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ABSTRACT The regulation of collagen fibril, bundle, and lamella formation by the corneal 
fibroblasts, as well as the organization of these elements into an orthogonal stroma, was 
studied by transmission electron microscopy and high voltage electron microscopy. Transmis- 
sion and high voltage electron microscopy of chick embryo corneas each demonstrated a 
series of unique extracellular compartments. Collagen fibrillogenesis occurred within small 
surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils 
with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the 
recesses resulted in larger recesses and consequent formation of prominent cell surface 
foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were 
formed. The surface foldings continued to fuse and the cell surface retracted, forming large 
surface-associated compartments in which bundles coalesced to form lamellae. High voltage 
electron microscopy of 0.5 p,m sections cut parallel to the corneal surface revealed that the 
corneal fibroblasts and their processes had two major axes at approximately right angles to 
one another. The surface compartments involved in the production of the corneal stroma 
were aligned along the fibroblast axes and the orthogonality of the cell was in register with 
that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, 
bundles, and lamellae within a controlled environment and thereby determined the architec- 
ture of the corneal stroma by the configuration of the cell and its associated compartments. 

The rigid control of collagen fibril structure and the arrange- 
ment of fibrils into a specific three-dimensional architecture 
is necessary for the development of a transparent corneal 
stroma. In this paper we demonstrate how the corneal fibro- 
blast exerts control over collagen fibrillogenesis and the posi- 
tioning of newly formed fibrils into a highly ordered lamellar 
matrix. 

The mature chick corneal stroma is composed of collagen 
fibrils arranged as lamellae parallel to the corneal surface. 
Collagen fibrils within a lamella have the same orientation; 
collagen fibrils in adjacent layers are oriented approximately 
at fight angles, forming an orthogonal grid. The orthogonal 
corneal lamellae are composed of small diameter (25 nm) 
collagen fibrils equidistantly spaced (1, 2). The orthogonal 
lamellae describe a gradual clockwise shift from epithelium 
to endothelium of approximately 220 °. This clockwise spiral 
pattern resembles a cholesteric liquid crystal and has the same 

handedness in both eyes (2, 3); in contrast, all other ocular 
features, such as the pattern of overlap of the scleral ossicles, 
demonstrate mirror symmetry (4). 

Morphogenesis of the chick corneal stroma occurs in a 
sequence of relatively well-described stages (for review, see 
reference 5). Initially, the corneal epithelium deposits the 
primary corneal stroma beneath its basal surface. The pattern 
of this epithelially derived acellular stroma is identical to that 
found in the mature corneal stroma (2). Beginning late in the 
5th day of development and continuing through the 12th day, 
the presumptive corneal fibroblasts migrate into the primary 
stroma using the primary stroma as a scaffold for their migra- 
tion (I, 6). By the 14th day of development the fibroblasts 
have stopped migrating, reach the final adult number, and 
are producing and depositing the components of the mature 
or secondary corneal stroma (7, 8). The major macromolec- 
ular component of the secondary corneal stroma is type I 
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collagen (9), while the minor components are type V collagen 
(10, 11), chondroitin sulfate proteoglycan (8), keratan sulfate 
proteoglycan (12, 13), and heparan sulfate proteoglycan (14). 

It has been weU-established that fibroblasts synthesize col- 
lagen and other matrix components. It is less acknowledged 
that fibroblasts play an active role in collagen deposition and 
in the assembly of the components producing the complex 
order found in the matrix. Fibroblasts regulate the stoichi- 
ometry and sequence of mixing of the extracellular matrix 
components within the cell and influence matrix formation 
through the vectoral discharge of these packaged matrix com- 
ponents into the extracellular space (15, 16). Postdepositional 
enzymatic modifications, such as procollagen processing and 
covalent cross-linking, are also important in the establishment 
of matrix order (17-20) and must be regulated by the fibro- 
blasts (21). In embryonic tendons it has been demonstrated 
that fibril formation occurs in intimate association with the 
fibroblast cell surface (22). This association of collagen fibril 
assembly with the cell surface would provide a mechanism 
whereby the early events in fibrillogenesis could be regulated 
by the fibroblast. 

In this study we used high voltage electron microscopy 
(HVEM) ~ to examine 0.5-1.0-#m-thick sections of develop- 
ing chick corneas to evaluate the relationship between the 
fibroblast cell surface and the forming collagenous architec- 
ture. 

MATERIALS AND METHODS 
White Leghorn chick embryos were incubated at 37.5"C in a humidified 
atmosphere and staged according to Hamburger and Hamilton (23). 

Corneas, at different stages in development, were dissected and fixed in 4% 
paraformaldehyde, 2.5% glutaraldehyde in 0.1 M sodium cacodylate (pH 7.4) 
with 8 mM CaC12 for 5 min at room temperature, followed by 30-60 rain at 
4"C. The tissues were washed in 0.1 M cacodylate buffer and postfixed in 1.3% 
osmium tetroxide in coUidine buffer (pH 7.4) for 1 h at 4"C. After fixation, the 
tissues were dehydrated in a cold graded ethanol series followed by propylene 
oxide. Infiltration was with an equal mixture of propylene oxide and final 
embedding mixture for 4 h, propylene oxide and final embedding mixture at 
1:5 for 12 h, and finally final embedding mixture for 8 h. The blocks were 
embedded in a fresh mixture of Polybed 812, nadic methyl anhydride and 
dodecenylsuccinic anhydride (Polysciences, Inc., Warrington, PA), polymerized 
at 68"C for 18 h, and sectioned. 

Sections of the cornea were cut either perpendicular or parallel to the 
epithelial surface. For transmission electron microscopy (TEM), sections were 
cut with a silver to pale gold interference color, while sections for HVEM were 
cut at 0.5 to 1.0 urn. Sections for HVEM were picked up onto grids with a pale 
gold Formvar film stabilized by the evaporation of carbon. 

TEM sections were stained with 2% aqueous uranyl acetate and 0.2% lead 
citrate in 0.1 M NaOH. HVEM sections were stained with 2% aqueous uranyl 
acetate for 1 h at 37"C followed by 30-45 rain in 0.2% lead citrate at room 
temperature. In some cases, the tissues were stained en bloc with uranyl acetate. 
In these instances, the tissue, after postfixation, was rinsed in buffer and 
incubated for I h in 2% aqueous uranyl acetate at 4"C. The sections were then 
stained with lead citrate or a combination of uranyl acetate and lead citrate as 
described. Thin sections were examined and photographed using a Philips 300 
transmission electron microscope. Thick sections were examined at an accel- 
erating voltage of 1 million V using the AEI EM 7 high voltage electron 
microscope at the New York State Department of Health Laboratories in 
Albany, New York. 

For light microscopic autoradiography, the cornea was carefully removed 
with a ring containing the scleral ossicles, washed three times in Earle's balanced 
salt solution, and placed in organ culture. Labeling was done in Delbecco's 
modified Eagle's medium containing 0.5% fetal bovine serum, 50 vg/ml 
ascorbate, 4 mM glutamine, 50 U/ml penicillin G, and 30 gCi/ml [3H]proline 
(specific activity 160 Ci/mmol) at 37"C in a humidified atmosphere of 5% COz, 
95% air. The tissues were labeled continuously for 4 h. After the labeling period, 
the corneas were washed five times for >30 min with complete medium with- 
out labeled proline, followed by three washes with Earle's balanced salt solution 

IAbbreviations used in this paper. HVEM, high voltage electron 
microscopy; TEM, transmission electron microscopy. 

over 15 min. The tissues were then fixed and embedded as previously described. 
l-~m sections were cut for light microscopy, dip-coated with Kodak NTB-2 
emulsion, exposed, developed, stained with toluidine blue, and examined. 

Corneas were labeled as described above. The extent of procollagen process- 
ing was determined after SDS PAGE and fluorography. The central cornea was 
removed with a 2 mm trephine, frozen in liquid nitrogen, and pulverized with 
a mortar and pestle. The tissue was suspended in electrophoresis sample buffer 
and heated to 100°C for 5 min. The extracted collagen solution was clarified 
by centrifugation, dialyzed against buffer, and electrophoresed (24). After 
electrophoresis, the gel was fixed, impregnated with ENHANCE (New England 
Nuclear, Boston, MA), dried, and exposed to Kodak X OMAT film at -70°C. 
After exposure, the fiuorogram was developed and the relative amounts of 
processed and unprocessed procollagen were determined. 

RESULTS 

A major finding in these studies was that the corneal fibroblast 
has a complex topography which serves to compartmentalize 
the extracellular space and that these extracellular compart- 
ments, defined by the fibroblast cell surface, are related to the 
deposition of matrix in an orthogonal pattern. The complex 
specializations of the corneal fibroblast cell surface are im- 
portant for at least three different levels of stromal organiza- 
tion: collagen fibrils, fibril bundles, and lamellae. 

The 14-d-old (stage 40) chick embryo cornea was studied 
using conventional TEM and thin sections cut perpendicular 
to the corneal surface. The fibroblasts have small surface 
recesses that are delimited by the cell. Small surface recesses 
contain 5-12 collagen fibrils and are relativley uniform in 
size and content. When the corneal stroma was sectioned 
perpendicular to the corneal surface, these small surface re- 
cesses were seen in both longitudinal (Fig. 1) and cross section 
(Fig. 2). Fusion of two or three smaller recesses with conse- 
quent coalescence of the fibrils into small bundles was seen 
often. Occasionally, the actual process of fusion was observed 
as indicated by a membranous connection between two small 
recesses (Fig. 2). Small surface recesses continued to fuse 
laterally with a consequent convolution of the cell surface 
that resulted in a folding of the fibroblast surface (Fig. 3). 
Within these surface foldings, collagen fibrils coalesced to 
form fibril bundles that contained 50-100 collagen fibrils. 

In the next stage, the surface foldings fused, then receded, 
and the surface retracted, forming large surface-related com- 
partments that were surrounded by the cell (Fig. 4). Within 
these large surface compartments, fibril bundles coalesced to 
form lamellae. The forming lamellae within these spaces were 
completely enveloped by the fibroblast and were also inti- 
mately associated with the cell surface, with surface foldings 
and processes interdigitating between the fibril bundles. 

Light microscopic autoradiography of the 14-d-old cornea 
after 4 h of continuous labeling with [3H]proline revealed the 
site of fully processed and discharged collagen within the 
extracellular matrix. After 4 h of labeling, ~60% of the labeled 
collagen was fully processed (data not shown). This time point 
was chosen to specifically identify the site of labeled collagen 
in the extracellular matrix/cell perimeter. Label was not uni- 
formly distributed throughout the stroma. Instead, label was 
localized in specific cell-surrounded sites (Fig. 5). 

The corneal fibroblast and the extracellular matrix was 
studied further using HVEM and 0.5-1.0-#m sections. In 
most of these preparations, the 14-d-old chick embryo corneas 
were cut parallel to the corneal surface so that the corneal 
fibroblast could be studied in the same plane as the lamella. 
The use of the HVEM has contributed significantly to our 
characterization of the topography of the fibroblast and sig- 
nificantly clarified the structure and possible role of the dif- 
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FIGURES 1-4 Transmission electron micrographs of fibroblasts from 14 d (stage 40) chick embryo corneas cut perpendicular to 
the corneal surface. Figure I- A fibroblast process contains a small recess in the cell surface (arrows) with several collagen fibrils 
in longitudinal section. The fibrils in the recess, which are presumably in the process of being deposited, are perpendicular to 
the orientation of the fibrils on either side of the cell process, x 50,000. Figure 2: A corneal fibroblast that contains four small 
surface recesses is pictured. Three of the recesses are similar in size and contain 7-10 collagen fibrils (open arrows) while the 
fourth recess contains about 19 fibrils. Two of the smaller recesses are undergoing coalescence as indicated by the membranous 
connection joining them (solid arrow), x 40,000. Figure 3: A corneal fibroblast with two large surface foldings in cross-section is 
shown. The continued lateral fusion of surface recesses results in the formation of larger recesses and surface foldings as seen in 
Fig. 2. The fusion causes a folding of the cell surface, and within these foldings collagen fibrils coalesce to form bundles which 
contain 50-100 collagen fibrils, x 36,500. Figure 4: A corneal fibroblast with a large surface-associated compartment is seen. The 
large surface-associated compartment forms as a result of continued fusion of surface folds and a retraction of the cell surface. 
The result is a large extracellular compartment completely enveloped by the corneal fibroblast with its fibrillar contents in intimate 
association with cell processes and surface infoldings. Within these compartments fibril bundles coalesce to form larger bundles 
and lamellae, x 12,000. (Bars i Figs. I -3 ,  300 nm; Fig. 4, 1.0 ~m.) 
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FIGURE 5 Light microscopic autoradiograms of 14-d-old chick em- 
bryo corneas labeled continuously with [3H]proline for 4 h and cut 
perpendicular to the corneal surface. These micrographs show that 
collagen is not secreted randomly over the entire cell surface. 
Instead, release into the extracellular space and fibrillogenesis are 
localized at specific sites. These sites are often seen as lucent 
regions surrounded by the cell and cell processes (arrows). These 
regions are the large surface-associated compartments seen in Fig. 
4. Bar, 10#m. x 1,800. 

ferent surface-defined spaces in collagen fibril formation and 
in the determination of tissue architecture. The use of thick 
sections and HVEM was similar to studying 5-15 perfectly 
aligned serial thin sections with the conventional transmission 
electron microscope. This substantially increased sample vol- 
ume provided images in which the complexity of the fibroblast 
cell surface could be immediately appreciated. TheSe thick 
sections also contained significant information on the three- 
dimensional relationship of the fibroblast to the extracellular 
matrix. 

In thick sections, small surface recesses, that contained 
several collagen fibrils, were extensive in their length. The 
recesses coursed through a large portion of the corneal fibro- 
blast (Fig. 6), often running from a perinuclear position to 
the more peripheral regions of the cell. The proximal ends of 
the small surface recesses, containing 5-12 collagen fibrils, 
were frequently observed in a perinuclear position in associ- 
ation with the Golgi apparatus and secretory vacuoles (Figs. 

7 and 8). When these surface recesses were cut perpendicular 
to the corneal surface, as with the TEM data, they were seen 
to contain 5-12 collagen fibrils in cross section (Figs. 2, 6). In 
longitudinal section it was apparent that these recesses com- 
municate directly with the extraceUular space. The collagen 
fibrils seen within these recesses had diameters of ~25 nm 
and an interfibrillar spacing of 60 to 70 nm identical to that 
seen in the extracellular space. 

In 0.5-#m sections, the corneal fibroblast had a complex 
surface topography. The cell surface was intimately associated 
with the collagenous extracellular matrix (Fig. 9). When thick 
sections were cut parallel to the corneal surface, fibril bundles 
were found within prominent surface foldings and within 
these foldings the fibril bundles were intimately associated 
with the cell surface and foldings from the cell surface (Fig. 
9a, curved arrows). The surface foldings fused more pe- 
ripherally, giving rise to large surface compartments in which 
bundles coalesced to form larger bundles and fused to form 
lamella (Fig. 9 a, arrows). In thick sections cut perpendicular 
to the corneal surface through a region similar to that desig- 
nated by the arrows in Fig. 9 a, the large surface compartments 
were seen in cross section (Fig. 9 b). These surface compart- 
ments contained large bundles which coalesced to form la- 
mella. The bundles and forming lamellae were in intimate 
association with the cell surface through foldings and proc- 
esses from the cell surface that interdigitate among fibril 
bundles. 

When the corneal fibroblasts and their surrounding extra- 
cellular matrix were studied, using 0.5-1.0-#m sections cut 
parallel to the corneal surface, both the coUagenous extracel- 
lular matrix and the fibroblasts were arranged with two major 
axes at approximately right angles to one another. The or- 
thogonality of the stroma is in register with that of the cells 
(Figs. 9a, 10). 

Within the corneal stroma there were very few single col- 
lagen fibrils in the extracellular space. The collagen fibrils 
were organized as fibril bundles composed of 50-100 collagen 
fibrils. The collagen fibril bundle was a distinct structural 
element within the chick secondary corneal stroma. The fibril 
bundle, not the collagen fibril, was the principal structure 
produced by the fibroblast and used in the construction of 
the corneal stroma. The fibril bundles were positioned by the 
fibroblast within large surface-associated compartments form- 
ing orthogonal lamellae in the corneal stroma (Figs. 9 and 
10). 

In sections cut parallel to the corneal surface, often there 
are 90* changes in the direction of fibril bundles within the 
corneal stroma. These changes in direction are along the 
established orthogonal axes. In sections cut perpendicular to 
the corneal surface, the collagenous lamellae are not always 
parallel to the corneal surface, but are "sinusoidal" or "un- 
dulating." Accordingly, in some sections cut parallel to the 
corneal surface, fibrils were observed in oblique planes of 
section. 

The corneal fibroblasts and their cell processes were also 
observed to have two major axes at approximately right angles 
to one another (Figs. 9a  and 10). The positioning of surface 
recesses, foldings, and surface-associated compartments with 
their related collagen fibrils, fibril bundles, and forming la- 
mellar structures defined the functional axes of the corneal 
fibroblast. These surface specializations were positioned so 
that the physical and functional axes of the corneal fibroblast 
were superimposed during the morphogenesis of the second- 
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FIGURE 6 (a) High voltage electron micrograph of a corneal fibroblast cut parallel to the corneal surface. A small surface recess 
that contains collagen fibrils (arrows) is seen to course through most of this section. This micrograph illustrates how extensive the 
surface recesses can be in their extension from within the cell to the cell surface. Bar, 1.0 ~m. x 15,500. (b) This micrograph 
shows a small surface recess that contains eight collagen fibrils, similar to that seen in a, cut in cross section (arrow). Compare 
with those seen in Fig. 2. The fibril diameters are small and the intrafibrillar spacing in the small recesses is relatively regular. Bar, 
300 nm. x 50,000. 

ary corneal stroma. The orthogonality of the corneal fibro- 
blasts and their processes was in register with that of the 
collagen fibril bundles and forming lameUae in the extracel- 
lular matrix. 

DISCUSSION 

The corneal fibroblast cell surface defined at least three major 
extracellular compartments that were under cellular regula- 
tion and involved in the control of collagen fibrillogenesis, 
fibril bundle formation, and the morphogenesis of the corneal 
stroma. 

The first compartment was a small recess initimately asso- 
ciated with the fibroblast cell surface. These surface recesses 
normally contained from 5 to 12 collagen fibrils, although 
occasionally recesses that contained 1 or 2 fibrils were ob- 
served. The formation of the small recesses probably occurred 
by the tandem fusion of secretory vacuoles with the cell 
surface and consequently with one another. A similar process 
of compound exocytosis has been described in the chromaffin 
and mast cell (25, 26). The small surface recesses were the 
initial extracellular sites of collagen fibrillogenesis. This is in 
agreement with data from embryonic tendon fibroblasts 
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FIGURES 7 and 8 High voltage electron micrographs of fibroblasts from 0.5-p.m sections of 14-d-old chick embryo corneas cut 
parallel to the corneal surface. The micrographs show small surface recesses cut in longitudinal section (arrows) that contain 
collagen fibrils. The proximal ends of small recesses are often found in a perinuclear position and associated with the secretory 
components of the corneal fibroblast. Bars, 1.0/~m. Fig. 7, x 9,200; Fig. 8, x 10,000. 

which has demonstrated that small surface recesses are the 
initial sites of fibril formation (22), 

In the corneal fibroblast, the next compartment was a larger 
surface folding in which collagen fibrils were collected into 
small fibril bundles that contained 50-100 collagen fibrils. 
These spaces appeared to result from the lateral fusion of 
several of the small recesses. 

The third cell-defined space which we distinguished was the 
large surface compartment in which bundles coalesced into 
larger bundles and lamellae. These spaces were surrounded 
by the cell and its processes, and the contents of this com- 
partment remained associated with the cell surface through 
surface foldings and the interdigition of cell processes. These 
spaces appeared to form after the fusion of the bundle-forming 
surface foldings, and after a breakdown and retraction of the 
fibroblast surface. 

The corneal fibroblast thus partitioned the extracellular 
space into at least three distinct types of compartments and 
it was within these compartments that collagen fibril forma- 
tion, bundle formation, and the initial organization into la- 
mellae occurred in a sequential manner. 

The corneal fibroblast replicates a template provided by the 
corneal epithelium and thereby determines the orthogonal 
architecture of the secondary corneal stroma. How matrix 
order is interpreted by cells and consequently replicated is 
poorly understood. We found that the corneal fibroblast had 
an orthogonal configuration when studied in thick sections 
cut in the plane of the corneal lamellae. Both the fibroblast 
and its cell processes were aligned along two distinct axes at 
~90* to one another. The orthogonal shape of the fibroblast 
was thus in register with the epithelially derived template it 

invaded and the collagen fibril bundles in the extracellular 
space which it deposited. Our interpretation of these data is 
that the corneal fibroblasts migrated into the primary corneal 
stroma, using the initial orthogonal collagen lattice as a scaf- 
fold, and positioned their axes in register with it. The fibro- 
blasts were then aligned with the same orientation as the 
primary corneal stroma, and the collagen fibril bundles and 
lamellae that the fibroblasts produced were ordered because 
the cell that deposited them was ordered. We tentatively 
conclude that the transfer of the epithelial template to the 
stroma requires the unique spatial organizing capacity of the 
intermediary fibroblast and does not simply represent a situ- 
ation in which the fibroblast-derived matrix "crystallizes" 
onto the epithelial template. 

It is apparent that newly formed collagen fibril bundles 
were growing away from the fibroblast or that the fibroblast 
migrated away from the fibrils, or both. During the period in 
which the secondary stroma forms, the eye is rapidly growing 
(27). Growth in size could provide the forces necessary for 
the fibroblast to "spin" fibril bundles from its surface, and 
could partially account for the necessary translocation of cells 
and fibrils. In addition, as the fibroblast forms bundles there 
may be a migration of the fibroblast away from the bundle. 
One explanation for the large number of 90* bends seen in 
fibril bundles is that as the bundles form, the fibroblast 
migrates along one of the orthogonal axes of the cornea. Since 
the corneal fibroblast simultaneously forms bundles in two 
directions perpendicular to one another, movement along one 
of the axes would result in one straight bundle and one bundle 
with a 90* bend. This process would provide the necessary 
translocation and explain the 90* changes in bundle direction. 
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FIGURE 9 (a) A high voltage electron micrograph of a 0.5-/~m-thick section from a 14-d-old chick embryo cornea cut parallel to 
the corneal surface. The orthogonality of the corneal fibroblast and its processes is illustrated. Bundles of collagen fibrils are seen 
within cell surface foldings. Cell processes (curved arrows) or ridges in the cell surface are seen separating fibril bundles. A fusion 
of these compartments and a retraction of the cell surface forms large surface-associated compartments as seen in longitudinal 
section at the arrows. The formation of these compartments is seen along two major axes at approximately right angles to one 
another (open vs. closed arrows). It is within these cell-associated compartments that collagen fibril formation, fibril bundle 
formation, and lamellar formation Occurs. These processes presumably are occurring in two orthogonal directions simultaneously. 
Bar, 1.0/Lm. x 13,500. (b) A high voltage electron micrograph of a 14-d-old chick embryo corneal fibroblast. This micrograph is 
of a 0.5-pm section cut perpendicular to a region similar to that designated bythe arrows in a. A large surface compartment with 
fibril bundles coalescing to form largerbundles and lamellae is illustrated. This occurs in association with the fibroblast surface 
with cell processes and surface foldings seen interdigitating between bundles within this compartment. Bar, 1.0 ~m. x 8,000. 
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FIGURE 10 A high voltage electron micrograph of a 14-d-old chick embryo fibroblast cut parallel to the corneal surface. In this 
0.5-/~m section the orthogonality of the corneal fibroblast and its processes is apparent. The positioning of the cell mirrors the 
orthogonality of the collagenous bundles within the developing stroma and the primary stroma it invades. We conclude that the 
corneal fibroblast migrates into the ordered primary stroma and aligns itself using this initial orthogonal lattice. This results in the 
fibroblasts being aligned with their axes at ~90 ° to one another. These aligned fibroblasts then deposit fibril bundles and lamellae 
with an orthogonal orientation. Bar, 1.0 ~.m. × 13,000. 

The compartmentalization of the extracellular space by the 
fibroblast as seen in the developing secondary corneal stroma 
would permit the cell to control all of the important events 
in collagen fibril, bundle, and lamellae formation. Table I and 
Fig. I 1 (a diagramatic representation of a corneal fibroblast) 
summarize our current model. 

BIRK AND TRELSTAD 

The compartmentalization of the intracellular space for the 
initial events necessary for collagen fibrillogenesis, synthesis, 
triple helix formation, and posttranslational modifications is 
well-established (28, 29). It is within the Golgi apparatus and 
secretory vacuoles that packaging and initial aggregate for- 
mation occurs between collagens, collagenous and noncolla- 
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FIGURE 11 This diagram and Table I (at right) summarize our proposed model of the compartmentalization of the extracellular 
space by the corneal fibroblast and the role of these different compartments in the regulation of collagen fibril, bundle, and 
lamellar formation, and the consequent determination of tissue architecture. The synthesis, posttranslational modification, and 
packaging of procollagen occurs within a series of intracellular compartments. The intracellular pathway involves the rough 
endoplasmic reticulum, the Golgi apparatus, and secretory vacuoles (SV). The secretory vacuoles release their contents by fusion 
with the cell surface. This fusion forms the first extracellular compartment and if vacuoles fuse in a compound manner, the small 
surface recess (1) is formed. With this event the process of collagen fibrillogenesis becomes an extracellular process, it is within 
these small surface recesses that the initial extracellular events in collagen fibril formation occur. These recesses then fuse laterally 
forming larger recesses and surface folds (2). Within this compartment, collagen fibrils are collected into fibril bundles which 
contain 50-100 collagen fibrils. These surface foldings continue to fuse with a breakdown and retraction of the cell surface 
forming large surface-associated compartments (3). Within this compartment fibril bundles coalesce to form larger bundles and 
lamellae. In this manner the corneal fibroblast forms collagen fibrils, bundles, and lamellae within a sequence of regulated 
compartments in which matrix-macromolecular interactions as well as postdepositional enzymatic modifications such as procol- 
lagen processing and covalent cross-linking can occur. The corneal fibroblast positions its axes orthogonally, presumably using 
spatial cues provided by the primary stroma, and in this way determines the orthogonal arrangement of the newly formed fibril 
bundles and lamellae in the secondary corneal stroma. 

genous matrix components (15, 16, 30, 31). Finally, the 
secretory vacuoles discharge their contents into the extracel- 
lular compartments via exocytosis. 

An additional intracellular compartment, the phagocytic 
vacuole, has been described in a number of systems in which 
there is a rapid turnover or remodeling of connective tissue. 
Intracellular collagen fibrils have been described within these 
phagocytic vacuoles (32-35) that differ considerably in detail 
from the extracellular compartments described in the cornea. 
Moreover, the corneal fibroblast during this stage in devel- 
opment is a very active secretory cell with a large net positive 
synthesis. For example, we have calculated from the data of 
Coleman et al. (7) and Conrad (8) that each corneal fibroblast 
secretes ~1-3 million collagen molecules per hour during 

days 11 to 16 of development. The recesses and folds contain 
native collagen fibrils identical in morphology and in direct 
continuity with those seen in the extracellular space and these 
recesses do not contain amorphous material indicative of a 
secondary lysosome. 

The distinct extracellular compartments are important not 
only in the physical positioning of collagen fibrils, fibril bun- 
dles, and lamellae, but also because this extracellular com- 
partmentalization effected by the fibroblast provides a series 
of unique spaces, intimately associated with the cell surface, 
in which the extracellular events in collagen fibrillogenesis 
can occur sequentially. Through the control of these distinct 
microenvironments the fibroblast is able to manipulate extra- 
cellular processes in the same way intracellular processes are 
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TABLE I 

Intracellular and Extracellular Compartments Involved in 
Collagen Fibrillogenesis 

Compartment Event 

Rough endoplasmic reticulum 

Golgi apparatus 
Secretory vacuoles (5V)* 

Secretory vacuoles (5V)* 
Small surface recesses (1)* 

Surface foldings (2)* 

Surface-associated compart- 
ments (3)* 

Collagen polypeptide synthesis. 
Triple helix formation. 
Packaging. 
Homo/Heteropolymeric mixing. 
Initial steps in aggregation. 
Discharge from cell. 
Collagen fibril formation. 
Procollagen processing? 
Fibril bundle formation. 
Cross-linking? 
Bundle alignment and formation 

of lamellae. 

*Refers to cellular compartments in Fig. 1 I. 

controlled. A modification of  the milieu within small surface 
recesses through a change in the ionic conditions, and/or  
addition of other matrix components  such as proteoglycans, 
fibronectin, or other collagen types could be important  in the 
control of  collagen fibril structure. The environments within 
recesses and surface foldings might be controlled to favor a 
particular postdepositional enzymatic event, such as the proc- 
essing of the amino and/or  carboxy propeptides ofprocollagen 
and covalent cross-linking. 
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