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ABSTRACT The cell substrate attachment (CSAT) antigen is an integral membrane glycoprotein 
complex that participates in the adhesion of cells to extracellular molecules. The CSAT 
monoclonal antibody, directed against this complex, inhibited adhesion of cardiac and tendon 
fibroblasts and ske[etat myoblasts to both laminin and fibronectin, thus implicating the CSAT 
antigen in adhesion to these extracellular molecules. 

Equilibrium gel filtration was used to explore the hypothesis that the CSAT antigen functions 
as a cell surface receptor for both laminin and fibronectin. In this technique, designed for 
rapidly exchanging equilibria, the gel filtration column is pre-equilibrated with extracellular 
ligand to ensure receptor occupancy during its journey through the column. Both laminin and 
fibronectin formed complexes with the CSAT antigen. The association with laminin was 
inhibited by the CSAT monoclonal antibody; the associations with both fibronectin and 
laminin were inhibited by synthetic peptides containing the fibronectin cell-binding sequence. 
Estimates of the dissociation constants by equilibrium gel filtration agree well with those 
available from other measurements. This suggests that these associations are biologically 
significant. SDS PAGE showed that all three glycoproteins comprising the CSAT antigen were 
present in the antigen-ligand complexes. Gel filtration and velocity sedimentation were used 
to show that the three bands comprise an oligomeric complex, which provides an explanation 
for their functional association. The inhibition of adhesion by the CSAT monoclonal antibody 
and the association of the purified antigen with extracellular ligands are interpreted as strongly 
implicating the CSAT antigen as a receptor for both fibronectin and laminin and perhaps for 
other extracellular molecules as well. 

The interaction of cells with components of the extracellular 
matrix plays a major role in determining cell morphology, 
cell migration, and tissue maintenance (1). Putative sites of 
cell-matrix contact have been identified and studied using 
various microscopic techniques. In fibroblasts they occur in 
regions where the cellular cytoskeleton and associated com- 
ponents interact with the cell surface (2-4). Integral mem- 
brane proteins are hypothesized to be present in these sites 
and to serve as transmembrane links connecting cytoskeletal 
and the extracellular matrix components. These transmem- 
brane proteins would then serve as dual receptors for cyto- 
skeletal and extracellular matrix components. 

We have identified a candidate for such a cell surface 
molecule using an adhesion and morphology perturbing cell 
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substrate attachment (CSAT) ~ monoclonal antibody (5). This 
monoclonal antibody alters the adhesion of several different 
cell types in culture. The nature and degree of perturbation 
by the CSAT monoclonal antibody is characteristic for differ- 
ent cell types (6). The antigen to which the antibody is directed 
has been purified by immunoaffinity chromatography and 
partially characterized (7). It is a complex of three distinct 
integral membrane glycoproteins that migrate in the molec- 

Abbreviations used in this paper: CMF-PBS, calcium- and magne- 
sium-free phosphate-buffered saline; CSAT, cell substrate attachment; 
DME, Dulbecco's modified Eagle's medium; RCF, relative centrifugal 
force; TNC, 0.01 M Tris-acetic acid, 0.5% Nonidet P-40, 0.5 mM 
CaC12, 0.15 M NaC1, pH 8.0. 
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ular weight range of 140,000 on SDS PAGE. The antigen on 
fibroblasts has been localized using immunofluorescence to 
regions along portions of stress fibers and in regions surround- 
ing focal contacts as identified by vinculin staining (8). Similar 
observations and conclusions have been made using another 
monoclonal antibody, JG-22, which was isolated independ- 
ently and is directed against the same protein complex (9- 
12). 

In this paper, we explore further the role of the CSAT 
antigen in adhesion to extracellular matrix molecules by 
addressing three issues: (a) the extracellular matrix molecules 
with which adhesions involving the CSAT antigen interact; 
(b) the role of the CSAT antigen in adhesion to these extra- 
cellular matrix molecules; and (c) the origin of the character- 
istic responses of different cells to the CSAT monoclonal 
antibody. We have used three cell types in these studies- 
tendon fibroblasts, skeletal myoblasts, and cardiac fibroblasts. 
Cell cultures of the first two cell types are responsive to the 
CSAT monoclonal antibody, whereas cultures of the cardiac 
fibroblasts are not (6). The adhesion to two well characterized 
and readily available extracellular molecules, fibronectin and 
laminin, were studied (13-17). We report that the CSAT 
antigen participates in adhesion to both fibronectin and lam- 
inin. We also report that the purified antigen is an oligomeric 
complex that binds to both of these extracellular molecules. 
These data along with previous observations provides very 
strong evidence that the CSAT antigen functions as a receptor 
for both fibronectin and laminin and perhaps for other extra- 
cellular matrix molecules as well. They are also consistent 
with the suggestion that the antigen functions as an extracel- 
lular matrix-cytoskeleton transmembrane link. 

MATERIALS AND METHODS 

Avian Cell Cultures: Skeletal myoblasts were explanted, dissociated, 
and cultured as described previously (6). The dissociated pectoral muscle cells 
were plated onto Falcon tissue culture dishes (Falcon Labware, Oxnard, CA) 
coated with 0.1% gelatin (BBL Microbiology Systems, Cockeysville, MD) at a 
density of 3.5-4.5 × l0 ~ cells/35-mm dish. The cells were grown in calcium- 
free Dulbecco's modified Eagle's medium (DME) containing 10% horse serum, 
2% chick embryo extract or 40 ug/ml conalbumin (Sigma Chemical Co., St. 
Louis, MO), and 0.2-0.3 mM EGTA to prevent fusion. 

Tendon fibroblasts were obtained from I5-18-d embryos as described pre- 
viously (6). The isolated tendons were incubated for 40 rain at 37°C in 1 mg/ 
ml collagenase (CLS II, Worthington Biochemicals, Freehold, NJ) and 0.25% 
trypsin (Gibco, Grand Island, NY) in calcium- and magnesium-free phosphate- 
buffered saline (CMF-PBS) followed by pipetting. The dissociated cells were 
washed and plated onto 100-mm Falcon tissue culture dishes (Falcon Labware) 
at a density of 2-5 x 105 cells/plate. The ceils were passaged at least two times, 
seeded in tissue culture dishes at a density of 2-5 x 10 ~ cells/plate, and grown 
in DME containing 10% fetal calf serum. Cells passaged more than 10 times 
were discarded. 

Cardiac fibroblasts were isolated from 14-d embryo ventricles after dissocia- 
tion by 2.5 mg/ml collagenase and pipetting (6). The cells were plated onto 
Falcon tissue culture dishes (3 ventricles per 100-ram dish) in DME containing 
10% fetal calf serum. After 1 h the nonadherent cells were decanted and fresh 
medium added. The cells were pass,aged at least three times before use, seeded 
at a density of 2-5 x l0 ~ ceUs/100-mm plate, and grown in DME containing 
10% fetal calf serum. Cells passaged more than I0 times were discarded. 

Cell Substratum Adhesion Assays: 2-d cultures prepared as de- 
scribed above at a density of 75-85% of confluency were washed twice with 
CMF-PBS containing 0.02% EDTA and incubated for 5 min (tendon fibrohlasts 
and skeletal myoblasts) or 30 min (cardiac fihroblasts) in 0.02% EDTA in 
CMF-HEPES Hanks' buffered balanced salt solution. The rounded cells were 
harvested by gentle pipetting using a fire polished Pasteur pipette and centri- 
fuged at 160 g for 3-4 min. The cells were resuspended into DME containing 
2% bovine serum albumin (BSA; Sigma Chemical Co.) and counted. Viability 
was estimated using 0.4% trypan blue. 1.25 x l0 ~ cells/well were added to each 
laminin or fibronectin-coated Linbro tissue culture or nontissue culture mul- 
tiwell plate (No. 76-000-04 or 76-000-05, Flow Laboratories, McLean, VA) and 

the final volume brought to 0.5 ml. The CSAT monoclonal antibody was added 
either at the time of plating or after cell adhesion and spreading (30-180 min). 
For experiments using fibronectin peptides, spot cultures of 10 ~tl containing 
3-6 x 10 ~ cells/ml were plated onto multiwells coated as above. These were 
gently flooded with 0.5 ml of medium for optical observation. 

For trypsinization experiments cultures were incubated with 25 ~*g/ml 
cycloheximide (Sigma Chemical Co.) for 2 h before harvest; cycloheximide was 
present in all subsequent solutions. (This procedure was also used for cyclohex- 
imide-treated cells.) The cells were washed two times in HEPES Hanks' buffer, 
and 4 ml of trypsin (type Ill; Sigma Chemical Co.) at a concentration of I mr/  
ml in HEPES Hanks' was added. The cultures were incubated for 30 min at 
37°C. The cells were then harvested by pipetting, 8 mg soybean trypsin inhibitor 
(type Ils, Sigma Chemical Co.) added, and the cells centrifuged for 3-4 min at 
180 g. The cells were washed in DME containing soybean trypsin inhibitor and 
finally resuspended in DME containing 2% BSA for assays described above. 

A more quantitative assay of cell substratum adhesion, based on that 
described by McClay et al. (18), was also used. 1.8 ml of a cell suspension 
containing 9 x 104 cells/ml in DME with 2% BSA and 20 mM HEPES were 
aliquoted into Linbro tissue culture vinyl or nontissue culture multiwells (No. 
76-000-04 and No. 76-000-05, Flow Laboratories). The wells were sealed with 
plastic cell cover sheets (No. 76-401-05, Flow Laboratories) and centrifuged at 
66 g for 10 rain at 4"C. The cells were then incubated for 30 min (tendon 
fibroblasts and skeletal myoblasts) or 45 min (cardiac fibroblasts) at 37°C. The 
wells were inverted and centrifuged again at t 3 g or 66 g or just allowed to sit 
inverted (1 g) for I0 rain at 4"C. The cover sheets were cut open with a scalpel, 
and the supernatant gently decanted. The wells were then placed on a warm 
plate at 37"C, and the adherent cells were removed by trypsinization and then 
counted. The data are expressed as a percent of the total number of cells 
initially added to the well. 

Wells were coated either with laminin, derived from an Englebreth Holm 
Swarm (EHS) sarcoma (Bethesda Research Laboratories, Gaithersberg, MD; 
Collaborative Research, Waltham MA; or a gift from Hynda Kleinman), human 
plasma fibronectin (Collaborative Research; Bethesda Research Laboratories; 
or a gift from Jeremy Paul and Richard Hynes), poly-L-lysine (22,000 tool wt; 
Sigma Chemical Co.), type I collagen (Collaborative Research), type IV collagen 
(a gift of Hynda Kleinman), or vitronectin (Calbiocbem-Behring Corp., La 
Julia, CA). l0 #l from a stock solution of laminin or fibronectin at a concen- 
tration of I mg/ml in CAPS buffer (cyclohexylaminopropane sulfonic acid, pH 
I l; Sigma Chemical Co.) was added to each well and diluted to a total volume 
of 0.5 ml with CMF-PBS. In later experiments the laminin stock was in l0 
mM Tris-HCl buffer, pH 7.2. The wells were incubated for 2 h, or overnight at 
37"C, aspirated, and washed twice with CMF-PBS. Multiwells were coated with 
other substrates by adding appropriate stock solutions to the wells, incubating 
for 2-4 h at 37*C, and rinsing with medium or PBS. The poly-L-lysine was 
used at a concentration of 18 ~tg/well from a stock solution at 35 ug/ml in 
borate buffer pH 8.0; types I and IV collagen were used at a concentration of 
12 ~g/well from a stock solution at 0.5 mg/ml in 0.1 N acetic acid; and 
vitronectin was used at a concentration of 2.5-l0 ug/well from a stock solution 
at 1 mg/ml in PBS. The collagen solutions were first spread evenly and then 
allowed to dry on the wells. 

Antigen Isolation: [3SS]Methionine labeling of cell cultures and the 
subsequent CSAT antigen purification and analysis by SDS PAGE were per- 
formed as described previously except that the acetone precipitation step was 
omitted (5-7). Unlabeled antigen was prepared as described for the labeled 
antigen from decapitated and eviscerated chick embryos. 

Equilibrium Gel Filtration Assay for Macromolecular Asso- 
ciations: Gel filtration was routinely performed on an Ultrogel AcA22 
(LKB, Gaithersburg, MD) column with a bed volume of 0.2 x 30 cm. 60-ul 
fractions were collected at a flow rate of 0.7 ml/h. The void and included 
volumes of this column were 0.54 and 1.5 ml, respectively. For fractionation 
of larger volumes a l x 12-cm bed volume was used which had void and 
included volumes of 3.5 and 13 ml, respectively, l-ml fractions were collected 
at a flow rate of 5 ml/h. Ultrogel AeA22 has a linear fractionation range of 
100,000-1,200,000 D. 

When interactions between either fibronectin or laminin with the antigen 
were studied, a void volume equivalent of ligand in 0.01 M Tris-HAc, 0.5% 
Nonidet P-40, 0.15 M NaCI, 0.5 mM CaCl2 at pH 8 (TNC) was first run into 
the column. The mixture of 35S-labeled antigen and ligand was then added to 
the column followed by a void volume equivalent of ligand in TNC. Two 
specific activities of antigen were used: 2.2 x l0 s mCi/mmol and 43 mCi/ 
mmoL The column was eluted further with TNC alone. Thus throughout its 
journey in the column the antigen saw a roughly constant, high concentration 
ofligand. This was done to ensure continued receptor occupancy in the case of 
rapid ligand-receptor equilibria. In concept, this technique is reminiscent of 
that described by Hummel and Dryer (19). However there are significant and 
noteworthy differences. 
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Antigen affinities to the CSAT antibody, laminin, or fibronectin were 
estimated using linearizations of the following expression: 

L ( I  - 0 )  K¢ 

where 0 is the fraction of occupied receptors, L is the ligand concentration, and 
Kd is the dissociation constant of the antigen-ligand complex. 

The synthetic tetramer (arg-gly-asp-ser), hexamer (gly-arg-gly-glu-ser-pro), 
and decamer (arg-gly-asp-ser-pro-ala-ser-ser-lys-pro) were obtained from Pen- 
insula Laboratories, Inc., Belmont, CA; the synthetic nonamer (arg-lys-lys-thr- 
gly-gin-glu-ala-cys) was a gift from Jeremy Paul and Richard Hynes. The 
affinities of the nonamer and tetramer for the antigen were estimated from 
their inhibition of fibronectin or laminin binding using the following expression: 

IGO1 
Ki 

L - OL - oKa'  

where I is the peptide concentration, and Ki is the inhibition (dissociation) 
constant for the peptide-antigen complex. 

For antigen and laminin binding, the fractional occupancy was estimated 
by integrating the areas under the peaks in the elution profiles representing the 
antigen and antigen-antibody complexes, respectively. The fractional occu- 
pancy for the fibronectin interaction was estimated by decomposing the peak 
in the elution profile into components arising from the antigen-fibronectin 
complex (peak shoulder) and the antigen alone and by estimating the fractional 
peak shift. The binding constants derived from the fibronectin data, due to 
their complex nature, provide only an order of magnitude estimate. The 
inhibition constants for the peptides were determined by measuring the fraction 
of occupied receptors in the presence of a constant 400 #g/ml of laminin or 
fibronectin and varying concentrations of the peptide. The estimates of recep- 
tor-ligand equilibria provided by this method should only be considered as 
first approximations. Possible receptor and ligand aggregation, micellar inter- 
actions of the antigen, and details of the column elution phenomena were 
ignored in making them. 

Determination of Hydrodynamic Parameters: Sedimentation 
of the CSAT antigen in sucrose gradients were performed and analyzed as 
described elsewhere (20-22). Linear density gradients from 5-20% sucrose were 
poured into 5-ml cellulose nitrate ultracentrifuge tubes. The sucrose solutions 
were buffered in TNC (without NaCl) at pH 8. The gradients were overlaid 
with 100 #l of TNC containing labeled antigen and calibrating enzymes (#- 
galactosidase 15.93 S, 25 #g/ml; catalase 11.3 S, 100 #g/ml; fumarase 9.09 S, 
50 #g/ml; lactic dehydrogenase 6.95 S, 30 #g/ml; and cytochrome c 1.71 S, 2 
mg/ml) (Sigma Chemical Co.). The tubes were spun in a Beckman SW 60 
rotor (Beckman Instruments, Inc., Palo Alto, CA) at 45,000 g for 9 h at 4"C. 
Fractions containing roughly 150 ul were collected. The calibrating enzymes 

were assayed spectrophotometricaUy. The sedimentation coefficient for the 
antigen was determined graphically by comparing it with that of calibrating 
enzymes or by use of the sedimentation equation. 

The Stokes radius for the antigen was determined by comparing its elution 
profile from an Ultrogel AcA22 (LKB) column with that of calibrating enzymes: 
thyroglobin (8.5 nm), ferritin (6.1 nm), catalase (5.22 nm), and aldolase (4.81 
nm) (High Molecular Weight Standard Kit, Pharmacia Fine Chemicals, Pisca- 
taway, N J). The labeled antigen and calibrating enzymes were run in TNC 
buffer (without NaC1) at a flow rate of 5 ml/h. (The presence or absence of 
NaCI did not affect the elution profiles.) 

The molecular weight and frictional coefficient for the detergent-antigen 
complex was calculated from the above gel filtration and sedimentation data 
as described by Clarke (20). The detergent contribution to the molecular weight 
was estimated using a value of 0.948 g/ml and 0.735 g/ml for the partial molar 
volumes of the detergent (23) and antigen (20), respectively. 

RESU LTS 

Effect of CSAF Monoclonal Antibody on Spread 
Cells Adhering to Defined Substrata 

When chick embryo tendon or cardiac fibroblasts from cell 
cultures were removed with EDTA and added to tissue culture 
dishes coated with either fibronectin or laminin, the majority 
of cells spread and assumed fibroblast-like morphologies. On 
fibronectin 90% of the tendon fibroblasts were spread after 
30 min, whereas the cardiac fibroblasts plated with a lower 
efficiency and required slightly longer times, 40-60 min, to 
spread. The rate of  adhesion of both types of  fibroblasts to 
laminin was slower than to fibronectin by 30-60 min; how- 
ever, by 2 h nearly all of  the attached ceils had spread and 
assumed a fibroblast-like morphology on either substratum. 
The adhesion of skeletal myoblasts to these substrata also was 
investigated. On the former substratum most of  the cells 
assumed a bipolar morphology, whereas on the latter they are 
more fibroblast-like (Fig. 1). Comparable effects for all cell 
types and substrata were obtained using either tissue culture 
or nontissue culture wells. The nontissue culture wells did not 
promote any cell attachment in the absence of added substrate 
material. Uncoated tissue culture wells support only a modest 

FIGURE 1 Effect of CSAT mono- 
clonal ant ibody on adhesion of 
cardiac fibroblasts to laminin and 
fibronectin. Cardiac fibroblasts, 
pretreated for 2 h with 25 #g/ml 
cycloheximide, were plated in cy- 
cloheximide containing serum- 
free DME onto wells (200 mm 2) 
coated with either fibronectin or 
laminin at a density of 1.25 x 10 s 
cells/well. The cells were al lowed 
to adhere and spread for 2 h. The 
CSAT monoclonal ant ibody was 
then added at a concentration of 
40 #g/ml. The cultures were pho- 
tographed 2 h after ant ibody ad- 
dit ion. Bar, 40 ~m. 
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FIGURE 2 Effect of CSAT mono- 
clonal ant ibody on adhesion of 
skeletal myoblasts to laminin and 
f ibronectin. Skeletal myoblasts 
were plated on laminin or f ibro- 
nect in-coated dishes (35 ram) in 
DME containing 10% horse serum 
at a density of 3.5 x 10 s cells/ 
dish. The CSAT monoclonal  anti- 
body (20 #g/ml) was added at the 
t ime of plating. The cultures were 
observed 48 h after plating. Bar, 
40 p.m. 

attachment under the conditions of these assays. The time 
course of this adhesion is considerably slower (two to three 
times) than on wells coated with either fibronectin or laminin. 
Finally when the CSAT monoclonal antibody itself was used 
to coat the wells, cells adhered and spread. This was unique 
among several antibodies tested and suggests that the CSAT 
antibody can serve as an adhesion-promoting ligand. 

Addition of the CSAT monoclonal antibody to tendon 
fibroblasts, allowed first to adhere and spread on laminin for 
1-2 h, induced the rounding of nearly all the cells (Table I). 
In contrast, the CSAT monoclonal antibody added to tendon 
fibroblasts after prior plating on fibronectin caused a retrac- 
tion of their edges and rounding of only 20-30% of the cells. 
The response of the skeletal myoblasts to the CSAT monoclo- 
nal antibody was analogous to that of the tendon fibroblasts. 
Cardiac fibroblasts, on the other hand, when plated and 
allowed to spread on either substratum, were not detectably 
affected by the CSAT monoclonal antibody. Cardiac fibro- 
blasts, first preincubated with cycloheximide (25 ~g/ml for 2 
h), plated onto a laminin coated dish, and allowed to adhere 
and spread for 2 h, could now be rounded and detached by 
addition of the CSAT monoclonal antibody (Fig. 2). This 
suggests that cardiac fibroblasts synthesize molecules that 
mediate adhesions in which the CSAT antigen does partici- 
pate. Tendon and cardiac fibroblasts, allowed to adhere and 
spread on poly-L-lysine for 2 h, were not detached by the 
antibody lending specificity to our results. 

Effect of the CSAT Monoclonal Antibody on 
Initial Adhesive Events 

The observations just presented address the effects of the 
CSAT monoclonal antibody on the adhesion and morphology 
of cells that had already adhered and spread on defined 
substrata. We have also studied the effects of the antibody on 
initial adhesive events that occur before extensive organiza- 
tion of adhesion plaques and the cytoskeletal apparatus. We 

TABLE I. Summary of Effects of CSAT Monoclonal Antibody on Cell 
Adhesion and Morphology on Either Fibronectin or Laminin 

Cell type 

Laminin Fibronectin 

Initial Initial 
adhe- Mor- adhe- Mor- 
sion phology sion phology 

Cardiac fibroblast + - - - 
Cyclohex-cardiac f ibro- + + - - 

blast 
Tryp-cardiac fibroblast NA NA + - 
Tendon fibroblast + + + p 
Cyclohex- tendon fibro- + + + p 

blast 
Tryp- tendon fibroblast NA NA + p 
Skeletal myoblast + + + p 

Morphology, CSAT monoclonal antibody added after ceils have adhered and 
spread for 30-180 rain. Initial adhesion, CSAT monodonal antibody added 
at the time of plating. +, rounded and detached cells when added to spread 
cells and inhibits initial adhesion when added at the time of plating. - ,  no 
detectable effect, p, partial effect; caused a retraction of edges and rounding 
of only some cells when added to spread cells and inhibited adhesion of 
only some cells when added at the time of plating. NA, no adhesion; the 
cells do not adhere under these conditions. Cyclohex-cardiac and cyclohex- 
tendon fibroblast, tendon and cardiac fibroblasts preincubated with 25 pg/ 
ml cycloheximide for 2 h before harvesting. Tryp-cardiac and tryp-tendon 
fibroblast, tendon and cardiac fibroblasts preincubated for 2 h with 25 pgJml 
cycloheximide and then treated with ! mg/ml trypsin for 20-30 rain. Cells 
were plated onto wells in DME containing the CSAT monoclonal antibody 
and incubated for 30-180 min (initial adhesion). The cultures were scored 
visually for the relative fraction of adherent cells. For some experiments the 
cells were allowed to first adhere and spread for 30-180 min (morphology) 
before additions. These cultures were generally scored 60 rain subsequently. 

have developed a quantitative assay, based on that described 
by McClay et al. (18), to measure the relative adhesive strength 
of cells to defined substrata. In this assay cells are centrifuged 
onto the bottom of a well, allowed to incubate, and then the 
wells are inverted, and the weakly adherent cells removed by 
centrifugation. The key variables are the choice of molecules 
used to coat the wells, the incubation time and temperature, 
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and the relative centrifugal force (RCF) used to detach the 
weakly adherent cells. 

The fraction of cells remaining adherent was measured after 
different incubation times using an RCF of 66 g, the highest 
force assayed. The adhesion of tendon and cardiac fibroblasts 
reached a plateau after ~30-45 min and 45-60 min, respec- 
tively, at which time 50-80% of the cells had adhered. For 
both cell types the kinetics of adhesion to either fibronectin 
or laminin were similar; however, fewer cells adhered to 
laminin than to a fibronectin-coated substratum. In general 
fewer cardiac fibroblasts adhered than did tendon fibroblasts. 
This likely reflects the lower plating efficiency and viability of 
the cardiac fibroblasts. 

The fraction of cells remaining adherent after centrifugation 
at three different RCFs, 1 g (1.2 x 10 -7 dynes), 13 g (1.6 x 
10 -6 dynes), and 66 g(8 x 10 -6 dynes), is presented in Fig. 3. 
Adhesion of both tendon and cardiac fibroblasts to fibronectin 
showed a steady decrease in the fraction of adhering cells with 
increasing RCF. The shapes of the curves for laminin, in 
contrast, showed little variation with g-force between 1-13 g 
after which the fraction of cells remaining adherent decreases. 

The effect of the CSAT monoclonal antibody on the adhe- 
sion of both cell types to wells coated with either laminin or 
fibronectin was studied using this assay (Figs. 3 and 4). The 
presence of the CSAT monoclonal antibody at the time of 
plating inhibited the adhesion of the tendon fibroblasts to 
both substrata. Adhesion to laminin was inhibited essentially 
completely (>10-fold) at all RCFs assayed including 1 g, 
whereas adhesion to fibronectin was inhibited only partially 
(2-3-fold) at the same RCFs. In contrast to the effects of the 
CSAT monoclonal antibody on the adhesion of tendon fibro- 
blasts, the antibody inhibited only minimally (<25%) the 
adhesion of the cardiac fibroblasts to fibronectin (Fig. 4). This 
small difference, though within experimental error, was seen 
in all experimental pairs. As described for the adhesion of 
tendon fibroblasts to laminin, the CSAT monoclonal anti- 
body inhibited essentially completely adhesion of cardiac I:A 

cO 

lOO 

80 

60 

40 

20 

B 

i,,_ 
FN FN LM LM 

+ + 
CSAT CSAT 

F=GURE 3 Initial adhesion of 
tendon (A) and cardiac (B) fi- 
broblasts to fibronectin and 
laminin substrata. 48-h cul- 
tures were harvested with 
EDTA and centrifuged onto 
multiwells coated with either 
laminin or fibronectin at a con- 
centration of 6 /~g/cm 2. The 
wells were incubated for 30 
min (tendon fibroblasts) or 45 
rain (cardiac fibroblasts) at 
37°C, the wells were inverted, 
the weakly adherent cells 
were sedimented at 66 g, and 
the remaining cells were 
counted. The percentage of 
cells attached are the number 
of cells remaining adherent di- 
vided by the number of cells 
added to the wells, times 100. 
CSAT monoclonal antibody 
was added at a concentration 
of 20/~g/ml at the time of plat- 
ing. FN, f ibronect in-coated 
wells; LM, laminin-coated 
wells. 
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FIGURE 4 Relative adhesive strength of tendon and cardiac fibro- 
blasts plated on fibronectin (A) and laminin (B). Adhesion was 
assayed as described in the legend to Fig. 3 except that the weakly 
adherent cells were sedimented at either 1 g, 13 g, or 66 g. The 
data are the averages of at least two separate determinations. The 
error bars are omitted for clarity. (@) Tendon fibroblasts; (11) tendon 
fibroblasts with CSAT monoclonal antibody; (O) cardiac fibroblasts; 
(I-1) cardiac fibroblasts with CSAT monoclonal antibody. 

fibroblasts to laminin. When CSAT inhibition experiments 
were done using uncoated wells not treated for tissue culture, 
the fraction of cells remaining on the dish remained at the 
null value seen on these wells without antibody. 

The response to the CSAT monoclonal antibody and the 
force-adhesion data for tendon and cardiac fibroblasts binding 
to laminin are readily interpreted as arising from an essentially 
homogeneous population of cells possessing a single (or at 
least a very dominant), CSAT monoclonal antibody sensitive 
adhesion mechanism for laminin. The adhesion to fibronectin 
appears more complex. The fractional inhibitions of tendon 
fibroblast adhesion, at all RCFs, by the CSAT monoclonal 
antibody suggests heterogeneity in the cell population. Adhe- 
sive heterogeneities among cells in a population could arise 
from different numbers of receptors per cell, variations in 
their interactions, or intrinsic heterogeneity of the cell types 
in the population. In any case our observation that the initial 
adhesion on fibronectin of some cells is inhibited by the 
CSAT monoclonal antibody, e.g., the tendon fibroblasts, 
while the adhesion of others is not, e.g., the cardiac fibroblasts, 
suggests the presence of CSAT sensitive and insensitive adhe- 
sion mechanisms to fibronectin. 

Additional experiments were performed to characterize fur- 
ther the adhesion of these cells. In one the cardiac and tendon 
flbroblasts were pre-incubated for 3-5 h with cycloheximide 
to inhibit protein synthesis; in another, cytochalasin b was 
used to inhibit cell spreading and cytoskeletal organization. 
With either treatment, the effects of the CSAT monoclonal 
antibody on the adhesion of the two cell types to laminin and 
fibronectin remained similar to those just described for cells 
without these treatments. In contrast, pre-incubating the fi- 
broblasts with trypsin altered some adhesive properties. This 
was explored by plating cells, first incubated with cyclohexi- 
mide and subsequently digested with 1 mg/ml trypsin in 
HEPES-Hanks buffer for 20-30 rain (24), onto coated wells, 
incubating the wells for 30-120 rain, gently pipetting to 
remove the nonadherent cells, and scoring the fraction of cells 
remaining on the dish. 2 The adhesion of trypsin-treated car- 

E Skeletal myoblasts were unique in that the CSAT monoclonal 
antibody delayed their attachment to both laminin and fibronectin 
for long periods of time (at least 48 h) even in serum-supplemented 
cultures. 



diac fibroblasts to fibronectin was inhibited by the CSAT 
monoclonal antibody (Table I). In the absence of antibody 
most of the trypsin-treated cells attach and spread after an 
hour in culture. In the presence of antibody, only ~40% 
attach. The CSAT monoclonal antibody did not detectably 
affect trypsin-treated cells that had been allowed to first adhere 
and spread. Neither tendon nor cardiac fibroblast adhered to 
laminin after the cycloheximide plus trypsin treatments. 

The adhesion of these cells to some other substrata was also 
investigated using this assay. The initial adhesion of cardiac 
and tendon fibroblasts to poly-L-lysine was not inhibited by 
the CSAT monoclonal antibody, whereas adhesion of tendon 
fibroblasts to both type I and type IV collagen was inhibited 
completely by the antibody. The antibody partially inhibited 
adhesion to vitronectin. 

Interactions between the Purified CSA T Antigen 
and Extracellular Ligands 

The above observations implicate the CSAT antigen in 
adhesion to both laminin and fibronectin. We have explored 
the possibility that it functions as a receptor for these sub- 
strates by assaying for interactions between the purified anti- 
gen and these putative iigands. Most assays for associations 
of integral membrane components with cytoskeletal or extra- 
cellular components rely on relatively high affinities. Raising 
the effective valency by presenting the protein in liposomes 
or coupled to an inert support is one way to circumvent this 
problem and assay for weak or rapidly exchanging interac- 
tions. Another approach is to use separation techniques that 
can be performed in the continued presence of high concen- 
trations of one of the constituents. This ensures receptor 
occupancy even in the presence of rapid equilibria. We have 
chosen this latter approach using a gel filtration column 
(Ultrogel AcA22) that is preloaded with ligand at the concen- 
tration to be assayed. Thus in this experiment the antigen, as 
it passes through the column, is exposed to a roughly uniform 
ligand concentration. This equilibrium gel filtration method 
also provides estimates of antigen-ligand dissociation con- 
stants from measurements of the fraction of antigen in the 
ligand receptor complex (slow exchange) or the fractional shift 
of the peak representing the complex (fast exchange). 

Fig. 5A shows the elution profile of detergent-solubilized 
antigen. As a positive control, the elution profile of antigen 
in the presence of the CSAT monoclonal antibody is also 
shown. The presence of the antibody produced a shift in the 
elution profile of the antigen toward the void volume. This 
shift is expected from an antigen-antibody complex which 
would have a larger effective Stokes radius than that of the 
antigen alone. The shift did not require pre-equilibration of 
the column with antibody. The elution profiles were studied 
over an antibody concentration range of 0.1-20 #g/ml. A/G 
of 6 x 10 -9 M (Table II) was estimated from linearizations of 
the binding data. This affinity compared well with that mea- 
sured for CSAT monoclonal antibody binding to whole cells 
(6 x 10 -9 M) (5). 

Fig. 5 B shows the effect of pre-equilibrating the column 
with laminin on the elution profile of the CSAT antigen. An 
additional peak that migrates in the void volume appears at 
a laminin concentration of 50/~g/ml. 3 The presence of this 

3 The peak at the void volume was not apparent unless the column 
was pre-loaded with laminin; when the peak fractions were isolated 
and rerun without preloading the column, the complex was no longer 

extra peak reveals an association between the antigen and 
laminin. The fraction of antigen migrating in this region 
increased as the laminin concentration increased and was 
linear, over the concentration range studied, i.e., 25-400 ~g/ 
ml, on Eadie-Hofstee or double reciprocal plots (25). The K~ 
extrapolated from these representations was 2 x 10 -6 M. An 
analysis of the material in the void volume peak using SDS 
PAGE showed the same three bands that are present in the 
original antigen (Fig. 6). Prior incubation of the antigen with 
CSAT antibody blocked the formation of the extra peak in 
the void volume (Fig. 5 C). The CSAT monoclonal antibody 
concentration required for this effect was the same as that 
required to form the antigen-antibody complex as shown in 
Fig. 5A. 

An analogous series of measurements were made using a 
column preloaded with fibronectin rather than laminin. At 
fibronectin concentrations above 50 #g/ml, the dution profile 
of the antigen appeared shifted toward higher excluded vol- 
ume, and a prominent shoulder appeared on the void volume 
side of the peak (Fig. 7A). The presence of this shifted peak 
and shoulder reveals an interaction between the antigen and 
fibronectin. The magnitude of this effect increased over the 
limited fibronectin concentration range studied--100-400 
#g/ml. These data, due to the overlap between the antigen- 
fibronectin complex and the original antigen, provided only 
a very rough estimate of 10 -6 M for the Kd of this interaction. 
SDS PAGE of the material in the shoulder shows the same 
three bands as in the native antigen. The position of this 
shoulder was very similar to that of the antigen-antibody 
complex. This complicates demonstrating that the CSAT 
antibody inhibits this interaction. We have taken another 
approach to ascertaining the significance of this interaction 
by using a tetrapeptide (arg-gly-asp-ser) reported to represent 
the cell binding domain of fibronectin (26, 27). This peptide, 
when included with the fibronectin in the usual protocol, 
inhibited formation of the shoulder assigned to the fibronec- 
tin-antigen complex (Fig. 7 B). The inhibition occurred in the 
concentration range of 10-100 #g/ml. The inhibition data 
were used to estimate a Ki of 10-3-10 -4 M for the tetrapeptide 
inhibition of the fibronectin-antigen interaction. A decapep- 
tide (arg-gly-asp-ser-pro-ala-ser-ser-lys-pro) containing the cell 
binding peptide sequence also inhibited the formation of the 
complex (not shown). These same peptides were used in the 
laminin experiments and were found to inhibit the interaction 
of laminin with the CSAT antigen as well (Fig. 5 D). When 
the column was preloaded with both fibronectin and laminin, 
the elution profile showed both the shoulder characteristic of 
the fibronectin-antigen interaction and a peak in the void 
volume characteristic of the laminin-antigen interaction. This 
result along with the inhibition of the antigen interactions 
with both fibronectin and laminin by the cell binding tetra- 
peptide from fibronectin suggest that laminin and fibronectin 
are binding to neighboring or sterically related sites. 

These interactions appear to be both meaningful and sig- 
nificant. An unrelated antibody that inhibits adhesion to 
substrata other than fibronectin and laminin (unpublished 

present. The presence of a resolvable peak for the antigen-ligand 
complex suggests that the exchange rate of the antigen-ligand com- 
plex is slow on the time scale of the gel filtration experiment. Whereas 
this may be the intrinsic nature of the interaction, it may also arise 
from antigen binding to a laminin aggregate whose formation is 
concentration dependent. 
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hGURE 5 Equilibrium gel filtration elution profile of CSAT antigen 
from columns pre-equilibrated with the CSAT monodonal antibody 
(A), laminin (B), CSAT monocIonal antibody and laminin (C), or 
fibronectin peptide analogue and laminin (D). Gel filtration was 
performed using Ultrogel AcA22 with TNC buffer containing 0.1% 
Nonidet P-40. The column was first preloaded with the desired 
ligand, and 35S-labeled CSAT antigen (with cold ligand) was then 
run through the column. 60-#1 fractions were collected and the 
labeled antigen counted. Vo is the void volume, and VT iS the total 
included volume. (A) (O) antigen alone; fiE) antigen passed through 
column pre-equilibrated with 10 #g/ml CSAT antibody. (B) CSAT 
antigen passed through column pre-equilibrated with: (L~) 2.5 #g/ml 
laminin, (@) 100 p.g/ml laminin, ( l )  200 p.g/ml laminin; (O) 400 #g/ 
ml [aminin. (C) ((3) CSAT antigen passed through column pre- 
equilibrated with 400 p.g/ml laminin; ( l )  CSAT antigen first prein- 
cubated with 20 p.g/ml CSAT monoclonal antibody and then passed 
through column pre-equilibrated with 400/zg/ml laminin. (D) CSAT 
antigen passed through the column pre-equilibrated with: (@) 400 
#g/ml laminin and I mg/ml cell binding tetrapeptide; (r-l) 400 #g/ml 
laminin and I mg/ml nonapeptide. 

observations) does not inhibit formation of the ligand-antigen 
complexes. Two synthetic peptides that do not inhibit cell 
adhesion, a nonapeptide (arg-lys-lys-thr-gly-gln-glu-ala-cys) 
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FIGURE 6 SDS PAGE of CSAT antigen and CSAT antigen-laminin 
complexes. Gel filtration was performed as described in Fig. 5 (with 
the column pre-equilibrated with 400 /~g/ml laminin). The void 
volume fraction corresponding to the antigen-laminin complex 
(fraction 9) (A), the fractions corresponding to free antigen (fractions 
14-16), and (B) an aliquot of CSAT antigen before gel filtration (C) 
were run on 7% nonreducing SDS PAGE and visualized by autora- 
diography. 

from a region of fibronectin that does contain the cell binding 
sequence and a bexapeptide (gly-arg-gly-glu-ser-pro) contain- 
ing a single substitution in the cell binding region (27), had 
no effect on the formation of either the laminin or fibronectin 
complexes (Figs. 5 and 7). Pre-equilibrating the column with 
400 ug/ml BSA did not alter the antigen elution profile. 
Finally, the presence of 400 ~g/ml fibronectin or laminin did 
not alter the elution of catalase, a Stokes radius standard. 

The unexpected observation that the fibronectin cell-bind- 
ing tetrapeptide inhibits the interaction of the purified CSAT 
antigen with both laminin and fibronectin prompted a prelim- 
inary examination of its significance by assaying for the effect 
of this peptide on cell adhesion to wells coated with these two 
substrata. Fig. 8 shows that the tetrapeptide but not the 
hexapeptide (or nonapeptide) inhibited adhesion of tendon 
fibroblasts to fibronectin. We also observed similar effects of 
these peptides on the adhesion of the cardiac fibroblasts on 
fibronectin. These specificities confirm the previous observa- 
tions by others (26, 27). The effect of the tetrapeptide and 
hexapeptide on adhesion of tendon fibroblasts to laminin is 
also shown in Fig. 8. A partial inhibition was observed but 
appeared significant when compared with the hexapeptide (or 
nonapeptide) control, which did not show comparable effects 
even at 3-5-fold higher concentrations. The cell binding tetra- 
peptide showed only a vei-y small effect on the adhesion of 
the cardiac fibroblasts to laminin. A more thorough exami- 
nation of specificities will be required before these observa- 
tions are fully understood. 
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FIGURE 7 Equilibrium gel fi ltration elut ion profi le of CSAT antigen 
from a column pre-equil ibrated with f ibronectin (A) or f ibronectin 
and cell binding tetrapeptide from fibronectin (B}. Gel filtration was 
performed as described in the legend to Fig. 5. (A) (I-I} CSAT antigen 
alone; {O) CSAT antigen passed through column pre-equil ibrated 
with 200/~g/ml fibronectin. (B) (@) CSAT antigen passed through 
column pre-equil ibrated with 200 ~.g/ml f ibronectin and 1 mg/ml 
cell binding tetrapeptide; (A) CSAT antigen passed through column 
pre-equil ibrated with 200/~g/ml f ibronectin and 1 mg/ml f ibronectin 
9-mer. 

The Oligomeric Nature of the CSA T Antigen 
Complex 

The presence of all three glycoproteins comprising the 
CSAT antigen in the CSAT antigen-laminin and CSAT an- 
tigen-fibronectin complexes raises the possibility that the 
antigen itself is an oligomeric complex. We have explored this 
by studying the behavior of the antigen during gel filtration 
and velocity sedimentation in sucrose density gradients. As 
reported above, the antigen elutes as a single peak on Ultrogel 
AcA22, a molecular sieve. Subfractions from the leading and 
trailing edges and the center of the peak were analyzed by 
SDS PAGE. The gel profiles from the subfractions were 
indistinguishable and revealed the same three bands in the 
proportions seen in the unfractionated antigen. The CSAT 
antigen was also studied by sedimentation velocity in 5-20% 
linear sucrose gradients. The antigen resolved into a major 
peak and a small minor peak. Both were analyzed on SDS 
PAGE (Fig. 9). The antigen present in subfractions of the 
leading and trailing edges and center of the major peak were 

TABLE II. Binding Equilibria of CSAT Antigen with Different Ligands 

Ligand Kd K~ 
M 

CSAT ant ibody 6 x 10 -9 - -  
Laminin 2 x I0  -° - -  
Fibronectin 10 -6 - -  
Tetrapeptide (inhibit ion of laminin - -  2 x 10 -4 

binding) 
Tetrapeptide (inhibit ion of f ibronectin - -  10 -3-10 -4 

binding) 
Nonapept ide (inhibit ion of laminin - -  >5 x 10 -I 

binding) 
Nonapept ide (inhibition of f ibronectin - -  >5 x 10 -1 

binding) 

The binding equilibria for the interaction of the purified CSAT antigen in TNC 
with the CSAT monoclonal antibody, laminin, and fibronectin were estimated 
using the equilibrium gel filtration method described in the text. The inhibi- 
tion constants were measured from concentrations required to inhibit inter- 
action of the purified antigen with fibronectin or laminin. 

indistinguishable from each other and revealed the three 
bands characteristic of the original antigen. The minor peak 
contained only a single component that migrated like band 3 
on SDS PAGE. Purified band 3 also migrated in this position 
(Buck, C., and A. Horwitz, unpublished observation). Al- 
though the origin and significance of this satellite peak is 
unclear, its presence demonstrates that the gradient can re- 
solve and separate monomers from oligomers. These data 
together with our previous observations that the three bands 
comprising the CSAT antigen tend to co-purify using several 
different kinds of purification procedures suggests that the 
antigen resides as an oligomer (7). 

The gradient and gel filtration data were used to estimate 
the sedimentation coefficient, Stokes radius, and molecular 
weight of the oligomeric complex (20-22): S,,2o = 8.6; a = 
6.0 rim; and tool wt = 235 kD (detergent + antigen) and 212 
kD (antigen alone), respectively. 

DISCUSSION 

In previous studies we have shown that the CSAT antigen 
participates in the adhesion of several different kinds of cells 
to extracellular matrices and that not all cell types respond 
similarly to the CSAT monoclonal antibody. We have ex- 
tended these observations by addressing three related issues: 
the extracellular molecules with which adhesions involving 
the CSAT antigen might interact; the role played by the CSAT 
antigen in the adhesion process; and the origin of the different 
responses to the CSAT monoclonal antibody displayed by 
different cell types. 

The effect of the CSAT monoclonal antibody on fibroblasts 
and myoblasts plated on laminin demonstrates that the anti- 
gen participates in their adhesion to this extracellular mole- 
cule. Short term cultures of skeletal myoblasts and cardiac 
and tendon fibroblasts plated on laminin-coated dishes round 
and detach from the substratum when the CSAT monoclonal 
antibody is added. This effect of the CSAT monoclonal anti- 
body is seen with well spread cells as well as with cells in 
earlier stages of adhesion. The observation that the residual 
adhesive strength of cells treated with the CSAT monoclonal 
antibody does not withstand a force of l g (10 -7 dynes) is 
particularly important. It demonstrates that the antigen plays 
a very dominant role in the adhesion of these cells to laminin. 
Other adhesive interactions, if they were to exist, must be 
very weak or involve only a few molecules. Recent observa- 
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FIGURE 8 Effect of fibronectin peptides on adhesion of tendon fibroblasts. Tendon fibroblasts were plated in serum-free DME 
onto laminin- or fibronectin-coated wells (200 mm 2) in 10-#1 spots at a density of 4 x 105 cells/ml. The peptides were added at 
the time of plating at a concentration of 1 mglml (tetrapeptide) and 1.6 mg/ml (hexapeptide). The cultures were flooded after 2 
h of incubation and then photographed. Bar, 40 #m. 

hGure 9 SDS PAGE analysis of CSAT antigen in fractions from 
sucrose density gradients. 35S-labeled antigen in TNC was layered 
onto a 5-20% sucrose density gradient and sedimented for 8-9 h 
at 45,000 rpm at 4°C in a SW60 rotor. 150-~1 fractions were 
collected. The first fraction corresponds to the bottom of the tube. 
The material in the main peak (fractions t 1-16) and minor peak 
(fractions 19-32) were pooled separately and analyzed on SDS 
PAGE run under nonreducing condition. The left and right profile 
in the insert correspond to the main and minor peaks, respectively. 

tions on the localization of the antigen are consistent with its 
role in adhesion to laminin. The antigen co-localizes with 
laminin in regions of acetylcholine receptor hot spots on 
cultured myotubes (Bozyczko, D., and A. Horwitz, unpub- 
lished observations). These are thought to be sites of interac- 
tion between the basal lamina, the cell surface, and the 

cytoskeleton (28, 29). 
The observations reported here also implicate the CSAT 

antigen in adhesion to fibronectin. The adhesion of the tendon 
fibroblasts and skeletal myoblasts is inhibited substantially by 
the presence of the CSAT monoclonal antibody. Although 
the adhesion of the cardiac fibroblasts is not inhibited signif- 
icantly by the CSAT monoclonal antibody, prior treatment 
with trypsin in the presence of calcium renders their adhesion 
sensitive to the antibody. The total inhibitions of adhesion by 
the CSAT monoclonal antibody seen for cells on laminin was 
not observed for cells on fibronectin. This observation along 
with the minimal effects of the CSAT monoclonal antibody 
on cardiac fibroblasts point to differences between adhesion 
to fibronectin and laminin. Morphological studies also impli- 
cate the CSAT antigen in adhesion to fibronectin. On fibro- 
blasts, the CSAT antigen co-localizes with fibronectin along 
portions of stress fibers, at the cell periphery, and in regions 
surrounding the focal contact as visualized by vinculin stain- 
ing (5, 8). Other investigators, using the JG-22 monoclonal 
antibody that is directed against the same antigen, have also 
localized the antigen to fibronectin-rich adhesion sites on 
fibroblasts (11, 11 a). 

The question arises concerning the role that the CSAT 
antigen plays in adhesion to these matrix molecules (30). Two 
obvious hypotheses are that (a) it functions as a structural 
molecule to organize the adhesion complex or (b) it functions 
directly in adhesion as a receptor for extracellular matrix 
ligands. We have explored the latter hypothesis--that it func- 
tions as their cell surface receptor. Our observation that the 
purified antigen interacts with laminin and fibronectin pro- 
vides direct evidence supporting this hypothesis. It is strength- 
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ened further by the inhibitory effect of the CSAT monoclonal 
antibody and the cell-binding peptides from fibronectin on 
formation of the antigen-laminin and antigen-fibronectin 
complexes, respectively. The /G for the interaction of the 
antibody with the purified antigen and the antibody concen- 
trations required for inhibition of the antigen-laminin com- 
plex are identical with those reported previously for the dis- 
sociation constant for the antibody binding to antigen on cell 
surfaces and for inhibition of cell adhesion by the antibody 
(5). Yamada and co-workers (31, 32) have investigated the 
binding of fibronectin and its fragments to baby hamster 
kidney fibroblasts. They report that the receptor is resistant 
to trypsin in the presence of calcium. They also report 5 x 
10 S fibronectin binding sites per cell with a Kd of 8 x 10 -7 M 
and a Ki of 10-3-10 -4 M for tetrapeptide inhibition of adhe- 
sion to fibroblasts. Despite the differences in species, these 
data are very similar to those that we have estimated for the 
CSAT antigen. We find 5 x 105 CSAT monoclonal antibody 
binding sites per fibroblast and a Kd of ~ 1 0  -6  M for the 
antigen-fibronectin interaction. We also find the CSAT-me- 
diated adhesion resists treatment with calcium and trypsin. 

The observation that the CSAT antigen participates in 
adhesion to both laminin and fibronectin was unexpected but 
of particular potential importance. The antigen also may 
interact with other extracellular ligands and thus may serve 
as a multifunctional extracellular matrix receptor. The inhi- 
bition of antigen interaction with both laminin and fibronec- 
tin by the cell binding tetrapeptide from fibronectin suggests 
that these extraceUular molecules may have a common se- 
quence and all bind to a common receptor site. However 
adhesions to laminin and fibronectin appear to display differ- 
ent susceptibilities to the CSAT antibody, trypsin, and the 
fibronectin cell-binding tetrapeptide. Therefore, it would seem 
that adhesion to these matrix molecules is more complex than 
the simple interaction of a single receptor binding site with 
its ligands (33). Hypotheses for the function of the CSAT 
antigen and its interactions with ligands and inhibiting mol- 
ecules must consider the nature of the antigen itself. It is an 
oligomeric complex composed of three distinct glycoproteins. 
Where the laminin, fibronectin, and other adhesion-promot- 
ing and inhibiting molecules interact with this complex is a 
problem that remains to be addressed. 

Several papers have implicated proteins migrating in the 
molecular weight range of 140,000 D in adhesion to extracel- 
lular substrates (34-36). Molecular complexes with average 
molecular weight of 140,000 D that can block the effect of 
adhesion-perturbing antibodies have been isolated from 
mouse and hamster fibroblasts as well as from epithelial cells. 
More recently, Pytela et al. (36) have identified fibronectin- 
binding proteins from human fibroblasts. These proteins, like 
the CSAT antigen, migrate in the 140-kD range on SDS 
PAGE and resolve into distinct bands when run on nonred- 
uced gels. These proteins further resemble the CSAT antigen 
in that their interaction with fibronectin is competed specifi- 
cally by the tetrapeptide fragment from the cell-binding site 
of fibronectin. 

Three laboratories have described a 67,000-D molecule as 
a laminin receptor on mammalian muscle, human breast 
carcinoma, and mouse melanoma cells (37-40). Since the 
CSAT antigen is a complex of three polypeptide chains that 
migrate on reduced SDS PAGE in the molecular weight range 
of 140,000, it would appear that these putative receptors are 
different. This is also suggested by the higher affinity of the 

mammalian receptor for laminin (41). Lesot et at. (38), how- 
ever, report two bands in the molecular range of 150,000 that 
are recognized by laminin on immunoblots. Recent studies 
on neurite extension using antibodies against different lami- 
nin domains suggest that there may be more than one kind 
of molecule that interacts with laminin (42). In this regard we 
have found that the CSAT antigen is present on nerve and 
have demonstrated its role in neuron adhesion and axonal 
extension (43). 

The final issue that we have addressed is why different cell 
types respond characteristically to the CSAT monoclonal 
antibody. We have proposed elsewhere that the different 
responses reflect a progressive display of additional adhesive 
molecules and their organizational complexes on increasingly 
adhesive cell types (6). The data reported here extend these 
earlier observations. The inhibition of cardiac fibroblast adhe- 
sion to laminin and to fibronectin demonstrates that the 
CSAT antigen is not only present but functional on these 
cells. It follows then that they adhere to fibronectin by a more 
complex mechanism than that used on the tendon fibroblasts 
or skeletal myoblasts. An obvious hypothesis is that there is 
more than one kind of mechanism involved in adhesion to 
fibronectin. Recently evidence has been provided for multiple 
fibronectin adhesion mechanisms on neurons (43). 

In summary three lines of evidence argue strongly for the 
CSAT antigen functioning as a receptor for extracellular 
molecules. (a) Monoclonal antibodies directed against the 
antigen inhibit adhesion to both fibronectin and laminin; (b) 
the antigen localizes in putative regions of cell-matrix adhe- 
sion; and (c) the purified CSAT antigen binds to both fibro- 
nectin and laminin to form a physiologically meaningful 
association. Although only fibronectin and laminin were stud- 
ied in detail, it is likely that CSAT antigen functions more 
generally as a cell surface receptor for extracellular molecules. 
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