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ABSTRACT We prepared monoclonal antibodies specific for fast or slow classes of myosin 
heavy chain isoforms in the chicken and used them to probe myosin expression in cultures 
of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was 
assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostain- 
ing of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts 
synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically 
and immunologically distinct, but only the fast class of myosin heavy chain was synthesized 
by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, 
three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that 
contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy 
chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed 
in cultures of embryonic day 8 or older myoblasts, however, were of a single type that 
synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from 
embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of 
myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained 
a slow class of myosin was the same. These results demonstrate that the slow class of myosin 
heavy chain can be synthesized by myotubes formed in cell culture, and that three types of 
myotubes form in culture from pectoral muscle myoblasts that are isolated early in develop- 
ment, but only one type of myotube forms from older myoblasts; and they suggest that muscle 
fiber formation probably depends upon different populations of myoblasts that co-exist and 
remain distinct during myogenesis. 

There are two major sets of biochemical differences in devel- 
oping muscles and in muscle fibers. One set is found between 
physiologically fast and slow muscles. Fibers in these two 
muscle types contain different isoforms of myosin and other 
muscle-specific proteins, although both fibers and muscles are 
found with mixed properties. A second set is due to the 
appearance of isoforms specific to different developmental 
ages within a single muscle. For example, a sequence of 
myosin heavy chain and myosin light chain isoform expres- 
sion occurs during the formation of all muscles (reviewed in 
reference 1). The developmental basis for the formation of 
different fiber types and sequential expression of isoforms in 
putative fast and slow fibers is not known, but fiber diversi- 
fication has been postulated to result from either a single cell 
lineage or multiple cell lineages (2). 

The sequential appearance of different isoforms at different 
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stages of avian muscle development is found for a number of 
proteins, including the fast myosin heavy chain (3-9), myosin 
light chain (10-14), troponin (15), C-protein (16), tropomy- 
osin (14, 17), and creatine kinase (18). Similar isoform tran- 
sitions are found in mammals (l 9-22). One particularly well- 
studied isoform transition is that of the fast myosin heavy 
chains of the avian breast muscle. Three fast isoforms that 
appear sequentially during mid-embryonic to adult develop- 
ment of this muscle have been described (6, 9). The first 
isoform appears on or before embryonic day (ED) ~ l0 and is 
expressed through ED 18, and the second is expressed from 
ED 16 to several weeks after hatching. The first two isoforms 

Abbreviations used in this paper: ALD, anterior latissimus dorsi; 
ED, embryonic day; McAb, monoclonal antibody; PM, pectoral 
muscle. 
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are shared by several muscles. The third isoform, which is 
apparently unique to adult pectoralis major, appears several 
weeks after hatching. Isoform transitions in the mid-embry- 
onic to adult pectoral muscle (PM) are, therefore, well dem- 
onstrated. Biochemical differentiation of the PM during very 
early development (ED 4-6) is, however, comparatively un- 
studied. 

As a step toward understanding differentiation in the early 
PM, we have studied myosin heavy chain expression in cul- 
tures o f  ea r ly  P M  cells.  M y o b l a s t s  we re  i so l a t ed  f r o m  t h e  P M  

o f  e m b r y o s  o f  d i f f e r e n t  age s  a n d  a l l o w e d  to  f o r m  m y o t u b e s  

in  c u l t u r e .  M y o s i n  h e a v y  c h a i n  e x p r e s s i o n  w a s  a s s e s s e d  u s i n g  

m o n o c l o n a l  a n t i b o d i e s  to  fas t  a n d  s l ow  c lasses  o f  i s o f o r m s  as  

p r o b e s  in  i m m u n o b l o t t i n g  a n d  i m m u n o c y t o c h e m i c a l  p r o c e -  

du re s .  W e  f o u n d  t ha t ,  u n l i k e  t h e  m y o t u b e s  f o r m e d  in  c u l t u r e s  

o f  E D  8 o r  o l d e r  d o n o r s ,  c u l t u r e s  o f  p e c t o r a l  m y o b l a s t s  f r o m  

E D  5 - 6  f o r m e d  b i o c h e m i c a l l y  d i s t i n c t  p o p u l a t i o n s  o f  m y -  

o t u b e s .  M a n y  o f  t h e s e  m y o t u b e s  c o n t a i n e d  t h e  s l ow  c lass  o f  

m y o s i n  h e a v y  c h a i n - - a n  u n e x p e c t e d  f i n d i n g  for  c u l t u r e d  

m y o t u b e s .  T h e  r e s u l t s  s h o w  t h a t  c u l t u r e d  m y o b l a s t s  c a n  f o r m  

m y o t u b e s  t h a t  s y n t h e s i z e  s l ow  m y o s i n  h e a v y  c h a i n  a n d  m a i n -  

t a i n  t h r e e  d i f f e r e n t  p h e n o t y p e s  in  a s ing le  c u l t u r e ,  a n d  t h a t  

t h e s e  p r o p e r t i e s  d e p e n d  u p o n  t h e  age  o f  t h e  e m b r y o  f r o m  

w h i c h  t h e  m y o b l a s t s  a r e  de r i ved .  

MATERIALS AND METHODS 

Cell Culture: PM cells were isolated and cultured as described by 
O'Neill and Stockdale (23). The PM was identified and dissected from stage 
27-28 (ED 5), stage 29 (ED 6), ED 8, and ED 12 embryos, minced, dissociated 
with trypsin, and plated at 2.5 x 10 + cells/cm 2 on gelatin-coated dishes. Whereas 
it was easy to dissect the PM in ED 8 or older embryos, the PM in ED 5-6 
embryos was recognized as a linear thickening on the forming chest wall and 
care was taken to avoid the inclusion of tissue from the trunk muscles, ribs, 
and upper wing during the dissection. Culture medium, 0.3 ml/cm 2, consisted 
of Dulbecco's modified Eagle's medium supplemented with 10% horse serum, 
2.5% chick embryo extract, penicillin, streptomycin, and fungizone. When 
used, conditioned medium was prepared from ED 12 PM cultures as described 
(24). Cultures of these cells contained multinucleated cells after 2-3 d. The 
number of contaminating cells could be reduced without changing the results 
by preplating the trypsin-treated cells for 30 min before initial culture and by 
treating the cultures with cytosine arabinoside at 10 ~g/ml for 48 h beginning 
on the third day of culture. 

Myosin Preparations: Myosin was purified from adult white Leghorn 
chicken by repeated cycles of high salt solubilization and low salt precipitation 
(25), and stored as described below. The predominantly fast PM and predom- 
inantly slow anterior latissimus dorsi (ALD) muscle were used as sources of 
myosin. Myosin was extracted from cultured myotubes after the cells were 
removed from culture dishes with trypsin and collected by centrifugation. The 
cell pellet was extracted on ice for 15 min with a buffer consisting of 0.6 M 
NaCI, l0 mM sodium phosphate, 1 mM sodium pyrophosphate, 0.5 mM 
MgC12, 0.1 mM EGTA, 1 mM dithiothreitol, and 0.5% Triton X-100, pH 6.8. 
The cell pellet was extracted with 1 ml of this buffer per 150 cm 2 of culture 
area. The extracted cells were centrifuged at 250 g for 10 min, and the 
supernatant was dialyzed in 500 ml of 5 mM KCI, 0.5 mM sodium phosphate, 
and 0+25 mM EGTA, pH 6.8, overnight at 4°C. Myosin was collected from the 
dialysate by centrifugation at 15,000 g for 2 min. The pellet was dissolved in 
80 mM sodium pyrophosphate, 2 mM MgCI2, and 2 mM EGTA at one-tenth 
of the extraction buffer volume, mixed with an equal volume of glycerol, and 
stored at -20°C until used. Protein was quantitated with the dye-binding assay 
of Bradford (26). 

Monoclonal Antibodies: Monoclonal antibodies (McAb's) to 
chicken myosin heavy chains were prepared as described previously (13). 
BALB/c mice were immunized with myosin purified from adult PM (the source 
of McAb F59) or ED 19 upper leg muscle (the source of McAb's $58 and $46), 
and the spleen cells were hybridized with the myeloma cell line P3-NS1/I Ag 
4-1. Immunization, hybridoma formation, and selection were performed as 
described by Oi and Herzenberg (27). Hybridoma culture supernatants were 
initially screened with a solid-phase binding assay using purified myosin heavy 
chain fractions adsorbed to polyvinylchloride plates as the antigen (13). Hybri- 
domas with positive supernatants were recloned by limiting dilution. 
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Immunocytochemistry and Microscopy: Fixed myotube cul- 
tures and cryostat sections (8-~m thick) of frozen, unfixed muscle were used to 
determine the myosin heavy chain content of individual cells. Cryostat sections 
were prepared as described (13) but the sections were not fixed. Endogenous 
peroxidase activity was blocked by a 10-min incubation of the sections in 
methanol and 3% H202 at room temperature. Myotube cultures were fixed for 
5 min with 3.7% formaldehyde in phosphate-buffered saline (PBS) and for 5 
min more in 100% ethanol. The procedure for myosin visualization was 
identical for sections and cultures. The samples were incubated in 2% bovine 
serum albumin (BSA), 2% horse serum in PBS for 30 rain and then with a 
1:10 dilution of the hybridoma supernatant in PBS-BSA-horse serum for 1 h. 
The cells were washed with several changes of PBS and incubated with bioti- 
nylated horse anti-mouse lgG at 5 t~g/ml. Bound antibody was visualized with 
either an avidin-biotin horseradish peroxidase or an avidin-biotin-glucose 
oxidase complex as described by the manufacturer (Vectastain ABC kit, Vector 
Laboratories, Inc., Burlingame, CA). 

For double-label immunofluorescenee, McAb's F59 and $46 were purified 
from ascites fluid on DEAE Am-gel blue columns (Bio-Rad Laboratories, 
Richmond, CA) as described (28). The purified McAb's were biotinylated by 
reaction with N-hydroxysuccinimidobiotin as described (29). Cultures were 
fixed as above and incubated overnight with biotinylated McAb $46 at 1 ~g/ 
ml in PBS-BSA-horse serum at 4"C. As was the case between each change of 
reagents, the cultures were washed with four changes of PBS. The cultures were 
then incubated with fluorescein-conjugated avidin (Vector Laboratories; Inc.) 
for 3 h at 25 ~g/ml at room temperature, biotin for 30 min at 25 ~g/ml, 
biotinylated McAb F59 for 1 h at 1 gg/ml, and rhodamine-conjugated avidin 
(Vector Laboratories, Inc.) for 1 h at 10 #g/ml. Control experiments showed 
that the biotin blocking step was sufficient to saturate biotin binding sites on 
the fluorescein-conjugated avidin, and also that the order in which the bioti- 
nylated $46 and F59 were added did not affect the results. The cultures were 
mounted for microscopy in PBS at pH 8.6 supplemented with 90% glycerol 
and 2.5% 1,4-diazabicyclo (2, 2, 2) octane to retard fluorescence bleaching (30). 
Observations were made with a Zeiss photomicroscope equipped for epiflu- 
orescence, and Kodak Tri-X film was used for photography. 

Immunoelectrophoresis and Myosin Quantitation: SDS 
PAGE was performed as described by Laemmli (31) on 5% gels. Proteins were 
electrophoretically transferred to nitrocellulose as described by Burnette (32). 
Myosin heavy chain on the nitrocellulose transfer was detected by incubating 
the transfers for 1-2 h with hybridoma supernatants diluted l:10 with 2% 
nonfat powdered milk (33) in PBS. The horseradish peroxidase- or glucose 
oxidase-linked systems described above were used to visualize McAb binding 
to myosin heavy chain. 

A dot blot assay (34) was used to quantitate myosin isoforms in cultured 
myotubes. Myosin was extracted from cultures as above and diluted with 0.2 
M NaCl, 5 mM HEPES, l0 mM 2-mercaptoethanol, and 1% SDS (dot blot 
buffer). Fast myosin heavy chain from the PM and slow myosin heavy chain 
from the ALD were extracted as above and subjected to SDS PAGE on 5% 
gels. The areas of the gel that contained myosin heavy chain were cut out, the 
myosin heavy chain was electroeluted, and protein was quantitated. These 
purified heavy chain preparations were diluted with dot blot buffer and used as 
standards in the assays. 20-~1 samples were applied to nitrocellulose as serial 
1:3 dilutions starting with 2 ug of protein in 20 gl. The blots were air dried, 
incubated with hybridoma supernatants, and visualized with the horseradish 
peroxidase system as described above. Myosin was quantitated by comparing 
the size and intensity of dots produced by the standards with those of the 
samples. Similar results were obtained using a t2Sl-labeled rabbit anti-mouse 
secondary antibody, but the peroxidase-linked system was used routinely. 

RESULTS 

McAb' s to Myosin Heavy Chains 

McAb's to myosin heavy chains were prepared much as 
M c A b ' s  to  m y o s i n  l igh t  c h a i n s  were  p r e p a r e d  p r e v i o u s l y  (13).  

M i c e  we re  i n j e c t e d  w i t h  pu r i f i ed  h e a v y  c h a i n ,  h y b r i d o m a s  

were  f o r m e d ,  a n d  h y b r i d o m a  s u p e r n a t a n t s  we re  s c r e e n e d  in  

a s o l i d - p h a s e  a s s a y  for  b i n d i n g  to  m y o s i n  h e a v y  c h a i n .  H y -  

b r i d o m a s  w i t h  pos i t i ve  s u p e r n a t a n t s  we re  c l o n e d  a n d  ex-  

p a n d e d ,  a n d  t h e  b i n d i n g  spec i f i c i ty  o f  t h e  M c A b ' s  was  f u r t h e r  

i nves t i ga t ed .  
Severa l  M c A b ' s  we re  f o u n d  t h a t  b o u n d  spec i f ica l ly  to  e i t h e r  

t h e  fas t  o r  s low i s o f o r m  o f  t h e  m y o s i n  h e a v y  c h a i n .  T h e  
p r o p e r t i e s  o f  t h r e e  o f  t h e s e  M c A b ' s  a r e  i l l u s t r a t ed  in  Fig, I. 

C r y o s t a t  s e c t i o n s  o f  a d u l t  P M  a n d  A L D  were  s t a i n e d  w i t h  



FIGURE t Properties of McAb's specific for fast and slow classes 
of myosin heavy chain. Serial sections of the predominantly slow 
adult ALD (a and b) and predominantly fast adult PM (c and d) 
were incubated with either McAb $58 (a and c) or McAb F59 (b 
and d). McAb binding was visualized with a horseradish peroxidase- 
linked detection system as described in Materials and Methods. 
Bar, 40 #m. x 250. In e, samples of myosin heavy chain purified 
from adult ALD (lanes 1, 3, 5, and 7) and adult PM (lanes 2, 4, 6, 
and 8) were analyzed by SDS PAGE on 5% gels and by immuno- 
blotting. Lanes 1 and 2 were stained with Coomassie Blue. After 
transfer to nitrocellulose, lanes 3 and 4 were incubated with McAb 
F59, lanes 5 and 6 were incubated with McAb $58, and lanes 7 and 
8 were incubated with McAb $46. McAb binding was visualized as 
above. A 1-#g sample of myosin was analyzed in each lane. When 
the lanes were overloaded a small amount of the fast class of heavy 
chain was detectable in ALD extracts. The positions of standards of 
molecular weight 200,000, 116,250, and 92,500 are indicated. 

these antibodies. McAb $58 labeled muscle fibers in the 
predominantly slow ALD muscle (Fig. I a), but not in the 
predominantly fast PM (Fig. 1 c). McAb $46 gave identical 
results (not shown). In contrast, McAb F59 labeled the PM 
but not the ALD fibers, except for a small subset of ALD 
fibers that did react with F59. 

Immunoblots confirmed that McAb F59 bound specifically 
to the fast isoform of myosin heavy chain and McAb's $58 

and $46 bound specifically to the slow isoform (Fig. I e). 
Myosin was purified from PM and ALD muscle and subjected 
SDS PAGE and immunoblotting. The fast and slow isoforms 
of myosin heavy chains were separable in 5 % polyacrylamide 
gels (4). The immunoblots showed that McAb F59 bound to 
the fast isoform of myosin heavy chain found in adult PM 
muscle, and McAb's $58 and $46 bound to the slow isoform 
from adult ALD. Thus, the results from solid-phase binding 
assays, immunohistochemistry, and immunoblotting showed 
that these McAb's were specific to fast and slow isoforms of 
myosin heavy chain. 

Because myosin heavy chain isoforms change during de- 
velopment of muscles (3-9), the McAb's were tested by im- 
munoblotting on 5% gels and immunohistochemistry for 
reaction with myosin heavy chain extracted from muscles at 
different stages of development. McAb F59 reacted with fast 
myosin heavy chain taken from the PM of ED 8, 12, 16, 2- 
wk post-hatching, and adult animals. Similarly, McAb's $58 
and $46 reacted with slow myosin heavy chain from ED 8 
thigh muscle and ED 16, 2-wk post-hatching, and adult ALD 
(35, 36, and Miller, J. B., and F. E. Stockdale, unpublished 
observations). These McAb's reacted, therefore, with fast or 
slow myosin heavy chain epitopes that were expressed from 
mid-embryonic development through the adult. The McAb's 
described here, therefore, recognize myosin heavy chains that 
belong to either a fast or slow class, both of which are found 
at all developmental ages studied (35, 36). 

It is not yet known how many isoforms of the myosin heavy 
chain are expressed in striated muscle during the life of the 
chicken. This study and others (1, 4, 6, 35, 36), however, 
suggest that expression of myosin heavy chain isoforms occurs 
within the fast and slow classes distinguished by reactivity 
with McAb's F59, $58, or $46, by relative mobility on 5% 
SDS gels, and by immunohistochemical localization in em- 
bryonic and adult tissue. Reactivity with a specific McAb and 
characterization by electrophoresis can, therefore, confirm if 
a myosin heavy chain is in these fast or slow classes but 
cannot tell which isoform within the fast or slow class is 
present. In the discussion that follows, designation of a myosin 
heavy chain as fast or slow should be understood to mean 
specifically that the myosin has a particular electrophoretic 
mobility and immunological reactivity that could be shared 
by other isoforms within the class. 

Myosin Heavy Chain Isoforms in PM Cultures 
The class of myosin heavy chain isoforms found in cultures 

of PM cells depended on the age of the donor of the myoblasts. 
Myoblasts were isolated from ED 5, 6, 8, and 12 PM and 
cultured for 6 d to allow myotubes to form. Myosin was then 
extracted from the cultures and compared by immunoblotting 
with myosin extracted from adult PM or adult ALD. As 
expected from earlier work (7, 37), only a fast isoform of 
myosin heavy chain, as demonstrated by reaction with McAb 
F59, was found in cultures of ED 8 or older PM myotubes 
(Fig. 2). Surprisingly, however, both slow and fast isoforms, 
as demonstrated by reaction with McAb's $58 and F59, were 
synthesized in cultures of ED 5-6 PM myotubes. The slow 
and fast isoforms found in the cultured myotubes had relative 
molecular weights in 5% SDS PAGE that were indistinguish- 
able from those of the slow and fast myosin heavy chain 
isoforms found in adult muscle. 

The amount of slow myosin heavy chain found in ED 5-6 
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PM cultures was much less than the amount of the fast 
isoform. Myosin was extracted from cultures 6 d after plating 
myoblasts from 6-d PM and quantitated with a dot blot assay 
using electrophoretically purified fast and slow adult myosin 
as standards. In one measurement, the cultures contained 0.5 
t~g slow myosin heavy chain and 3 #g fast heavy chain per 
100-mm dish. In four further such measurements, the amount 
of myosin with slow heavy chain epitopes was 10-20% of the 
amount of fast myosin heavy chain in ED 5-6 cultures. This 
assay did not detect slow myosin heavy chain in cultures of 
ED 8 or older PM. 

Immunocytochemistry of Myotubes in Culture 
Myoblasts from ED 5-6 PM formed a heterogeneous pop- 

ulation of myotubes in culture, but only a single population 
of myotubes was found when myoblasts were cultured from 
ED 8 or older muscle. Myoblasts were cultured for 6 d to 
allow myotube formation. The cultures were fixed and incu- 

FIGURE 2 Detection of fastand slow 
classes of myosin heavy chain in my- 
otube cultures. Myoblasts were taken 
from ED 5, 6, 8, and 12 PM and 
cultured for 6 d. Myosin was ex- 
tracted from the cultures and ana- 
lyzed by SDS PAGE on 5% gels and 
by immunoblotting. Duplicate gels 

were run and nitrocellulose transfers were reacted with McAb $58 
(a) or F59 (b), and McAb binding was visualized with a glucose 
oxidase-linked system. As references, fast myosin heavy chain from 
adult PM was used in lane 1, and slow myosin heavy chain from 
adult ALD was used in lane 2. Myosin heavy chain from cultures of 
ED5 (lane 3), ED 6 (lane 4), ED 8 (lane 5), and ED 12 (lane 6) PM 
were compared with the reference heavy chains. Approximately 1 
~g of myosin was analyzed in each lane, but 4 ~g myosin was used 
in lanes 3-6 of a. 

bated either with McAb F59 or $58, and the antibody binding 
sites were visualized with a horseradish peroxidase-linked 
detection system (Fig. 3). Between 4 and 8% of the myotubes 
formed in cultures from ED 5 or 6 breast muscle myoblasts 
reacted with McAb's specific for the slow class of myosin 
heavy chain, and a McAb specific for the fast class of myosin 
heavy chain bound to >90% of the identifiable myotubes in 
parallel cultures (see below). Only myotubes that contained 
fast heavy chain were detected in cultures from ED 8 or 12 
breast muscle. Thus, just as slow myosin heavy chain 
amounted to a small percentage of the fast isoform, the 
number of myotubes that contained slow myosin was a small 
percentage of the number that contained fast myosin. 

To determine the stability and characteristics of the my- 
otubes that contained fast or slow isoforms we further inves- 
tigated the novel observations that a slow myosin heavy chain 
was synthesized and that biochemically distinct myotubes co- 
existed in cultures of ED 5-6 PM. First, as shown in Table I, 
we found that the numbers of myotubes containing slow or 
fast myosin increased severalfold during the initial 3-4 d of 
culture and then remained constant for 7 d more. Multinu- 
cleated myotubes appeared from day 2 onward and increased 
to 65-75% of the myotubes on day 6 (see below). Myotubes 
that contained the two heavy chain classes, therefore, devel- 
oped in culture and did not simply result from fibers that 
were differentiated in the animal and had survived in culture. 
The results in Table I also demonstrate that the cultures 
developed similarly in fresh and conditioned medium and 
that the myotubes that reacted with McAb's specific to the 
slow class of myosin heavy chain amounted to a relatively 
constant 4-8% of the myotubes that reacted with McAb's to 
the fast class. When cultures were reacted simultaneously with 
both $58 and F59, all multinucleated cells were stained. 

Myotubes in cultures of ED 5-6 PM that contained the 
slow class of heavy chain were not markedly different in size 

FIGURE 3 Localization of fast and slow classes of myosin heavy chain in cultured myotubes. Myoblasts were taken from ED 5 (a 
and e), ED 6 (b and f), ED 8 (c and g), and ED 12 (d and h) pectoral muscle and cultured for 6 d to allow myotube formation. 
The cultures were fixed and incubated with either McAb $58 (a-d) or McAb F59 (e-h). McAb binding was visualized with the 
horseradish peroxidase-linked system described in Materials and Methods. 1 cm = 200 pm. x 50. 
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TABLE I. Effects of Medium and Time in Culture on the Number of 
Muscle Fibers Stained with McAb's Specific to the Fast and Slow 
Classes of Myosin Heavy Chain 

No. of stained fibers/ 
cm 2 

In condi-  
Source of  myo- Days in M c A b  In fresh t ioned me- 

blasts culture* probe medium dium 

ED 6 PM 1 $58 8 7 
F59 203 156 

2 $58 10 12 
F59 333 292 

3 $58 23 30 
F59 695 582 

4 $46 48 45 
$58 58 51 
F59 882 1,070 

6 $46 52 42 
$58 60 48 
F59 1,033 1,134 

8 $46 42 38 
$58 73 5O 
F59 1,101 1,008 

11 $46 36 54 
$58 49 48 
F59 560 844 

* Parallel cultures of myoblasts were plated at an initial density of 2.5 x 104 
cells/cm 2 in either fresh medium or conditioned medium. Cultures were 
fixed on the indicated day, McAb binding was visualized with a horseradish 
peroxidase-linked system, and stained cells were counted. Cultures were 
treated with cytosine arabinoside on days 3-5. Cells stained on day 1 were 
95% mononucleated and 5% binudeated. No myotubes with more than 
two nuclei were observed until day 2. 

or shape from myotubes with the fast class of heavy chain. 
The nuclei within myotubes were enumerated in 6-d-old 
cultures stained with the two antibodies. The average number 
of nuclei was 2.6 (range 1-9, n = 135) in myotubes containing 
slow heavy chain and 3.4 (range 1-16, n = 177) in myotubes 
containing fast heavy chain. This difference was entirely due 
to a small number of fast heavy chain-containing myotubes 
with >10 nuclei. Other than this tendency for the larger 
myotubes to contain fast heavy chain, the different types of 
myotubes appeared identical. Myotubes in ED 5-6 PM cul- 
tures that stained with either the fast or slow class of heavy 
chain-specific antibody were often mononucleated (25 to 
35%) or binucleated (30 to 40%). In contrast, myotubes 
formed in cultures from ED 9 or older PM cultures were 
longer and contained more nuclei. The myotubes in a 6-d- 
old culture of ED 12 myoblasts, for instance, had an average 
of 23.4 nuclei (range 3-81, n = 51), and mononucleated or 
binucleated cells that contained myosin were rare (see Fig. 3). 
Thus, the appearance in the PM of myoblasts that formed 
long, highly multinucleated myotubes in culture occurred at 
roughly the same time as the disappearance of myoblasts that 
formed myotubes containing the slow class of myosin heavy 
chain. 

Myoblasts from different sources are known to fuse with 
each other (38), and muscle-specific protein expression is 
often altered in artificially induced cell hybrids (39-41). 
Therefore, we investigated whether myotubes that contained 
the slow class of myosin heavy chain would still appear if 
myoblasts taken from ED 6 were mixed and cultured with 
myoblasts from ED 12 PM. In fact, myotubes that had slow 

FIGURE 4 Myotubes containing the slow class of myosin heavy 
chain in mixed cultures of myoblasts from donors of different age. 
Myoblasts were taken from ED 6 and 12 PM, mixed, plated at 104 
of each cell type/cm 2, and cultured for 6 d to allow myotube 
formation. The cultures were fixed and incubated with McAb $58. 
Antibody binding was visualized as in Fig. 3. Bar, 100 pm. x 100. 

heavy chain did appear in such mixed cultures (Fig. 4). A 
constant number (104 cells/cm 2) of cells from ED 6 PM was 
mixed with either an equal number or one-tenth the number 
of ED 12 PM cells, and the mixed cells were cultured for 6 d. 
The number of myotubes that contained slow heavy chain 
was no different in mixed cultures than in unmixed control 
cultures, which suggested that the two groups of myoblasts do 
not fuse with each other. An average of 28.4 myotubes (range 
23-36, n = 7) that contained slow myosin heavy chain was 
found in each 18-mm dish initially seeded with ED 6 PM 
myoblasts. In the mixed cultures, an average of 30.2 (range 
27-34, n = 14) myotubes that contained slow myosin heavy 
chain was found. No myotubes that contained slow myosin 
heavy chain were found in unmixed ED 12 PM cultures. The 
only major difference between the mixed and the pure ED 6 
PM cultures was the presence of the very long myotubes 
characteristic of ED 12 PM cultures. The generally small 
myotubes (from one to five nuclei) that contained the slow 
class of heavy chain were often side by side with these larger, 
unstained myotubes. 

To determine if fast and slow classes of myosin heavy chains 
were expressed in separate myotubes or if mixed myotubes 
appeared, we observed ED 6 cultures with double-label im- 
munofluorescence. These observations showed that three 
classes of myotubes co-existed in cultures of ED 6 PM. 
Because all of our McAb's were derived from mice, these 
observations were performed with biotinylated McAb's F59 
and $46 and fluorescein- or rhodamine-labeled avidin as 
described in Materials and Methods. As shown in Fig. 5, 
myotubes were observed that labeled with McAb's specific 
only to the slow class of heavy chain (a and b), only to the 
fast class of heavy chain (e and f) ,  or to both classes of heavy 
chain (c and d). Both McAb's revealed striations in some 
myotubes, which indicated that both isoforms could be assem- 
bled into sarcomeres. As expected, a large majority (~95%) 
of the m yotubes contained only fast heavy chain. Of the - 5  % 
of the myotubes that contained slow heavy chain, those that 
contained only slow heavy chain amounted to 10, 26, and 
50% of the total slow heavy chain-containing myotubes in 
three separate experiments (n = 50 in each case), whereas 
mixed myotubes that contained both classes of heavy chain 
comprised the remainder of the slow heavy chain-containing 
myotubes. 
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FIGURE 5 Doubleimmunofluorescent 
detection of the fast and slow classes 
of myosin heavy chain in cultured my- 
otubes. Myoblasts from ED 6 PM were 
cultured for 6 d to allow myotube for- 
mation. The cultures were fixed and 
incubated sequentially with biotiny- 
fated McAb $58, fluorescein-conlu- 
gated avidin, biotin, biotinylated McAb 
F59, and rhodamine-conjugated avi- 
din, as described in Materials and 
Methods. Fluorescein fluorescence, 
representing the presence of the slow 
class of myosin heavy chain, is shown 
in a, c, and e. Rhodamine fluorescence 
of the same fields, representing the 
presence of the fast class of myosin 
heavy chain, is shown in b, d, and f. 
Bar, 50 ~m. x 200. 

DISCUSSION 

Several unexpected results arose from our investigation of 
myosin heavy chain expression in cultured myotubes. The 
first was that myosin heavy chain of the slow class was 
synthesized in cultures of ED 5-6 PM cells. In previous studies 
of cultured myotubes formed from later myoblasts, only the 
fast "embryonic" isoform of myosin heavy chain was detected 
(7, 37). An important observation in these studies is that a 
slow class of myosin heavy chain was expressed in myotubes 
in cultures for at least 11 d. This result shows that innervation 
is not necessarily required for the initiation of synthesis of the 
slow class of myosin heavy chain, and that polyinnervation is 
not required for continued synthesis. Also, a sizable portion 
of the cultured myotubes synthesized both a fast and a slow 
class of myosin. In this respect, the cultures are like muscles 
developing in vivo, where it appears that mixed fibers form 
in the absence of innervation (1, 36, 42, 43). 

Another unexpected finding of this work was that three 
biochemically distinct populations of myotubes co-existed in 
cultures of ED 5-6 pectoral cells. To the extent that differ- 
ences among myotubes reflect differences among the myo- 
blasts that form them, this result suggests that three distinct 
populations of myoblasts exist in the early developing PM. If 
so, at least two of the three early myoblast populations must 
disappear after mid-embryonic development, because a slow 
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class of heavy chain was not found in myotubes from cultures 
derived from ED 8 or older pectoral myoblasts. Alternatively, 
all three early populations of myoblasts could disappear to be 
replaced by a new population. The dramatic morphological 
difference between the small myotubes formed from ED 5-6 
myoblasts and the large myotubes formed from ED 9 or older 
myoblasts supports such an idea. 

It is generally thought that three sequential periods of fast 
myosin heavy chain expression occur during the development 
of avian PM (6, 9). Thus, three different fast myosin heavy 
chain isoforms, termed embryonic, neonatal, and adult, are 
synthesized during these periods. The results presented here 
and our recent finding that early embryonic muscles in vivo 
contain slow as well as fast myosin heavy chain (35, 36) 
indicate that the "embryonic" isoform would be more appro- 
priately called the fetal form because it is now clear that a 
fourth period of heavy chain expression precedes the other 
three. It is during this "embryonic period" (before 7-8 d of 
development), before completion of morphogenesis, that slow 
and fast heavy chain isoforms are co-expressed in developing 
muscle and in cultured myotubes made from these muscles. 
Whether the isoforms expressed in vivo in this embryonic 
period are structurally identical to the later isoforms or if the 
isoforms expressed in cultures of early and late myoblasts are 
the same remains to be determined. 

Recent findings of Sweeney et al. (44) are consistent with 



the idea of an embryonic period of heavy chain expression. 
By immunohistochemistry alone, they find that myosin with 
cardiac myosin heavy chain epitopes is expressed in skeletal 
muscle during the embryonic period but disappears by late 
embryonic or fetal development. However, this cardiac-like 
heavy chain did not react with antibodies to either adult fast 
or slow myosin heavy chain. This observation is difficult to 
reconcile with the recent observation that the cardiac heavy 
chain, at least in mammals, appears by molecular genetic 
analysis to be identical to the adult slow heavy chain (45, 46) 
and with our finding that a monoclonal antibody that reacted 
with slow myosin heavy chain of  the adult also reacted with 
slow myosin heavy chain in the embryo. Experiments are 
needed to investigate the biochemical structures of  the fast, 
slow, and cardiac heavy chains expressed in early skeletal 
muscle development. 

Myoblasts in the developing limb have been classified as 
"early" or "late" by Hauschka, Bonner, and colleagues (47- 
49). This classification is based on the finding that myoblasts 
from early (e.g., ED 5-6) and late (e.g., ED 10-12) embryonic 
limbs form muscle colonies of  different morphology and have 
different medium requirements for differentiation. When 
cloned, the early population of myoblasts forms small my- 
otubes much like those we saw in ED 5-6 pectoral cultures. 
It is highly likely that the fast, slow, and mixed myosin 
containing myotubes that we found in ED 5-6 PM cultures 
were all formed from the early myoblast type defined by 
White et al. (48). Because myogenesis of  early myoblasts in 
mass cell culture has not been as well studied as in clonal 
cultures, it is not yet clear how to interpret the large number 
of  mononucleated "myotubes" that we found in such cultures. 
It is well known that myoblasts can differentiate without 
fusing. Because only 5-10% of the cells taken from ED 5-6 
muscle are myogenic, the intermyoblast contacts required for 
fusion may be limited. Thus, small myotubes would be more 
numerous in ED 5-6 cultures than in cultures of  cells taken 
from ED 12 muscles where >90% of  the cells are myogenic. 

Besides showing that the early myoblasts form a heteroge- 
neous population of  myotubes, our results suggest that early 
and late myoblasts form myotubes independently of each 
other. This conclusion follows from the experiment in which 
the number of myotubes containing the slow class of  myosin 
heavy chain was the same in co-cultures of  early and late 
myoblasts as in cultures of  early myoblasts alone. This obser- 
vation implies that there are recognition events between my- 
oblasts that may permit the selective formation of distinctive 
myotube types. 

We postulate that the three types of myotubes that form in 
cell cultures from early developing muscle are those that give 
rise to the primary fibers of  developing muscle in vivo. Early 
embryonic muscle contains rudimentary myotubes called pri- 
mary muscle fibers around which later secondary muscle 
fibers form (50, 51). The primary generation of fibers are of 
at least two types in the bird, fast and fast/slow (35, 36), 
which correspond to the two primary fiber types recognized 
by ATPase staining (43, 52, 53). As in cell culture, different 
primary fiber types form in the embryo independently of  
innervation (52, 53). We think that fiber development in cell 
culture mimics that in vivo, which indicates that the different 
primary muscle fiber types in the early embryo emerge as 
different muscle fiber types rather than as a single type upon 
which environmental factors such as innervation impose dif- 
ferences. 
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