 

Preparation of Lectin and PolyIysine-coated Coverslips: 
Con A (Sigma #C7275; Sigma Chemical Co., St. Louis, MO) and WGA (Sigma 
#L0636; Sigma Chemical Co.) coated coverslips were prepared by incubating 
acid cleaned coverslips in lectin (5 mg/ml H20) for 2 h at 4°C and rinsing 5 
times with H20. Acid cleaned and derivatized coverslips were coated with 
polylysine as described by Weetail and Filbert (27). 

Immunofluorescence Microscopy: Embryos were permeabilized 
with 0.02% saponin, fixed in cold methanol, and stained by indirect immuno- 
fluorescence for myosin as previously described (22). Antimyosin serum was 
raised against human platelet myosin (8) and was a gift ofK. Fujiwara (Harvard 
Medical School, Boston, MA). Controls for antibody specificity were the 
omission and preabsorption of the primary antibody as described previously 
(22). The embryos were examined in a Zeiss Photomicroscope II equipped with 
epifluorescent illumination. Coverslip cultures of the embryos have the advan- 
tage of allowing en face views of the contact region and are also convenient for 
making "optical sections" to compare the free and contacted regions of the 
same embryo. Photographs were taken with Kodak Tri-X film and developed 
in Microdol X. 

RESULTS 

Myosin Distribution in Adherent Two- 
Cell Embryos 

Two-cell embryos were characterized by the presence of a 
cortical layer of myosin in the outer regions of the blastomeres 
and an absence of myosin in the region of cell-cell contact as 
seen in Fig. I a where the embryo is viewed perpendicularly 
to the plane of contact. This distribution of myosin depends 
on continuous contact interaction between the cells (23). 
Embryos were cultured on Con A- and WGA-coated cover- 
slips to see whether attachment to lectin-coated substrates 
mimics the effect of intercellular contact in the sense of 
inducing a similar reduction in cortical myosin from the 
region of cell-substrate contact. As illustrated in en face views 
of the contact regions in Fig. l, b and c, the results of these 
experiments show that substrate binding does in fact stimulate 
loss of cortical myosin from the contact region. Adhesion also 
induced the formation of a ring of myosin, subadjacent to the 
cortical layer on the cytoplasmic side, surrounding the contact 
region (Fig. 1, b and c). These alterations in myosin organi- 
zation had no discernible effect on the distribution of myosin 
in the free (uncontacted) region of the embryo (Fig. 1 d). 

Isolated blastomeres underwent a similar cortical reorgani- 
zation on Con A- and WGA-coated coverslips, losing myosin 

from the contact region and forming a myosin ring that 
separated the contacted from the free periphery of the cell 
(Fig. I e). Starting at ~6 h in culture the contact regions gave 
rise to small lamellar projections at the same time that adja- 
cent parts of the myosin ring underwent dissolution and the 
contact region became filled with myosin-lined vesicles (Fig. 
l f ) .  To determine if the spreading reaction and the changes 
in myosin distribution were due to an actual binding of cell 
surface polysaccharides to the substrate-bound lectins the 
embryos were cultured in the presence of Con A and WGA 
specific sugars. Con A has a high affinity for ct-o-mannose 
and D-glucose and WGA for N-acetyl-o-glucosamine and its 
disaccharide N,N'diacetyl chitobiose (21). Embryos on Con 
A-coated coverslips were therefore cultured in the presence of 
50 mM ~-methyl-mannoside (Fig. 1 g) and embryos on WGA- 
coated coverslips in the presence of 50 mM N,N'diacetyl 
chitobiose (not shown). These embryos showed minimal or 
no detectable signs of myosin redistribution and frequently 
detached from the coverslips during the permeabilization 
treatment. 

Embryos attached to polylysine-coated coverslips also failed 
to exhibit any significant changes in myosin distribution (Fig. 
1 h). The contact region remained relatively small, continued 
to show a diffuse distribution of myosin, and the embryos 
usually detached from the coverslips during permeabilization. 
Embryos cultured on untreated coverslips behaved in a similar 
fashion. 

Myosin Distribution in Adherent Morulae 

Morulae were characterized by the presence of myosin in 
the outer blastomeres. These cells exhibited a cortical myosin 
layer in the apical region of the cells and an additional 
concentration of myosin in the region of the apical junctions 
(Fig. 2 a). Embryos do not normally show myosin in regions 
o f cell contact and the presence of residual amounts of myosin 
in contacted regions reflects an incomplete recovery from the 
acid Tyrode treatment used to remove the zona pellucida 
(23). Focusing on the free (unattached) periphery of the 
embryo shows that myosin has a diffuse distribution in the 
cortical layer and is concentrated in continuous rings in the 
apical region of the outer blastomeres (Fig. 2b). Morulae 
cultured on polylysine-coated coverslips usually detached 
from the coverslip during permeabilization. The few that 
remained attached showed a limited degree of flattening on 
the substrate with no apparent changes in myosin distribution 
in the contact region (Fig. 2c). In contrast, embryos attached 
to WGA- (Fig. 2d) and Con A- (Fig. 2e) coated coverslips 
underwent an extensive flattening reaction that was correlated 

FIGURE 1 Localization of myosin in two-cell embryos and blastomeres attached to lectin and polylysine-coated coverslips. The 
diagram illustrates the planes of focus. Contact region, plane X'; embryo midsection, plane X"; free (unattached) surface, plane 
X'" .  The hatched areas indicates staining for cortical myosin; the clear areas an absence or reduced staining. The broken line 
marks the locus of the myosin ring. (a) Embryo midsection. Myosin is concentrated in the outer cortices and is not detectable in 
the region of cell contact. (b-c) The contact region of embryos cultured on WGA- (b) and Con A- (c) coated coverslips. Myosin 
is lost from the contact areas and is concentrated in a ring around the perimeter of the contact region. (d) The free surface of an 
embryo cultured on a Con A-coated coverslip. Cortical myosin has a diffuse homogenous distribution. (The embryo is viewed 
with one blastomere in front of the other and the bright fluorescent margin of the anterior blastomere should not be confused 
with the contact region.) (e-g) The contact region of isolated blastomeres cultured on Con A-coated coverslips. (e) Myosin is lost 
from the contact region and forms an asymmetric ring around the perimeter of the contact region. (f) A lamellar projection is 
growing out from the contact region and the adjacent part of the myosin ring has disappeared (arrow). (g) Blastomere cultured in 
the presence of 50 mM methyl mannoside shows minimal redistribution of cortical myosin. (h) The contact region of a blastomere 
cultured on a polylysine-coated coverslip. There is no discernible redistribution of myosin, x 500. 
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with loss of myosin from both the cortical layer and the apical 
rings in the contact region. Maximal flattening of the intact 
embryo was associated with the development of a multicel- 
lular ring of myosin around the contact region with segments 
of the ring derived from adjacent blastomeres (Fig. 2f).  The 
ring was breached (Fig. 2f )  and subsequently disappeared 
(Fig. 2 g) as individual cells and then the entire cell population 
formed lamellar projections with typical myosin containing 
filament bundles. The specificity of these reactions was tested 
by culturing embryos on Con A- and WGA-coated substrates 
in the presence of 50 mM a-methyl-mannoside (Fig. 2 h) and 
N,N'diacetylchitobiose (not shown), respectively. The em- 
bryos usually detached from the substrate during permeabili- 
zation and did not show any apparent redistribution of 
myosin from either the cortical or the apical junctional re- 
gions. 

D I S C U S S I O N  

From Adhesion to Spreading 
The present study shows that attachment of embryos to 

lectin-coated substrates induces changes in myosin organiza- 
tion that mimic those that occur when cells develop contact 
relations with each other (23). Both types of contact stimu- 
lated a loss of cytoskeleton-bound myosin from the contact 
region. This reaction appears to be specifically evoked by the 
binding of cell surface polysaccharides to the Con-A- and 
WGA-coated substrates since the response was prevented by 
the addition of specific sugar inhibitors. These observations 
lend support to the immunological evidence (4, 13) which 
suggests that glycoprotein receptors are involved in adhesive 
interactions between blastomeres. Attachment of polylysine- 
coated substrates failed to induce any significant changes in 
myosin distribution. These embryos were also much more 
susceptible to detachment from the coverslips after detergent 
treatment than were embryos attached to lectin-coated sub- 
strates. A similar correlation between the fragility of cell 
contacts and the presence of myosin on the one hand and the 
development detergent-resistant cell contacts and loss of de- 
tectable myosin on the other hand was characteristic of cell- 
cell contacts (23). 

Embryos attached to lectin-coat substrates formed a ring of 
myosin around the contact region. Each blastomere of the 
two-cell embryo exhibited such a ring around its missing 
patch of cortical myosin while the morula formed a single 
multicellular ring that was actually composed of adjacent 
segments from the neighboring cells. This ring encircled a 
contact region from which both the cortical layer of myosin 
and apical myosin rings had been lost. 

I 

b 

FIGURE 3 Diagrammatic representations of myosin distribution in 
the compacted morula. Hatched areas indicate staining for cortical 
myosin; clear areas an absent or weak staining for myosin. The 
broken lines mark the presence of a myosin ring. (a) Surface view 
of the free (unattached) periphery: there is a cortical layer of myosin 
and underlying myosin rings which are located in the apical junc- 
tional regions. (b) The outer layer of cells viewed from inside the 
embryo: an apical myosin ring divides each cell into two domains 
with the apical (uncontacted) part of the cell exhibiting a cortical 
layer of myosin and the contacted lateral and basal cell peripheries 
depleted of cortical myosin• 

Following these changes in myosin distribution the blasto- 
meres spread on the substrate by means of lamellipodia (see 
also reference 14). The movement of blastomeres on lectin- 
coated substrates thus resembles the mode of spreading of 
blastomeres against each other which involves similar cyto- 
plasmic processes (3, 15, 26). The development of lamellipo- 
dia was associated with further changes in myosin organiza- 
tion that resulted in the dissolution of the myosin ring and 
the formation of myosin-containing filament bundles. 

In summary, the adhesion of embryos to lectin-coated 
substrates induces partition of the embryo periphery into two 
domains, separated by a ring of myosin, in which the free 
(uncontacted) region is characterized by a cortical layer of 
myosin and the contacted region by an absence of detectable 
myosin. The peripheral organization of the adherent embryo 
appears to be analogous to that of the outer cells of the 
morula. In these cells an apical myosin ring separates the free 
apical region with its layer of cortical myosin from the lateral 
and basal cell borders which are in contact with neighboring 
cells and lack myosin (compare Figs. 1, 2, and 3). 

The Myosin Ring 
The myosin ring of the outer cells of the morula is located 

at the level of the apical junctional complex that encircles 
each cell and attaches it to the neighboring cells (5, 17). In 
this respect the outer layer of the morula exhibits a typical 
epithelial morphology (5) and it seems likely that the apical 
myosin ring of the blastomeres corresponds to the apical 

FiGure 2 Localization of myosin in morulae attached to lectin and polylysine-coated coverslips. The diagram illustrates the 
planes of focus. Contact region, plane X'; embryo midsection, plane X";  free (unattached) region, plane X ' " .  The hatched areas 
indicate staining for cortical myosin; the clear areas an absence or reduced staining. The broken line marks the locus of the 
myosin ring. (a-c) An embryo cultured on a polylysine-coated coverslip. (a) The midsection shows myosin concentrations in the 
apical cortex of the outer blastomeres and in the apical junc~tional regions (arrow). (b) The free (unattached) surface of the embryo. 
Myosin is present in diffuse form in the cortex (*) and forms rings subadjacent to the cortical layer (arrow). (c) The contact region: 
cells are slightly flattened compared with b. Myosin is present in the cortices (*) and in subadjacent rings. (d) The contact region 
of an embryo cultured on a WGA-coated coverslip. Myosin is lost from the contact region which is itself outlined by myosin in 
the apical junctional margins (arrows). (e-h) The contact region of embryos cultured on Con A-coated coverslips. (e) Myosin is 
lost from the contact region which is outlined by myosin in the apical junctional margins (arrows). (f) As the embryo undergoes 
further flattening myosin forms a multicellular ring in the periphery of the contact region. The ring is breached by a lamellar 
projection (arrow). (g) The ring is lost when all the cells extend lamellar projections. (h) Embryo cultured in the presence of 50 
mM methyl mannoside has not undergone myosin redistribution, x 5OO. 
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contractile ring of filaments which is associated with the 
junctional complex of epithelial cells. Such a contractile ring 
has been described in sheets of pigmented epithelium (19), 
and in the intestinal brush border (l,  12) where myosin has 
been specifically localized in the adherens zone (2, 11). The 
intimate relationship between the myosin ring and the zonula 
adherens might have its counterpart in the substrate-bound 
embryo. This would be the case if, for example, the myosin 
ring developed in conjunction with a ring of adhesion sites. 
Such a relationship would be consistent with the structural 
and compositional similarity of the zonula adherens and the 
adhesion plaques whereby fibroblasts attach to the substrate 
(9, 10). 

The function of the epithelial myosin ring is controversial 
but it appears to influence the movement of microvilli (2, 20) 
and may play a structural role in maintaining tension between 
adjacent cells (11). The possibility that myosin rings may 
regulate microvillar movement in the embryo is particularly 
intriguing in view of the evidence that a ring of lateral micro- 
villi mediates cell surface recognition and attachment between 
adjacent blastomeres during compaction (3, 26). On the other 
hand, a structural function in the embryo may indicate a role 
for myosin rings in maintaining the integrity of the outer 
layer of blastomeres and the rounded shape of the morula. 
Loss of the apical myosin rings during attachment of the 
embryos to the substrate could then serve as a mechanism to 
relieve contractile forces that might otherwise prevent the 
embryo from flattening. 

The observations of the present study suggest another pos- 
sible role for the myosin ring, namely, as a structure whose 
presence may be related to the potential for spreading. This 
is inferred from the following sets of observations: First, in 
the two-cell embryo a myosin ring was formed by each 
blastomere at the site of its attachment to the lectin-coated 
substrate whereas no such enhanced concentration of myosin 
was observed around the contact region between the blasto- 
meres. Secondly, in the morula stages, myosin rings were 
formed by the outer blastomeres and not by the inner blas- 
tomeres. It appears, therefore, that a myosin ring is only 
produced by cells that have a polarized distribution of myosin 
and where, in addition, the myosin-free domain has the 
capacity for active spreading. This would account for the fact 
that myosin rings do not normally develop in the two-cell 
embryo where the blastomeres are polarized but lack the 
ability to spread against each other, and why myosin rings 
first appear in the polarized outer cells of the morula when 
the cells are acquiring the capacity for spreading. In this view 
the formation of a multicellular ring by the adherent morula 
is related to the potential of the contacted cells to undergo 
active spreading movements on lectin-coated substrate. 
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