
The Substructure of Isolated and In Situ Outer 

Dynein Arms of Sea Urchin Sperm Flagella 

WINFIELD S. SALE, URSULA W. GOODENOUGH, and JOHN E. HEUSER 
Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322; 
and Departments of Biology and Cell Biology-Physiology, Washington University, 
St. Louis, Missouri 63110 

ABSTRACT Outer-arm dynein from the sperm of the sea urchin S. purpuratus was adsorbed to 
mica flakes and visualized by the quick-freeze, deep-etch technique. Replicas reveal particles 
comprised of two globular heads joined by two irregularly shaped stems which make contact 
along their length. One head is pear-shaped (18.5 x 12.5 nm) and the other is spherical (14.5- 
nm diam). The stems are decorated by a complex of bead-like subunits. The same two-headed 
protein is found in the 21S dynein-1 fraction of sucrose gradients. The /]-heavy chain] 
intermediate chain 1 (beta[IC-1) dynein subfraction, produced by low-salt dialysis and zonal 
centNfugation of the high-salt-extracted dynein-1, contains only single-headed molecules with 
single stems. These heads are predominantly pear-shaped (18.5 × 12.5 nm). Since 21S dynein- 
1 contains two heavy chains (a and/]), and the beta/IC-1 subfraction is comprised of only the 
/]-heavy chain (Tang et al., 1982, J. Biol. Chem. 257:508-515), we conclude that each head is 
formed by a heavy chain, that the pear-shaped head contains the/]-heavy chain, and that the 
spherical head contains the a-heavy chain. The in situ outer dynein arms of demembranated 
sperm were also studied by the quick-freeze, deep-etch method. When frozen in reactivation 
buffer devoid of ATP, each arm consists of a large globular head that attaches to the A- 
microtubule by distally skewed subunits and attaches to the B-microtubule by a slender stalk. 
In ATP, this head shifts its orientation such that it can be seen to be constructed from two 
globular domains. We offer possible correlates between the in situ and the in vitro images, 
and we compare the structure of sea-urchin dynein with dynein previously described from 
Chlamydomonas and Tetrahymena. 

Dynein ATPases comprise the arms that project from the A- 
microtubule of the peripheral doublets of ciliary and eucar- 
yotic flagellar axonemes (reviewed in references 14, 20, 27, 
29, 31), and the dynein arms are believed to couple the 
binding and hydrolysis of ATP to structural changes that 
result in sliding between adjacent doublet microtubules (12, 
17, 41, 49, 54, 56-58). Microtubule sliding, in turn, is the 
underlying basis for ciliary and flagellar bending (8, 45, 47, 
48, 52, 53), although it is still unclear how sliding is converted 
into a propagated bend. In addition to its role in generating 
ciliary movement, there is evidence that dynein is involved 
in generating movements associated with other microtubule 
arrays such as the mitotic spindle (9, 23, 24, 39, 42, 43, 50). 

The outer dynein arms from sea urchin sperm tails have 
been extensively studied (5). These proteins can be selectively 
solubilized by exposure to 0.6 M salt-containing buffers (7). 

Such high-salt extracts contain an ATPase that sediments at 
21S (21S dynein- 1) and has a mass of 1.25 megadaltons (15). 
The partially purified 21S dynein-I can restore functional 
outer arms to outer arm-depleted sperm axonemes (13). Since 
the 21S dynein-I is both necessary and sufficient for such 
restoration, it has been concluded that 2 IS dynein-1 is the 
outer dynein arm (13). Each 21S dynein-1 is comprised of at 
least nine different polypeptides including the a- and E-heavy 
chains, the intermediate chains (IC) 1 l, 2, and 3, and at least 
four light chains (6). 

Each 21S dynein-l has been shown to be a heterodimer of 
the a- and E-heavy chains. Exposure to low-salt conditions 

~ Abbreviations used in this paper, beta/IC-1, S-heavy chain/inter- 
mediate chain 1; D-foot, distal foot; IC, intermediate chain; P-foot, 
proximal foot. 
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converts 21S dynein-1 into three smaller particles: a 12-14S 
particle comprised of the B-heavy chain and intermediate 
chain l (beta/IC-1); a variably sized aggregate comprised of 
the a-heavy chain; and a 9-10S particle comprised of IC-2 
and -3 (55). Both the a-heavy chain fraction and the beta/IC- 
1 were found to contain ATPase activity, and re-formation of 
the 21S dynein-t required a mixture of all three of these 
subfractions (55). The reconstituted 21S dynein-1 always con- 
tained equal amounts of the a- and ~3-heavy chains. Moreover, 
Bell (3) found that the purified B-heavy chain has a mass of 
~450 kD. It was therefore concluded that the 1.25-kD 21S 
dynein-1 complex is comprised of a single copy of each of the 
a- and B-heavy chains, and therefore two distinct ATPase 
domains, a model presented in detail by Bell and Gibbons 
(4). 

To test the structural predictions of Bell and Gibbons (4), 
we have studied 21S dynein- 1, its subfractions, and the in situ 
outer arms by the quick-freeze, deep-etch, rotary-shadow 
method of electron microscopy (19), an approach that has 
successfully revealed the substructure of isolated and in situ 
dyneins derived from protozoa (17-19, 56). We document 
that each 21S dynein-1 is indeed a two-headed molecule: one 
head is pear-shaped and is comprised of the B-heavy chain; 
the other head is spherical and is presumably comprised of 
the a-heavy chain. The disposition of this protein in situ and 
its conformational changes after ATP exposure are described. 

MATERIALS AND METHODS 

High-Salt Extraction of Dynein- I: Axonemes from the sperm tails 
of the sea urchin S. purpuratus were isolated by the method of Gibbons and 
Fronk (15). Sperm were homogenized in ~4 vol of a buffer composed of 5 mM 
imidazole, 0.1 M NaCI, 4 mM MgSO4, 1 mM dithiothreitol, 5 mM 2-mercap- 
toethanol, @2 mM phenylmethylsulfonyl fluoride, and 0.5% Triton X-100. 
The homogenate was centrifuged twice at 2,000 g for 5 min to remove sperm 
heads. Axonemes were collected by pelleting at 12,000 g for 8 min, and washed 
twice in the buffer described above lacking Triton X-100 (wash buffer). The 
protein concentration of the axoneme suspension was determined, and the final 
pellet of axonemes was resuspended to 2 mg/ml in a high-salt buffer (0.6 M 
NaCI, 4 mM MgSO4, 0.1 mM EDTA, 1 mM dithiothreitol, 5 mM 2-mercap- 
toethanol, 0.2% phenylmethylsulfonyl fluoride, 10 pM taxol, and 5 mM 
imidazole/HC1, pH 7.0) for 15 min on ice. The extracted axonemes were 
sedimented at 30,000 g for 20 min and the resulting supernate, referred to as 
the high-salt extract, was used for further experiments. Thin-section electron 
microscopy of axonemal cross-sections revealed that outer dynein arms were 
selectively extracted by high-salt treatment (data not shown). 

Purification and Fractionation of Dynein-l : 21S Dynein-I was 
partially purified from the high-salt extract by zonal centrifugation on 5-20% 
(wt/vol) sucrose gradients usually made up with the high-salt buffer as described 
above (55). The ATPase peak fraction was rapidly determined as described in 
Tang et at. (55), and peak fractions were prepared for SDS gel electrophoresis 
and electron microscopy as described below. 

For preparation of the beta/IC-I dynein-1 subunit, the high-salt extract was 
dialyzed against a low-ionic-strength solution containing 5 mM imidazole, pH 
7.0, 0.5 mM EDTA, and 7 mM 2-mercaptoethanol for 15 h at 4"C. The beta/ 
]C-I subunit was isolated by zonal centrifugation as described in Tang et at. 
(55). Peak ATPase fractions were prepared for SDS gel electrophoresis and 
electron microscopy. Approximate sedimentation rates for all gradients were 
determined by the method of Martin and Ames (33) using catalase (11.3S), 
thyroglobin (19S), and latent activity dynein-I (21.4S) as standards. (The 21S 
dynein-1 of the sea urchin sperm of T. gratilla was the generous gift of Dr. I. 
R. Gibbons, University of Hawaii.) 

Electron Microscopy: Dynein molecules were analyzed using the 
quick-freeze, deep-etch, rotary-shadowing technique (18, 19, 22, 46). This 
involved placing a small volume (10-20 ttl) of dilute protein solution (20 ttg/ 
ml) onto the surface of finely ground mica flakes that were supported by a thin 
slice of aldehyde-fixed lung. Just before freezing, the high-salt-extracted dynein- 
1 was diluted in buffer such that the final NaCI concentration was adjusted to 
200 mM and the protein concentration to 20 pg/ml. For gradient-purified 

samples of 21S dynein-I and the beta/IC-I subunit, the sucrose was removed 
by a 6-8 h dialysis against the buffer utilized in the gradient, and the salt 
concentration was adjusted to 200 mM NaCI just before freezing. Lower final 
ionic strength resulted in less efficient adsorption of these proteins to the mica 
(data not shown, see reference 22). After 15 s of exposure to the mica, excess 
solution was drawn off, and the damp paste of mica was abruptly applied to a 
liquid helium-cooled copper block. The frozen mica samples were then freeze- 
fractured in a Balzers device (Balzers, Hudson, NH) and deep-etched at -95"C 
for 4 min, which sublimes away ~250 nm of ice and exposes the surfaces of a 
large number of mica flakes. Molecules adsorbed to these mica flakes were 
rotary-replicated with a thin layer of platinum (~ 1.5 nm, based on estimate 
from quartz thin film monitor) evaporated from a relatively shallow angle (10"), 
and the flakes were held together by depositing a thick layer of carbon (10-s 
evaporation during sample rotation). Replicas were separated from mica by 
immersion in concentrated hydrofluoric acid, cleaned, and picked up on 
standard grids. Control experiments included study of replicas of buffer devoid 
of proteins, of serial dilutions of proteins, and of other, non-dynein proteins 
(22). 

Isolated axonemes or demembranated reactivated sperm (see below) were 
prepared for electron microscopy by the quick-freeze, deep-etch method de- 
scribed by Goodenough and Heuser (17). This involved collection of axonemes 
or demembranated sperm by centrifugation, rapid transfer of the pellet onto a 
slice of lung, and abrupt freezing on a liquid helium-cooled copper block. 
Isolated axonemes were frozen in wash buffer, and demembranated sperm were 
frozen in the reactivation buffer described below. The frozen samples were then 
fractured in the Balzers freeze-fracture machine, etched for 3 min at -105"C, 
and rotary-replicated with platinum applied from a 24* angle. Replicas were 
cleaned in bleach and picked up on standard grids. 

Replicas were viewed with JEOL 200CX or JEOL 100CX transmission 
electron microscopes (JEOL USA, Peabody, MA) operating at 100 kV. Repre- 
sentative mica flakes were photographed at 68,000x, in stereo, using + 10" of 
tilt with a eueentric side-entry goniometer stage. Magnification was strictly and 
repeatedly calibrated by stereophotography of negatively stained tropomyosin 
tactoids. Negatives were studied directly in three dimensions using a Wild APT- 
1 stereo map reader (Wild Heerbrugg Instruments lnc., Farmingdale, NY) or 
in two dimensions with a Slidex projector (Slidex Corp., Long Island City, 
NY). Molecular dimensions were measured from negatives enlarged to a final 
magnification of 560,000. Tip and base directions along axonemes were deter- 
mined by markers such as the spoke period, A-microtubule extension at the 
tip, and basal body location. Micrographs showing surface views of straight 
axonemal regions were used to deduce the structure of the in situ arm. 

Reactivation Methods: Study of the substructure of in situ outer 
dynein arms utilized demembranated sperm suspended in the reactivation 
buffer used for concurrent light microscopic observations. Sea urchins (S. 
purpuratus) were induced to shed sperm by KCI injection, and the sperm were 
stored on ice until needed. For reactivation studies, 20 pl of undiluted sperm 
were suspended in 1.5 ml of a demembranation buffer composed of 10 mM 
Tris-HC1 pH 8.1, 2 mM CaCI~, 0.15 M potassium acetate, 2 mM MgSO,, 1 
mM dithiothreitol, 0.1 mM EDTA, and 0.05% Triton X-100 (wt/vol). After 
30 s the sample was diluted to 3 ml with a base reactivation buffer (10 mM 
Tris-HCl pH 8.1, 1 mM EDTA,. 0.15 M potassium acetate, 2 mM MgSO4, and 
1 mM dithiothreitol), and the samples were gently sedimented into a loose 
pellet (Sorvall HB4 rotor, 4,000 rpm, 1.5 min). The supernate was replaced 
with a small volume of reactivation buffer (with or without ATP) being careful 
not to disturb the pellet. The demembranated sperm were immediately prepared 
for reactivation for separate but simultaneous light microscopic observation 
and freezing experiments as described below. 

For light microscopy an aliquot of the loose pellet of cells was diluted into 
2.5 ml reactivation buffer in petri dishes designed for dark field microscopic 
observations. ATP was added to produce a final MgATW- concentration of l 
mM, and under these buffer conditions nearly 100% oftbe sperm were motile 
and beat at 34 Hz with symmetrical waveforms. Beat frequency was measured 
by synchronization with the Chadwick-Helmuth xenon strobe (Chadwick- 
Helmuth Co., El Monte, CA) coupled to a digital interval counter. 

For freezing, a small aliquot of the loose pellet of demembranated sperm 
suspended in reactivation buffer with or without ATP was mounted as usual 
on thin slices of lung. (The lung slices had been previously washed in reactiva- 
tion buffer and were shown, in separate experiments, not to affect the quality 
of reactivated sperm samples.) The mounted sample was then immediately 
frozen. In other experiments samples mounted in reactivation buffer devoid of 
ATP were sprayed with reactivation buffer containing l0 mM MgATP 2- and 
frozen 3-5 s later. An artist's air brush, mounted on the freezing stand was 
used to apply the ATP solution. To verify that the ATP had reached the sample, 
hemocyanin was included in the ATP solution. Although the local ATP 
concentration in the sample at the time of freezing is unknown using this 
approach, it was determined in separate experiments that nearly 100% of the 
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demembranated, reactivated S. purpuratus sperm were motile and had sym- 
metrical waveforms over a wide range of MgATP 2- concentrations (10 -5-10 -2 
M). Frozen samples were etched and replicated as described above. 

It is of interest to note that some quick-frozen demembranated sperm could 
be thawed and then reactivated. In thawed samples, the sperm that remained 
physically intact could be reactivated to beat with the same frequency and 
waveform as control reactivated sperm that had not been frozen and thawed; 
however, most sperm were shattered and thereafter remained immotile. 

Biochemical Procedures: Protein was determined by the method 
of Lowry et al. (30) using bovine serum albumin (BSA) as a standard. Gel 
electrolahoresis was done in the presence of sodium dodecyl sulfate (Sigma-L- 
5750, Sigma Chemical Co., St. Louis, MO), 2-mercaptoethanol, and urea as 
described by Pipemo and Luck (40). To best resolve the high molecular weight 
and intermediate molecular weight polypeptides of dynein fractions, the sepa- 
rating gels were 1.5-mm thick slabs composed of a 3-6% linear acrylamide 
gradient and 0-8 M urea gradient. Gels were run at constant voltage and stained 
either with Coomassie Brilliant Blue R-250 or by the silver method (34) with 
qualitatively identical staining patterns. 

Deionized water was used throughout, lmidazole, Tris, BSA, glycine, dithio- 
threitol, and SDS were purchased from Sigma Chemical Co. Acrylamide and 
bis-acrylamide were purchased from Eastman Kodak Co. (Rochester, NY). All 
other reagents were analytical grade. 

RESULTS 

Polypeptide Composition 
The polypeptide composition of the high-salt-extracted dy- 

nein-l from axonemes of the sea urchin S. purpuratus was as 
previously reported for dynein-1 of other species (6). Fig. 1 
illustrates the high molecular weight polypeptides of isolated 
axonemes (lane A), a crude high-salt extract (lane B), a 21S 
dynein-1 peak (lane C), and a 12S dynein peak (lane D). The 
2IS dynein-l is comprised of the a- and B-heavy chains and 
three intermediate weight polypeptides, IC-1, -2, and -3, 
whose molecular weights are estimated to be 119,000, 92,000, 

and 75,000 D (the IC-1 chain often appears to be a doublet). 
The beta/IC-1 dynein-1 subfraction is comprised of the B- 
heavy chain, and the IC-1 polypeptide and is usually devoid 
of the a-heavy chain and IC-2 and -3; however, the fraction 
selected for lane D contains a small amount of the a-heavy 
chain. The crude high-salt extract has a very similar polypep- 
tide composition to the 21S dynein-1 peak, indicating that 
the high-salt extract is largely composed of 21S dynein- 1. One 
exception is a protein of ~105,000 D (Fig. 1 B, star). It is not 
known what structure this protein is associated with. It does 
not sediment with 21S dynein-1 in sucrose gradients. 

The polypeptide distributions in the sucrose gradients used 
to purify 21S dynein- 1 and its beta/IC- 1 dynein- 1 subunit are 
shown in more detail in Fig. 2. Fig. 2A is an image of the 
ATPase profile and polypeptide distribution of the sucrose- 
gradient fractions used to isolate 21S dynein-1. The ATPase 
peak (fraction 13) is estimated to be 21S and coincides with 
the peak of dynein-1 polypeptide subunits, including a- and 
B-heavy chains (Fig. 2A, small arrowheads) and IC-1, -2, and 
-3 (large arrowheads). The 21S dynein- 1 particle also contains 
light chains, but these have not been studied in detail. Inclu- 
sion of taxol in the high-salt extract buffer had no obvious 
effects on the sedimentation of 21S dynein- 1 (data not shown). 

Fig. 2 B shows the ATPase profile and polypeptide distri- 
bution of fractions from the 9-16S region of a sucrose gradient 
designed to isolate the beta/IC-I dynein-1 subunit. The 
ATPase peak (fraction 8) sediments at ~ 12S and is composed 
of the B-heavy chain, IC-1, and trace amounts of two high 
molecular weight polypeptides that migrate slightly faster than 
the B-heavy chain. Under these gradient conditions, the 
ATPase peak rarely contains a-heavy chains that sediment 
between 15-30S (a in Fig. 2 B) and is devoid of the IC-2, -3 
polypeptides that sediment more slowly at 9-10S (Fig. 2B, 
fractions 6 and 7, small arrowheads). 

FIGURE 1 Lanes from a single SDS polyacrylamide slab gel of: (A) 
isolated axonemes; (B) fresh high-salt extract of axonemes; (C) 
sucrose gradient-purified 21S dynein-1; and (D) sucrose gradient- 
purified 12S dynein-1 subunit. The high-salt extract and 21S dynein- 
1 fraction contain a- and/~-heavy chains (a and fl) and IC-1, -2, and 
-3. The 12S dynein-1 subunit is comprised of the /~-heavy chain 
and IC-1. ~, 105,000-D protein. Coomassie Blue stained. 
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Structure of Dynein- 1 
Freeze etch replicas of the fresh high-salt-extracted dynein- 

1 from sea urchin sperm axonemes reveal two-headed parti- 
cles. Fig. 3 is a survey view of such a replica of fresh high- 
salt-extracted dynein-1 diluted to 20 #g/ml and adsorbed to 
mica and frozen as described in Materials and Methods. 
Particle types on exposed mica surfaces include a background 
of nonvolatile salts (Fig. 3, asterisk) and clusters of various 
numbers of large, distinct pear-shaped or spherical head-like 
structures (Fig. 3, arrows). We refer here to each of these large 
globular pear-shaped or spherical units as a head. The heads 
have very uniform replicated dimensions: spherical, ~14.5 
nm in diameter; pear-shaped, ~ 18.5 x 12.5 nm. Such particles 
were never seen in control replicas of the buffers devoid of 
protein. For analysis we categorized the head-containing clus- 
ters into three groups: single-headed (example not included 
in Fig. 3), double-headed (Fig. 3, curved arrows), and irregular 
aggregates of three or more heads (Fig. 3, straight arrows). 
Out of 150 discrete, head-containing clusters in 20 um 2 of 
replica, 23% were single-headed, 55% were double-headed, 
and 22% were irregular aggregates. Our criteria for classifica- 
tion of particles by head number were conservative. For 14 
different fields of view analyzed (from four different replicas), 
it was necessary that single-headed and double-headed mole- 
cules were distinct, discrete units. Otherwise a particle cluster 
was categorized as an aggregate. For example the stars in Fig. 



FIGURE 2 Characterization of sucrose gradient fractions by ATPase assay and SDS polyacrylamide gel electrophoresis. The 
direction of sedimentation was from left to right. A shows fractions from the 15-25S region of a sucrose gradient used to purify 
21S dynein 1. The 21S peak, fraction 13, is composed of a- and/5'-heavy chains and IC-1, -2, and -3. From this gradient fractions 
13 and 14 were pooled and dialyzed for 8 h against high-salt buffer to remove sucrose before electron microscopy. Note that IC- 
1 migrates as a doublet. B shows fractions from the 9-15S region of a sucrose gradient used to purify the 12S dynein-1 subunit. 
The ATPase peak, fraction 8, is comprised of the/3-heavy chain and IC-1. This fraction was dialyzed against low-salt buffer to 
remove sucrose. (Note that lane 8 of B was underloaded and the #'-heavy chain and IC-1 do not correlate with the ATPase peak. 
In all other correctly loaded gels [eight separate experiments] there is a direct correlation of ATPase and these two proteins.) 
Silver stained. 

3 denote particle clusters within an aggregate that could be 
interpreted as two-headed particles. However, based upon our 
criteria these were counted in the aggregate. There were no 
clear examples of discrete three-headed particles in the repli- 
cas. Based upon their predominance we concluded that the 
two-headed structures represent the dynein-1 molecule and 
were analyzed further. 

Fig. 4 is a gallery of molecules visualized by quick-freeze, 
deep-etch. Each of the two heads proves to be distinct in 
shape and size: one head is pear-shaped and measures 18.5 x 
12.5 nm (n = 56; SD -- 1.0 nm), and the other head is round 
and 14.5 nm in diameter (n = 56; SD = 1.0 nm). Of 122 two- 
headed molecules studied, 78% had morphologically distin- 
guishable heads; in the remaining molecules, both heads 
appeared spherical, possibly because the pear-shaped particle 
was being viewed end-on, or possibly because a protein sub- 
unit was lost which would otherwise contribute to the pear- 
shaped head. (In Fig. 5a, a survey view of 21S dynein-~l 
particles on mica, the two-headed molecules happen to display 
spherical heads [arrows].) The heads adhere to the mica 
substrate in random orientations, in contrast to the three- 
headed outer arms from Chlamydomonas (18), and they are 
loosely joined by an irregular array of smaller subunits. As 
discussed in more detail below, the high-salt-containing ex- 
traction buffer appears to disrupt or loosen the molecule 
before mica adsorption, thereby obscuring structural details 
of the smaller subunits. 

Fig. 5 a shows a portion of a mica flake carrying particles 
from the 21S dynein-1 fraction. The replica reveals a mixture 
of two-headed molecules (arrows), single-headed molecules 
(squares), and clusters of three small bead-like subunits (cir- 

cles). A selection of these prominent particle types is displayed 
in Fig. 6. The two-headed molecules (top row of Fig. 6) are 
comparable to those in the high-salt extract except that they 
tend to be even more disrupted and spread on the substrate. 
The heads are usually distinguishable and have the same 
dimensions as the pear-shaped and round heads of the two- 
headed molecules in Fig. 4. The heads of the single-headed 
molecules (middle row of Fig. 6) usually have the shape and 
dimensions of the pear-shaped head (18.5 x 12.5 nm); the 
stems of these particles carry a variable arrangement of smaller 
bead-like subunits. The third row of Fig. 6 shows the clusters 
of three subunits. The two lateral beads are spherical, and the 
central bead is larger and oblong. Based solely on morpholog- 
ical criteria, the three-bead clusters resemble the decorative 
material that binds the two heads together (Figs. 4 and 6, top) 
and projects from single-headed molecules. In particluar, 
there is a resemblance to the cluster indicated by the arrow in 
Fig. 4. 

The beta/IC-1 dynein-l subfraction contains single-headed 
molecules, and the heads are predominantly pear-shaped. Fig. 
5 b shows a representative region of a replicated mica flake 
displaying many single-headed molecules (circles). Of the 
discrete, globular particles in such fields, 68% (n = 85) were 
pear-shaped; the remainder were spherical. As noted above, 
spherical heads may be end-on views of pear-shaped heads 
since a definite pear-shape is detectable only 78% of the time 
in the intact two-headed protein; alternatively the extraction 
of a light chain or some other protein component may convert 
pear-shaped heads into spherical heads. (The pear-shaped 
head of isolated, shadowed myosin becomes spherical upon 
extraction of regulatory light chains [ 11 ].) A gallery of single- 
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FIGURE 3 Survey view of a replica of the taxol-containing fresh high-salt extract of dynein-1 adsorbed to mica flakes (see 
Materials and Methods for details of freezing, etching, and shadowing). The predominant particles are two-headed proteins 
defined by the curved arrows. Stars denote possible two-headed particles within a large aggregate, and the asterisk marks a 
region of unidentified background particles. For description of analysis see Results. Bar, 50 nm. x 210,000. 

headed molecules is displayed in Fig. 7. The pear-shaped 
heads have the same dimensions as the pear-shaped heads of 
the intact two-headed particles. A stem domain and associated 
bead-like subunits project from the narrow end of  the head. 
The stem often ends in a pair of  small globular subunits (Fig. 
7, arrows). 

Organization of Subunits in In Situ Outer Arms 

Fig. 8, a, b, and c show micrographs of sea urchin axonemes 
that indicate possible relationships between the structure of 
the isolated two-headed dynein-1 and the structure of the in 
situ outer arm, Shown are examples in which the outer row 
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FIGURE 4 Representative two-headed proteins found in the fresh high-salt extract. The two heads of each protein can be 
distinguished as pear-shaped or spherical. The proteins appear to adsorb to the mica substrate in random orientation. Bar, 50 
nm. x 350,000. 

of arms has undergone either various degrees of spontaneous 
or high-salt extraction or microtubule splaying during sample 
preparation, since it has previously been shown that such 
disrupted axonemes yield particularly informative images 
(18). The images are arranged such that the distal tip of the 
axoneme is to the left. Fig. 8 a shows a row of outer dynein 
arms in lateral view. Prominent are globular heads that par- 
tially span the interdoublet gap. The large, globular heads 
repeat at 24 nm and are associated with smaller subunits (feet) 
that sit between adjacent globular heads and attach to the A- 
microtubule (arrowheads, Fig. 8 a). Although not evident in 
this micrograph, most heads are linked to the adjacent B- 
tubule by a thin stalk (see Fig. 8 d). This image of the outer 
dynein arm is generally consistent with that described earlier 
for protozoan cilia (17, 18). 

As previously shown for protozoan outer arms (18), the in 
situ image viewed from the lateral perspective is misleading 
in that the outer-arm proteins in fact overlap one another. A 
diagram of the overlapped outer arms in sea urchin axonemes 
is presented in Fig. 9A, where each head is seen to make 
contact with two small subunits that are part of the molecule 
proximal to it. In Fig. 8 a, the arrowheads point to the prom- 
inent intervening subunit which is also indicated by arrow- 

heads in the Fig. 9 diagram and is designated the P-foot (for 
proximal). The small distally displaced subunits are masked 
by overlying heads on the left side of Fig. 8 a. However, on 
the right side, two heads are missing at the positions marked 
by large arrows; as a result, the small subunits upon which 
they formerly rested are exposed (small arrows). A comparison 
of this region with the diagram in Fig. 9B indicates that two 
entire outer-arm proteins are missing from the row at the 
positions marked by the arrows. 

A more extreme example of this same phenomenon is given 
in Fig. 8 b, which shows an axoneme exposed to high salt such 
that most of its outer arms were extracted. The elongated 
configuration of the residual arms is evident. The perpendic- 
ular arrowheads again point to the intervening subunit, while 
the small white arrows indicate the firm attachment of the 
small subunits, the distal feet (D-feet) (Fig. 8 b), to the A- 
microtubule. 

A final illustration of the overlapping arrangement of outer 
arms is given in Fig. 8 c. Here, doublets at the distal tip have 
begun to splay apart, causing each outer arm to stretch out of 
the overlapped position. The globular heads and associated 
stalks (arrowheads) have pulled away from the feet of their 
proximal neighbors. 
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FIGURE 5 Low-power electron micrographs of replicas of quick-frozen, deep-etched proteins from (a) the dialyzed 21S dynein- 
1 fraction and (b) the dialyzed beta/IC-1 dynein-1 subfraction. The dialyzed 21S dynein-1 fraction contained three predominant 
particle types: two-headed proteins (arrows); single-headed proteins (boxes); and clusters of three small, globular subunits (circles). 
The beta/IC-1 dynein subfraction (b) contains single-headed proteins (circles). One particle appears to be two-headed (arrows in 
b). Other replicated particles have not been identified but may include nonvolatile salts (i.e., imidazole, EDTA, NaCI) and 
contaminating or distorted proteins (see reference 21). Bar, 50 nm. x 240,000. 

Based upon an understanding that each outer dynein arm 
is attached to the A-microtubule distally by small subunits, 
the D-feet (D in Fig. 9A), and that the heads overlap the 

origin of  the next proximal outer arm, it is possible to interpret 
the structure of  nondisrupted, in situ outer arms in straight 
regions of  the axoneme. Fig. 8 d shows a row of outer arms 
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FIGURE 6 Particles from the dialyzed 21S dynein-1 fraction from a sucrose gradient. The prominent particles include two-headed 
proteins, single-headed proteins, and clusters of bead-like subunits. The two-headed particles are similar to those of the fresh 
high-salt extract (Fig. 3) in that they are comprised of a pear-shaped head and a spherical head. Bar, 50 nm. x 350,000. 

FIGURE 7 Single-headed mole- 
cules from the dialyzed beta/IC-1 
dynein-1 subfraction from a su- 
crose gradient. The heads were 
generally the shape and dimen- 
sions of the pear-shaped head of 
the two-headed proteins. Bar, 50 
nm. x 350,000. 
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FIGURE 8 (a-c) Images of rotary-shadowed replicas of straight regions of axonemes in various states of disruption that optimally 
reveal in situ outer dynein arm subunit organization. The distal end of the axoneme is to the left. In a, a row of outer dynein arms 
is shown with two prominent gaps where arms are missing (arrows). Such partially extracted axonemes illustrate the substructure 
of the outer arm: each outer arm is attached distally by small globular feet (small arrows and arrowheads), and these globular feet 
are in turn linked to the large, proximally displaced globular heads. The large globular heads overlap the feet of the next proximal 
dynein arm. This slanted structure is clearly visualized in the outer arms which remain in high-salt-extracted axonemes (b). This 
arrangement is further illustrated in axonemes in which doublets have splayed apart and the stretched outer dynein arms extend 
out of the overlap position (c). In such splayed images it is clear that the dynein arms are attached to the A-microtubule by the 
distal end. In d, a region of an axoneme is shown frozen in reactivation buffer without ATP. Symbols are described in the text. 
Bar, 50 nm. x 350,000. 

from a demembranated sperm suspended in reactivation 
buffer without added ATP, a condition of the sperm tail 
axoneme we define here as rigor (12, 17, 35). The bottom row 
of arrowheads denotes the P-feet associated with three outer 
arms (P in Fig. 9A). The upper row of tilted arrowheads 
denotes the three corresponding globular heads. The baseward 
slope of each protein, indicated by the cant of the tilted 
arrowheads, is -35*. By contrast, the stalks are perpendicular 
to the microtubule surface, and they emanate from the distal 
portion of each head. 

The outer dynein arms of sperm tail axonemes frozen in 

reactivation buffer containing 1 mM ATP or sprayed with 
ATP-containing buffers (see Materials and Methods) have a 
very different structure from those of rigor sperm tail axo- 
nemes. The structure of the outer arm in ATP is very regular 
in straight regions of axonemes. As seen in Fig. 10, each unit 
consists of a large head that appears to be divided into two 
prominent globular domains, one above the other (Fig. 10, 
a-c,  tilted arrows), a stalk emanating from the proximal side 
of these domains, and irregular intervening subunits (Fig. 10, 
b and c, downward arrows). Two parallel strands (Fig. 10, b 
and c, small horizontal arrows) can often be discerned extend- 
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RIGOR 

E X T R A C T  
SHADED 
P R O T E I N  

that have been proposed for protozoan outer arms in ATP 
(18). 

A structure that we interpret as the 5-6 bridge is also 
displayed in Fig. 10a (large horizontal arrow). The bridge is 
a beaded structure with a regular 24-nm repeat. As opposed 
to the dynein arms, the bridge sits approximately equidistant 
from and between doublets, is attached to doublet 5 (lower) 
by short narrow trunks, and to doublet 6 (upper) by irregular 
narrow struts (many not visible in Fig. 10 a). Adjacent globular 
elements are connected longitudinally by a narrow linker that 
is skewed toward doublet 6. A unit of  this sort is never seen 
in cilia or flagella that do not reveal a bridge in cross-sections 
(17, 18). 

ATP 

z~ A zx 

FIGURe 9 (A) Diagram of external view of rigor outer arm. The 
distal direction is to the left. Each outer arm is comprised of a large 
head (H) which is attached to the A-microtubule by smaller distafly 
disposed subunits collectively referred to as the D-foot (D). lhe 
arrowheads denote P-feet (P) as the subunit interposed between 
heads. Each head overlaps the D-foot (D) of the next proximal outer 
arm, and the distal feet are hidden under the heads unless the 
adjacent dynein arms have been extracted, as in B and in Fig. 8, A 
and B. The two heads of each outer dynein arm are superimposed 
from this lateral view. (C) An interpretive diagram of the structure 
of outer arm exposed to ATP (see Fig. 10). The head is a bipartite 
structure, possibly because the two heads are now visible in lateral 
view. Parallel strands run between heads. The small intervening 
subunit (D) is possibly the same subunit as the hidden D-foot of 
rigor dynein arm, although this has not been directly demonstrated. 

ing from one unit to the next. 
Three salient differences distinguish the structure of  the 

outer arms in the presence vs the absence of ATP. (a) In ATP, 
the globular head appears to be comprised of upper and lower 
domains, whereas in the absence of ATP the globular head 
does not display a division. (b) In ATP, the stalk emanates 
from the proximal aspect of  the globular head, whereas in the 
absence of ATP the stalk projects from the distal end of  the 
head. (c) In ATP, the region between adjacent heads is irreg- 
ular in structure (Fig. 10, small white arrows), whereas without 
ATP there is a distinct intervening subunit (Fig. 8, a and d). 

One interpretation of the ATP image is that the head viewed 
in rigor (Fig. 9A) rotates 90* revealing a bilobed head and 
intervening strands. Another interpretation of the ATP image 
is diagrammed in Figure 9 C. We propose that in ATP, the 
prominent  globular heads shift basally so that they lie over, 
and thereby shield, the P-foot (rather than the D-foot). Ac- 
companying this shift is a rotation of the globular heads such 
that the single large head visible in the absence of ATP rotates 
to reveal its two domains. In other words, the two prominent 
globular domains revealed in such lateral views are interpreted 
to be the two molecular heads identified for the isolated 
dynein-1. The intervening subunit is interpreted to be the D- 
foot (whereas it is interpreted to be the P-foot in the rigor 
flagellar axoneme). Finally, there is a proximal shift in stalk 
position, presumably accompanying the shift in head orien- 
tation. These changes in outer arm structure parallel those 

DISCUSSION 

Sea Urchin Dynein In Vitro 

Fig. l l A summarizes the particle types analyzed in this 
paper and their polypeptide compositions. Although previous 
structural studies have indicated that sea-urchin sperm-tail 
dynein-1 might be two-headed (44, 60) and the Bell and 
Gibbons model (4) predicts a two-headed dynein from bio- 
chemical data, the images presented in this paper are the first 
to clearly document the presence of two heads. Recent mod- 
eling studies using Kirkwood-Bloomfield theory and data 
from Figs. 4 and 7 of this paper predict sedimentation coef- 
ficients of  21.2S and 12S for the two-headed dynein-I and 
the tingle-headed beta/IC- 1 subunit, respectively (Clutter, D., 
and K. A. Johnson, personal communication; and cf. refer- 
ence 10. For calculation, molecular weights of  1.3 megadalton 
and 600,000 D were assumed for dynein 1 and the beta/IC-1 
subunit, respectively, and a partial specific volume of 0.74 
cm3/g used.) The micrographs also show that one of the heads 
is pear-shaped and the other spherical. Since dissociated dy- 
nein-1 yields a smaller 12S-14S particle with a pear-shaped 
head and a fl-heavy chain, we conclude that the pear-shaped 
head is composed of the ~-chain and, therefore, that the round 
head is composed of the a-chain. 

A possibly unexpected consequence of dialyzing gradient- 
purified 2 IS dynein-I against high salt is that many of the 
proteins dissociate into subunits. Particularly interesting in 
these preparations is the presence of clusters of  three small 
bead-like subunits (Fig. 6), which bear a strong resemblance 
to a cluster of  three subunits decorating the intact protein 
(Fig. 4, arrow). We are presently exploring the posssibility 
that this cluster might correspond to the 9-10S species con- 
taining IC-2 and -3 that migrates as a stable particle in sucrose 
gradients (55). Such a model would be consistent with that of  
Bell and Gibbons (4) in which the IC-2 and -3 particle 
comprises a portion of the A-microtubule binding site. 

A comparison of dynein-1 from sea urchin with quick- 
frozen images of  Chlamydomonas and Tetrahymena dyneins 
(18) indicates that all are constructed on the same head-stem 
plan. There are, however, differences, the most obvious being 
that the protozoan dyneins have three heads (18, 28, 59), 
whereas sperm-tail dynein has two. In a recent preliminary 
report, Marchese-Ragona et al. (32) found bull sperm 18S 
dynein to be two-headed, and 21S dynein-I from the sea 
urchin Tripneustes gratilla, when studied by scanning trans- 
mission electron microscopy, is also a two-headed protein 
(Gibbons, I. R., and K. A. Johnson, personal communica- 
tion). It will clearly be interesting to learn whether two-headed 
outer arms prove to be a diagnostic feature of  sperm dyneins. 
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FIGURE 10 Straight regions of sperm tail axonemes frozen in reactivation buffer containing ATP. Representative longitudinal 
views of outer arms are displayed. Notably the head displays two globular domains (tilted arrows in a-c) and the stalks emanate 
from the proximal end of each head and project to the B-microtubule of the adjacent doublet. Also included is a periodic 
structure interpreted to be the 5-6 bridge (horizontal arrow in a). Bar, 50/zm. (a) x 200,000. (b and c) x 350,000. 

Since there is no evidence that outer dynein arms of these 
sperm have a third head, the purpose of the third head in 
protozoan dyneins is not known. However, there is biochem- 
ical and genetic data suggesting that the outer arms of Chla- 
mydomonas are comprised of three heavy chains (25, 37, 40) 
and that each heavy chain is associated with ATPase activity 
(36, 38); there is also biochemical and kinetic evidence that 
favor three sites of ATPase activity in the outer arm dynein 
from Tetrahymena (26, 51). Similarly, each of the a- and/3- 
heavy chains of sea urchin outer arm dynein is associated 
with ATPase activity (55). Therefore, the simplest conclusion 
based upon composition, structure, and mass analysis is that 
each head is an ATPase-containing unit, with three heads and 
heavy chains in the outer dynein arms of Chlamydomonas 
and Tetrahymena, and two heads and heavy chains in the 
outer dynein arms of sea urchin sperm flagella. 

Examination of Fig. 4 indicates that the stem domains vary 
considerably in morphology from one protein to the next: 
some are quite compact, others appear extremely loose and 
disorganized. Studies with Chlamydomonas dynein demon- 
strate that variability in structure can be generated by expo- 
sure to high salt, since such variability is minimized when the 
outer arms are released from doublets by exposure to high 
concentrations of ATP (18). Unfortunately, we have been 
unable to extract sea-urchin dynein using ATP, and therefore 
cannot detail how its stem decoration is organized. 

Sea Urchin Dynein In 5itu 

Previous studies of deep-etched protozoan outer arms in 
situ have shown the presence of two feet, the D-foot and the 
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P-foot, associated with the A-microtubule, and the probable 
presence of a tripartite head. One unit of the head rests on its 
neighbor's D-foot and the second rests on its neighbor's P- 
foot, giving the head an oblong, mallet shape; the third head 
unit lies behind the other two and is not normally visible (17, 
18). 

In the sea-urchin sperm tail, entities corresponding to a D- 
foot and a P-foot can be identified in arms of rigor sperm 
tails, although their shapes and sizes are different from their 
protozoan counterparts (Figs. 8 and 9). Presumably the inter- 
vening subunit (Fig. 8, vertical arrowheads) corresponds to 
the P-foot, and the D-foot is hidden under the heads. The key 
difference between the two images in rigor axonemes is that 
whereas a globular head unit of the sea urchin outer arm rests 
on its neighbor's D-foot, no globular head unit is associated 
with the neighboring P-foot, so that each P-foot stands ex- 
posed as the prominent intervening subunit identified by the 
arowheads in Fig. 8, a, b, and d. Furthermore, the intervening 
subunit is larger and located more proximal relative to the 
heads of each dynein arm, compared with the P-foot in the 
protozoan outer arms. Knowing that sea-urchin dynein-1 is 
comprised of two head units in vitro, we must assume that in 
rigor axoneme, one globular head lies behind the other as 
drawn in Fig. 9, A and B and 11 B. This general model of 
outer dynein arm structure is consistent with other electron 
microscopic data (2, 18, 58) and with models developed from 
mass distribution analysis by scanning transmission electron 
microscopy of dynein bound to microtubules (28). Further- 
more, this arrangement of the heads would account for the 
hook-shaped outer dynein arm viewed in cross-sections (1, 
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(A) Summary diagram of polypeptide composition and 
particle types in the dynein fractions described in Results. We 
conclude that the two-headed particle is the 21S dynein-1 mole- 
cule. (B) General model of outer dynein arms of sea urchin sperm 
axonemes, and one interpretation of the relationship of the general 
structure of the outer arm and the extracted two-headed dynein. 
The outer arm is comprised of a head which attaches to the A- 
microtubule by small, distally disposed subunits (feet) and attached 
to the adjacent B-microtubule (not illustrated) by a thin stalk. 

2 l, 27). Similar general models of  outer dynein arm structure 
have been presented (5, 27, 29). 

As suggested from biochemical data (36), it is possible that 
the heavy chains of  18S dynein from Chlamydomonas are 
equivalent to the heavy chains of  21S dynein-1 from sea 
urchin, since they share several fractionation properties. If so, 
then the missing molecular head in sea urchin, or the extra 
molecular head in protozoa, may correspond to the unit 
comprised of  the v-heavy chain and this unit may be equiv- 
alent to the proximal globular head present in the protozoan 
rigor arm but absent from the sperm rigor arm. By this 
reasoning, a- and /3-heavy chains would correspond to the 
distal head and the hidden head (or the reverse) in all three 
organisms. Obviously the situation may be more complex 
than this, and in situ antibody labeling of  individual structures 
will be required to resolve the issue. 

The fact that two large globular domains are visible in each 
outer arm when sea-urchin axonemes are exposed to ATP is 
interpreted to mean that the hidden head and the visible head 
both rotate and twist ~90" when ATP is present (see Fig. 9 C). 
A similar kind of  head rotation was proposed to explain 
the ATP image in protozoan axonemes (18). Both heads, 
moreover, appear to shift proximally in ATP, again as appears 
to occur in protozoan axonemes (18). However, the signifi- 

cance of  these changes in head position is unclear at present. 
One interpretation is that these structural changes represent 
distinct states of  a cyclic cross-bridge cycle. However, it is 
curious that, at least in straight segments of  rapidly frozen 
reactivated sea urchin sperm, each outer arm appears identical 
in conformation to its neighbor. One might have expected to 
see a systematic or random change in macromolecular struc- 
ture associated with the capture of  dynein arms in transitions 
associated with the cross-bridge cycle. It is possible that fla- 
gellar axonemes were immotile at the time of  freezing. It is 
also possible that the freezing step is relatively slow and 
actually captures a rate-limiting step in a cross-bridge cycle or 
that in actively bending axonemes, cycling force-generating 
arms are localized to bent regions and/or specific subsets of  
doublet microtubules. Future studies will focus on a compar- 
ison of  outer-arm structure in straight and bent regions of  
rapidly frozen, reactivated flagellar axonemes. 
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