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Abstract. We have used cultured sympathetic neu- 
rons to identify microtubule proteins (tubulin and mi- 
crotubule-associated proteins [MAPs]) and neurofila- 
ment (NF) proteins in pure preparations of axons and 
also to examine the distribution of these proteins be- 
tween axons and cell bodies + dendrites. Pieces of 
sympathetic ganglia containing thousands of neurons 
were plated onto culture dishes and allowed to extend 
neurites. Dendrites remained confined to the gangli- 
onic explant or cell body mass (CBM), while axons 
extended away from the CBM for several millimeters. 
Axons were separated from cell bodies and dendrites 
by dissecting the CBM away from cultures, and the 
resulting axonal and CBM preparations were analyzed 
using biochemical, immunoblotting, and immunopre- 
cipitation methods. Cultures were used after 17 d in 
vitro, when 40-60% of total protein was in the axons. 

The 68,000-mol-wt NF subunit is present in both 
axons and CBM in roughly equal amounts. The 
145,000- and 200,000-mol-wt NF subunits each con- 
sist of several variants which differ in phosphorylation 
state; poorly and nonphosphorylated species are pres- 

ent only in the CBM, whereas more heavily phospho- 
rylated forms are present in axons and, to a lesser 
extent, the CBM. One 145,000-mol-wt NF variant was 
axon specific. 

Tubulin is roughly equally distributed between 
CBM and axon-like neurites of explant cultures. 
MAP- 1 a, MAP- I b, MAP-3, and the 60,000-mol-wt 
MAP are also present in the CBM and axon-like neu- 
rites and show distribution patterns similar to that of 
tubulin. In contrast, MAP-2 was detected only in the 
CBM, while tau and the 210,000-mol-wt MAP were 
greatly enriched in axons compared to the CBM. In 
immunostaining analyses, MAP-2 localized to cell 
bodies and dendrite-like neurites, but not to axon-like 
neurites, whereas antibodies to tubulin and MAP-lb 
localized to all regions of the neurons. 

The regional differences in composition of the neu- 
ronal cytoskeleton presumably generate corresponding 
differences in its structure, which may, in turn, con- 
tribute to the morphological differences between ax- 
ons and dendrites. 

N 
EURONS have very elaborate morphologies that are 
characterized by axonal and dendritic neurites. These 
highly anisotropic processes can be distinguished 

from each other on the basis of several morphological criteria 
(3, 51). For example, axons have lengths usually measured in 
mm to cm or more and maintain a relatively uniform diam- 
eter along their length, whereas dendrites are usually much 
shorter than axons, having lengths <<1 ram, and taper as they 
extend away from the cell body. Axons and dendrites also 
generate very distinctive types of branching patterns (28). The 
morphological differences between axons and dendrites con- 
tribute to their unique physiological properties. Many of the 
morphological parameters that distinguish axons from den- 
drites can be generated by neurons grown in tissue culture (2, 
3), suggesting that these features are endogenously deter- 
mined. We have been studying the cellular basis for the 
differences between axonal and dendritic shape, with the long- 
term goal of defining the nature of endogenous determinants 
of neuronal morphology. 

The regional differences in external shapes of individual 
neurons can be attributed to underlying differences in the 
cytoskeletons that provide their structural framework (9, 23, 
62). For example, in many neurons, neurofilaments are abun- 
dant in axons but often sparse or absent in dendrites (51, 62). 
Microtubules in axons are generally organized into small 
tightly packed clusters that are interspersed within the neu- 
rofilament array (56), while microtubules are uniformly dis- 
tributed in dendrites (62). Immunolocalization studies have 
revealed that the microtubule-associated protein (MAP) 1 des- 
ignated MAP-2, is a component of dendritic microtubules, 
but not of axonal microtubules (20-22, 30), while the MAP 
designated tau is enriched in axons relative to the rest of the 
neuron (reference 5; see also Results). To obtain a more 

Abbreviations used in this paper: CBM, cell body mass; MAP, microtubule- 
associated proteins; NFP, neurofilament proteins; NF68, NFI45, and NF200, 
protein subunits of neurofilaments with apparent molecular weights of 68,000, 
145,000, and 200,000; l-D, one-dimensional SDS; 2-D, two-dimensional isoe- 
lectric focusing x SDS. 
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comprehensive understanding of the regional differentiation 
of the neuronal cytoskeleton, we have developed explant 
cultures of sympathetic neurons (24) for direct biochemical 
and immunochemical analyses of morphologically distinct 
neuronal domains. 

Sympathetic neurons elaborate axon-like and dendrite-like 
neurites in culture (36, 37, 61). The axons attain lengths of 
many millimeters and maintain a relatively uniform diameter 
along their length, while the dendrites are relatively short, 
tapering processes with lengths of ~ 50 ~m. In explant cul- 
tures, dendrites remain confined to the ganglionic explant or 
cell body mass (CBM), while axons extend beyond the CBM 
for many millimeters (see Fig. l). Pure axons can he separated 
from cell bodies + dendrites by microsurgically removing the 
CBM from cultures with a scalpel blade (see Fig. 2), and the 
resulting preparations can then be assayed for cytoskeletal 
components. The present studies have focused primarily on 
the proteins of microtubules (tubulin and MAPs) and neuro- 

Figure 1. (A) Phase-contrast  micrograph of  an  explant  culture o f  
sympathet ic  neurons.  The  arrow identifies the only nonneurona l  cell 
detectable in the culture.  Bar, 100 , m .  (B) The  Iengths o f  the  neurite 
outgrowth from the  edge o f  the  CBM  are graphed as a funct ion o f  
t ime after t ransplantat ion.  Each point  is the average o f  at least four 
determinat ions .  
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Figure 2. Diagramatic  illustration o f  how explant  cultures are used 
to s tudy the distr ibution o f  cytoskeletal proteins in cul tured sympa-  
thetic neurons .  Explant  cultures consist o f  a centrally situated CBM, 
containing cell bodies and  dendrites, f rom which extends the axons.  
Axons  are separated from cell bodies and  dendrites by cutt ing the 
CBM away from the cultures, and  the  resulting preparat ions are then  
assayed for cytoskeletal proteins. 

filament proteins (NFPs) because the patterns of microtubule 
and neurofilament organization are the most striking struc- 
tural differences between the axonal and dendritic cytoskel- 
etons and are thus likely to contribute to the morphological 
differences between these neurites. Preliminary accounts of 
this work have been published previously (15, 48, 50). 

Materials and Methods 

Cell Culture 

Dissociated sympathetic neurons prepared as described previously (49) were 
plated onto glass coverslips coated with polylysine or polylysine + collagen or 
laminin (Bethesda Research Laboratories, Gaithersburg, MD). To facilitate 
neurite growth on polylysine, cells were cultured in medium conditioned by 
mixed cultures of neurons, fibroblasts, and Schwann cells. 

The procedures for setting up explant cultures were modified from Estridge 
and Bunge (24). Superior cervical ganglia from neonatal rat pups were stripped 
of their connective tissue sheaths and cut into 3-4 pieces of -0.5 mm in 
diameter. Six to seven pieces were plated onto 35-ram collagen-coated culture 
dishes in N2 medium (43) supplemented with 1% human placental serum, 0.2 
ug/ml triiodotyrosine, and 10 /~M each of fluorodeoxyuridine and uridine 
(medium l). On the day after plating, the culture medium was replaced with 
medium 2 (medium l with l0 ,M cytosione arabinoside and without serum). 
Cultures were then fed with medium 3 (medium 2 without cytosine arabinoside) 
2-5 d later. 

The ganglionic explant or cell body mass (CBM) begins extending neurites 
within 12 h of plating, and a~er several days, the elongating neurites form a 
halo around the CBM. The neurite halos were often contaminated with neuron 
cell bodies which detached from the CBM during the first day in culture and 
also with nonneuronal cells. To obtain explant cultu~s in which neurite halos 
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were free of contaminating cells, CBMs were dissected out of cultures 5 d after 
the initial plating and replated on fresh dishes in medium 1. Beginning on the 
day after re-plating, cultures were fed on alternate days with fresh medium 3. 
Cultures were maintained for 12 d prior to use. These procedures reproducibly 
(I>90%) yielded explant cultures with extensive neurite halos that were free of 
detectable neuron cell bodies and nonneuronal cells (Fig. I A). Only such 
cultures were used in the experiments reported here. 

Metabolic Labeling 

Neurite proteins are synthesized in the neuron cell bodies and then transported 
into the neurites (16, 38). To ensure uniform labeling of the cell bodies and 
their neurites, cultures were labeled with [35S]methionine (Amersham Corp., 
Arlington Heights, IL) continuously for 5 to 12 d prior to use. During the 
labeling period, cultures were fed every third day with medium 3 containing 
13% of the normal level of methionine plus 5-20 /~Ci of [35S]methionine 
per ml. On nonfeeding days, cultures were supplemented with 5-20 ~Ci of 
[35S]methionine in 100 #l of complete medium. In some experiments, cultures 
were labeled with 1 mCi/ml of [32P]PO4 for 60-90 min in phosphate-free 
Dulbecco's modified Eagle's medium supplemented with nerve growth factor, 
and then rinsed with Tris-buffered saline prior to analysis. 

Identification of M,4Ps and Neurofilament Proteins 
(NFPs) in Neurites and CBM 

The first step in these analyses involved dissecting the CBM away from the 
neurites under a dissecting microscope. The resulting CBM and neurite prepa- 
rations were then assayed for MAPs and NFPs by immunoblotting, immuno- 
precipitation, taxol co-assembly, and/or two-dimensional isoelectric focusing 
× SDS (2-D) gel electrophoresis. The basic design of the experiments is 
illustrated schematically in Fig. 2. 

Immunoprecipitation and immunoblotting procedures were as described 
previously (49). In most immunoblotting experiments, CBM from several 
cultures were pooled as were the corresponding neurite preparations. Pooled 
samples were then divided into several aliquots which were assayed for micro- 
tubule proteins or NFPs by immunoblotting. The following antibodies were 
used in the present study: monoclonal antibodies against brain MAP-2 (API4) 
(6) and tau (5), monoclonal antibodies against a- and B-tubulin (Amersham 
Corp.), monoclonal antibodies against phosphorylated and nonphosphorylated 
forms of the 145,000- and 200,000-mol-wt NFPs (Sternberger-Meyer Immu- 
nocytochemicals, Jarrettsville, MD), monoclonal antibodies against brain 
MAP- I a (12) and MAP- I b (13) (provided by Dr. Richard Vallee), a monoclonal 
antibody against brain MAP-3 (31) (provided by Dr. Andrew Matus), and 
monoclonal antibodies against the 68,000- and 145,000- (recognizing all phos- 
phorylated variants) mol-wt NFPs (provided by Dr. Virginia Lee). 

CBM and neurites were also assayed for MAPs by co-assembly with brain 
microtubule proteins in the presence of taxol as described previously (49), but 
with the following modifications. CBM and neurites were lysed in cold (0-4*C) 
reassembly buffer (0.1 M Pipes, pH 6.9, 1 mM EGTA, 1 mM MgSO4, 1 mM 
GTP, and protease inhibitors [see below]) containing 0.1% Triton X-100. The 
lysed samples were centrifuged in a Beckman Type 65 rotor (Beckman Instru- 
ments Inc., Palo Alto, CA) at 50,000 rpm (180,000 g) for 90 rain at 4"C. The 
supernates from the samples were mixed with a high speed supernate from 
brain (prepared in the above described buffer, except without Triton X-100), 
adjusted to 20 uM taxol, incubated at 33"C for 30 min, and the resulting 
microtubules were harvested by centrifugation. MAPs were extracted from the 
taxol-micrutubules by incubation with reassembly buffer containing 20 uM 
taxol, 0.75 M NaCI, and 10 mM 2-mercaptoethanol, incubated in a boiling 
water bath for 5 min, and then centrifuged at 150,000 g for 15 min to obtain 
heat-soluble material, which contained thermostable MAPs. 

Immunofluorescence Staining of Dissociated Cultures 
For most experiments, cultures were fixed by immersion in either cold methanol 
or cold acetone for 6-10 rain and then rinsed with phosphate-buffered saline 
(PBS). Rinsed coverslips were incubated with 10% normal goat serum + 1% 
bovine serum albumin (BSA) (blocking solution) for 10-15 min and then 
incubated with primary antibody for 45-60 rain at 35*C. After extensive rinsing 
with PBS, the cover slips were then incubated with blocking solution for 10- 
15 rain followed by rhodamine-labeled goat anti-mouse lgG (affinity purified, 
Cappel Laboratories, Cochranville, PA) in blocking solution for 45-60 min at 
35°C. The cover slips were then rinsed with PBS, mounted on glass slides, and 
viewed with a Zeiss inverted microscope using epifluorescence optics. 

In some experiments, cultures were fixed for 10 min in a buffer containing 
80 mM Pipes. pH 6.9, I mM MgSO4, 10 mM EGTA, 0.3% glutaraldehyde, 
and 0.1% of the nonionic detergent Empigen BB. The coverslips were rinsed 

with PBS containing 10 mg/ml Na borohydride, and then processed for MAP- 
2 and tubulin localization as described above. 

Polyacrylamide Gel Electrophoresis and 
Peptide Mapping 

One-dimensional SDS (I-D), and 2-D gel electrophoresis and one-dimensional 
peptide mapping were as described previously (7), with the following modifi- 
cations. The electrode buffer for I-D gels consisted of 0.394 M glycine, 0.05 M 
Tris, and 0.1% SDS. Also, samples for I-D gels were dissolved in BUST (5% 
2-mercaptoethanol, 8 M Urea, 2% SDS, 0.1 M Tris, pH 6.8) by incubation at 
room temperature. BUST as well as buffers used in taxol assembly assays also 
contained a cocktail of protease inhibitors which included 10 #g/ml each of 
leupeptin, chymostatin, antipain, 0.2-1 trypsin inhibitory units/ml of appro- 
tinin, and 0.1 mg/ml of n-tosyl-L-arginine methyl ester. Labeled proteins were 
visualized by fluorography (14). 

Results 

Explant Cultures: General Features 

Typical explant cultures (Fig. 1A) consist of a centrally situ- 
ated CBM of -0.5 mm in diameter that contains thousands 
of neurons; from this CBM a dense halo of neurites extends. 
The neurite halo has few or no nonneuronal cells as deter- 
mined by light (Fig. 1 A) and electron (7, 24) microscopy. The 
CBM also has few nonneuronal cells as determined by tryp- 
sinizing CBM, plating out the resulting cell suspension, and 
then scoring for neuronal and nonneuronal cells 6 h after 
plating; 91% (n = 2) of the cells in the CBM were neurons. 

Fig. 1 B shows the extent of neurite outgrowth from explant 
cultures expressed as a function of time after transplanta- 
tion. Neurite length increased almost linearly at a rate of 0.35 
mm/d for -12  d, after which the rate declined (see also 
reference 1). In the experiments reported here, explant cul- 
tures were used at 12 d after transplantation. At this time, 
40-60% (n = 3) of the total protein in the culture was present 
in the neurites. Thus, the distribution of individual proteins 
between the CBM and axon-like neurites can be evaluated 
without appreciable bias resulting from an uneven distribu- 
tion of total protein between CBM and axonal preparations. 

Dendrite-like Neurites Remain Confined to the CBM 
Dendrites of cultured sympathetic neurons are relatively short 
(36, 37, 61), and are expected to remain confined to the CBM. 
To test this prediction, we determined the distribution of 
MAP-2, a cell body and dendrite-specific marker (20-22, 30), 
in explant culture. CBM and neurite halos from cultures 
labeled for 5 d were assayed for MAP-2 by immunoprecipi- 
ration. Fig. 3 shows 1-D gel profiles of total labeled material 
in CBM and neurites and also the resulting immunoprecipi- 
rates. Total protein (as methanol-precipitable radioactivity) 
and many individual proteins, including tubulin, were roughly 
equally distributed between CBM and neurites (Fig. 3). In 
contrast, the vast majority of labeled MAP-2 was present in 
the CBM, with only trace amounts detectable in neurites. 
Comparable results were also obtained with two other anti- 
bodies to brain MAP-2 (not shown). Quantification showed 
that 93-98% (n = 4) of the immunoprecipitated methionine- 
labeled MAP-2 was present in the CBM. These results dem- 
onstrate that cell bodies and dendrites remained confined to 
the CBM, and, that by removing the CBM from explant 
cultures, cell bodies and dendrites can be effectively separated 
from axons (Fig. 2). 
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Figure 3. MAP-2 distribution in explant cultures. CBM and axons 
from cultures labeled for 5 d were dissolved in 1% SDS and then 
assayed for MAP-2 by immunoprecipitation. Lanes 1 and 2 show 
profiles of total labeled proteins in CBM and axons, respectively. 
Lanes 3 and 4 show immunoprecipitates from CBM and axons, 
respectively, a- and B-Tubulin (aTub and ~Tub, respectively) and 
MAP-2 are indicated. Note that the tubulins were relatively evenly 
distributed between CBM and axons, whereas MAP-2 was only 
detected in the CBM. 

NFPs o f  CBM and Axon-like Neurites 

In the present studies, axons and CBM were assayed for NFPs 
by immunoblotting and 2-D gels. Fig. 4 shows typical im- 
munoblots obtained with antibodies against protein subunits 
of  neurofilaments with apparent molecular weights of  68,000, 
145,000, and 200,000, designated NF68, NF145, and NF200, 
respectively. NF68, which is the principal core protein of  
neurofilaments (41), is present in both the CBM and axon- 
like neurites in roughly equal amounts (Fig. 4A). NF145 and 
NF200 were also present in CBM and axons, but in antigen- 
ically distinct forms (Fig. 4, b and c). NFI45 and NF200 each 
consist of  several variants that differ in phosphorylation state 
and that can be distinguished from each other with appropri- 
ate antibodies and on 2-D gels (8, 34, 59). Antibodies against 
poorly or nonphosphorylated forms of  NFI45 and NF200 
localize exclusively to the CBM of explant cultures, while 
antibodies to more heavily phosphorylated forms of  these 
proteins localize to axons, and, to a lesser extent, the CBM 
(Fig. 4, b and c). 

Figure 4. Distribution of NFPs in explant cultures. Immunoblots of 
CBM and axons obtained with monoclonal antibodies to NF68 (a), 
non- or poorly phosphorylated NF145 + NF200 (b), and heavily 
phosphorylated NF145 + NF200 (c). In b, trace amounts of the 
nonphosphorylated NFI45 were detectable although they did not 
reproduce in the photograph. 

The distribution of  NF145 was analyzed in greater detail. 
This subunit can be resolved by 2-D gel electrophoresis into 
five variants that differ in apparent molecular weight and, to 
a lesser extent isoelectric point. One variant is nonphos- 
phorylated (8), while the remaining four are phosphorylated. 
(While all four phosphorylated variants of  the NF145 can be 
resolved in our 2-D gels, the two slowest migrating species 
often run together, generating an asymetrically shaped spot 
[see for example Fig. 5 b].) Nonphosphorylated NF145 is not 
apparent in Fig. 5, although from other results (Figs. 4 and 
6), it is only detectable in the CBM. The pattern of phosphor- 
ylated variants in the CBM is quite distinct from that in the 
axons (Fig. 5, compare panels a and c with b and d). In 
particular, one variant that is consistently detected in axons 
(Fig. 5 d, arrowhead) has not been observed in the CBM (Fig. 
5c). 

Immunofluorescence Localization o f  NFP 

Immunostaining analyses of  NFP distribution in sympathetic 
neurons grown in dissociated cultures (Fig. 6) confirmed the 
results obtained with explant cultures. Antibody to NF68 
stained all neurons in the cultures, localizing to the cell bodies 
and all of  their neurites. Antibodies to non- and poorly 
phosphorylated NF145 + NF200 intensely stained all cell 
bodies and, to a lesser degree, proximal neurites; distal neu- 
rites remained unstained. In contrast, antibody to heavily 
phosphorylated NF145 + NF200 localized primarily to neu- 
rites, proximal as well as distal, with cell bodies staining 
relatively weakly. 

Microtubule Proteins o f  CBM and Axon-like Neurites 

Fig. 7 shows immunoblots of  CBM and axons obtained with 
monoclonal antibodies against a- and ~-tubulin and a variety 
of  MAPs. a- and/~-Tubulin are distributed evenly between 
the CBM and axons (see also Fig. 3). The c~- and 6-tubulins 
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Figure 5. 2-D gel analyses of the NF68 and NF145 in CBM and 
axons. (a and b) CBM and axons from a culture labeled for 12 d 
were extracted with 0.1% Triton X- 100 as described in the Materials 
and Methods section (see section on taxol co-assembly), and the 
resulting insoluble fractions, which contained the NFP (8), were 
analyzed on 2-D gels. Fluorographs of the labeled insoluble proteins 
in CBM and axons are shown in a and b, respectively. The NF68 and 
NFI45 are indicated by arrowheads and arrows, respectively. T, 
tubulin. The identification of NFP is based on our earlier work (8). 
Note that NF68 in the CBM is indistinguishable from that in axons. 
In contrast, the subunit composition of NF145 in the CBM differs 
from that in axons. (c and d) CBM and axons from an explant culture 
were dissolved in sample buffer and analyzed by 2-D immunoblotting 
using an antibody against phosphorylated NF145. The resulting blots 
of CBM and axons are shown in c and d, respectively. The arrows 
identify NFI45 species in CBM and axons, while the arrowhead 
indicates an NFI45 variant that was only detected in axons. 

are each composed of  several isoforms (25). Two a-tubulins 
and two ~-tubulins can be clearly resolved by 2-D electropho- 
resis (7, 10), and at this level of  resolution, the tubulins of  
axons are indistinguishable from those of  the CBM (data not 
shown). 

MAP-la ,  MAP- lb ,  and MAP-3 are all present in axons as 
well as the CBM, and each exhibits a pattern of  distribution 
that is similar to that of  tubulin. In contrast, MAP-2 is 
localized almost entirely to the CBM, while tau is greatly 
enriched in axons compared to the CBM. Comparable results 
for MAP-2 (Fig. 3) and tau were also obtained by immuno-  
precipitation analyses. The immunoprecipitat ion experiments 
on tau distribution used cultures labeled with [35S]methionine 
(not shown) or [32P]PO4 (Fig. 8). Results obtained with both 

labeling methods showed that tau was enriched in axons 
compared to the CBM. Note that the material in the CBM 
that is recognized by antibody to MAP- 1 a and MAP- 1 b differs 
from the corresponding material in axons. These differences 
are not trivial artifacts of  separating CBM from axons because 
MAP- I a and MAP- 1 b from whole cultures solubilized directly 
in SDS + protease inhibitor-containing sample buffer resem- 
bled the sum of that seen in CBM and axons (not shown). 

The distribution of  some MAPs in explant cultures can also 
be evaluated by preparing taxol microtubules from CBM and 
axon preparations (see Materials and Methods). One advan- 
tage of  this approach is that it is not dependent on the 
availability of  ant i -MAP antibodies. Taxol-microtubules were 
prepared from labeled extracts of  CBM and axons that were 
mixed with unlabeled brain microtubule proteins, and the 
labeled co-assembling neuronal proteins were identified. 
Many proteins were present in the resulting preparations (Fig. 
9, lanes 1 and 2), making identification of  known MAPs 
difficult. To facilitate identification of  MAPs, we selected for 
heat-stable proteins in the taxol-microtubule preparations. 
Several MAPs of  sympathetic neurons are heat stable, includ- 
ing MAP-2, tau, and the 210,000-mol-wt MAP (49). As heat 
stability is a relatively unusual property for proteins, selecting 
for heat stable MAPs provides a simple way to enrich for the 
above mentioned MAPs. As seen in Fig. 9, lanes 3 and 4, 
these analyses confirmed that MAP-2 was only localized to 
the CBM, while tau was greatly enriched in axons compared 
to the CBM, and also demonstrated for the first t ime that the 
210,000-mol-wt MAP was enriched in axons. Quantitative 
information on the distribution of  MAP-2, tau, and the 
210,000-mol-wt MAP in explant cultures was obtained by 
scanning fluorographs of  heat-stable MAPs in CBM and axon 
preparations (Table I). The results fully confirmed the impres- 
sions obtained by visual inspections of  the fluorographs and 
also the immunoblots.  All of  the detectable MAP-2 was 
present in the CBM, while 85% or more of  tau and the 
210,000-mol-wt MAP were present in the axons. In compa- 
rable cultures, - 6 0 %  of  the tubulin (Table I) was present in 
the axons. 

Finally, CBM and axons were assayed for the 60,000-mol- 
wt MAP described previously (9). The 60,000-mol-wt MAP 
consists of  five variants that are generated by differential 
phosphorylation and are readily resolved in 2-D gels. All five 
60,000-mol-wt MAP species are present in the CBM, but only 
four are present in axons (Fig. 10). 

Immunofluorescence Localization of  Tubulin, MAP-2, 
and MAP-lb 

Tubulin antibodies localized to all neurons in the cultures, 
intensely staining cell bodies and all neurites (Fig. 11, A), and 
antibodies to MAP-1 b produced similar staining patterns (Fig. 
11, E and F ) .  Antibodies to MAP-2 stained all neuron cell 
bodies in the cultures, but many neurites remained unstained 
(Fig. 11, B, C and D). MAP-2 staining in neurites did not 
extend very far away from the cell body (1.6 ___ 0.2 [x __. SEM; 
n = 21] cell body diameters, or ~ 50 #m). These observations 
were obtained with two very different fixation procedures. In 
favorable preparations (Fig. 11, C and D), it could be seen 
that individual neurons gave rise to both MAP-2-posit ive and 
MAP-2-negative neurites. MAP-2-negative neurites resem- 
bled axons in that they were long, thin, nontapering, and 
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Figure 6. Immunostaining analyses of NFPs in dissociated cultures of sympathetic neurons. 7-d-old cultures grown on polylysine + collagen 
were fixed by immersion in cold methanol and then stained with antibodies against the various NFP. The figure shows phase and corresponding 
fluorescent images of neurons stained with antibodies to NF68 (a and b), non- or poorly phosphorylated NF145 + NF200 (c and d), heavily 
phosphorylated NF145 + NF200 (e-h), and no first antibody (i and j). In these images, the cell bodies are usually in a different focal plane 
than the neurites, and most neurites are in fascicles. Also, only some of the neurites in any given field orginate from the cell body in that field. 
In e and f, the cell bodies are in focus, while many of the neurites are not. g and h show a field of neurites without cell bodies. Comparable 
results were also obtained with cultures fixed with 3.5% paraformaldehyde in PBS followed by permeabilization with 0.1% Triton X-100 in 
PBS, or by immersion in cold acetone. Bar, 40/~m. 

frequently had varicosities, while MAP-2-positive neurites 
resembled dendrites in that they were relatively broad at their 
base and tapered as they extended away from the cell body. 
Fibroblasts and Schwann cells in the cultures stained very 
weakly, if at all, with MAP-Ib  and MAP-2 antibodies (not 
shown). 

Comparison of  phase and fluorescent images of  MAP-2- 
stained neurons suggested that MAP-2-positive neurites ex- 
tended beyond the region stained by the antibody (Fig. 1 l, 
compare panels C and D). In interpreting these observations, 
it is relevant that axons of  cultured neurons commonly arise 
from dendrites (3, 61), and neurites of  cultured sympathetic 
neurons have a strong tendency to fasciculate (61). Thus, the 
MAP-2-negative neurites that extend from MAP-2-positive 
neurites may represent axons arising from dendrites and/or 
axons that have fasciculated with dendrites. 

Discussion 

Explant Cultures Provide Preparations o f  Pure Axons 
and Enriched Fractions o f  Cell Bodies + Dendrites 

Cultured sympathetic neurons produce neurites that can be 
distinguished as axons or dendrites on the basis of  morpho- 
logical and physiological criteria (36, 37, 6 l; and see Fig. 1 l). 
The enormous difference between the lengths of  axon-like 
and dendrite-like neurites (several millimeters vs ~50 ~m) has 
provided the basis for using explant cultures to physically 
separate axons from cell bodies and dendrites. The purity of  
the axon preparation has been established morphologically 

(Fig. 1 and references 7 and 24) and biochemically, by show- 
ing that markers specific for cell bodies and dendrites are not 
detectable in axonal halos (Figs. 3 and 4). The CBM is less 
pure than axon preparations in that proximal axonal segments 
are present along with cell bodies and dendrites. In spite of  
this, we were able to clearly detect two MAPs (Figs. 7-9) and 
several other proteins (Fig. 3) that were substantially enriched 
in axons compared to the CBM, indicating that the amount 
of  axonal material in the CBM is quite small relative to the 
axonal halo. Thus, explant cultures represent a novel system 
with which direct biochemical procedures can be used to 
identify cytoskeletal components in pure axonal preparations, 
and to evaluate the distribution of  these components between 
axons and cell bodies + dendrites. 

Regional Differentiation o f  the Neuronal Cytoskeleton 

The composition of  the axonal cytoskeleton differs in several 
respects from that of  cell bodies + dendrites (see Figs. 3-11). 
MAP-2 is present in cell bodies and dendrites but not in axons 
(Figs. 3, 7, 9, and 11), while tau and the 210,000-mol-wt MAP 
are greatly enriched in axons compared to the rest of  the 
neuron (Figs. 7-9). The presence of  axon-enriched MAPs in 
the CBM is expected because these proteins are synthesized 
in the neuron cell bodies, which are localized entirely to the 
CBM, and the CBM contains proximal portions of  axons. 
Whether these axon-enriched MAPs are also minor compo- 
nents of  the cell body and/or  dendritic cytoskeletons is not 
known. In this regard, immunohistochemical analyses suggest 
that tau is not present in dendrites (5). 
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Figure 7. The distribution of tubulin and several MAPs in explant cultures. CBM and axons (N) were probed for microtubule proteins by 
immunoblotting. The samples were analyzed on 8% gels (MAP-3), or gels consisting of gradients of 5-12.5% (c~-tubulin [a-TUB], B-tubulin [B- 
TUB], and tau) or 4-8% (MAP-la, MAP-lb, and MAP-2). One experiment was performed with antibody to MAP-3, while at least four 
experiments were performed with all other antibodies. 

The cytoskeleton of  axons differs in other ways from that 
of the cell bodies + dendrites. For example, nonphosphory- 
lated and many of  the phosphorylated variants of NF 145 and 
NF200 compose neurofilaments in cell bodies and proximal 
(~<50 #m) neurites (see also reference 8), but only the more 
heavily phosphorylated forms are present in axons (Figs. 4-  
6), including one NF145 variant (in Fig. 5 d) that was only 
detected in axons. Comparable observations have also been 
made with other neuronal systems (4, 23, 29, 59). Some MAPs 
also consist of  variant forms which are differentially distrib- 
uted between CBM and axons. For example, the 60,000-mol- 
wt MAP consists of five variants (9); all five are present in the 
CBM, but only four are detectable in the axons (Fig. 10). 
Also, MAP-Ia  and MAP-lb in the CBM differ from their 
counterparts in axons with respect to mobility in 1-D gels 
(Fig. 7), raising the possibility that MAP-la  and MAP-Ib  
species in axons differs from those in cell bodies and dendrites. 

One issue of considerable interest is whether tubulin shows 
regional variation in isoform composition. Brain tubulin con- 
sists of a variety isoforms, as many as 10 a-tubulins and 10 
~-tubulins (25), and many of these are present in sympathetic 
neurons (26). This variation reflects the expression of multiple 
tubulin genes as well as posttranslational modifications (15). 
Two a-tubulins and two B-tubulins were identified in axons 
and the CBM, and at the level of resolution studied, axonal 
tubulins were indistinguishable from CBM tubulins. We are 
presently using high resolution isoelectric focusing gels (25) 

to more completely compare the tubulins of axons and cell 
bodies + dendrites. 

The differential distribution of variants of a given cytoskel- 
etal protein between axons and CBM may reflect posttrans- 
lational modifications that are preferentially expressed in one 
domain of the neuron compared to others. The axon-specific 
variant of the NF145 is probably generated by such a mech- 
anism because axons lack the capacity for protein synthesis 
(11). It is also possible that cytoskeletal proteins are modified 
in the cell body, with only some of the resulting variants 
undergoing transport into the axons. 

In the present discussion, we have compared the composi- 
tion of the axonal cytoskeleton with that of the cell bodies + 
dendrites. It is important to bear in mind that the cell body 
and dendrite are distinct domains of the neuron, and that the 
cytoskeleton of the cell body and dendrite may differ from 
each other as well as from that of the axon. 

Consequences of Regional Differences in Composition 
of the Neuronal Cytoskeleton 
These and other results (4, 5, 11, 12, 17, 20-23, 29-31, 59) 
indicate that neuronal cytoskeletal proteins can be classed as 
dendrite enriched, axon enriched, cell body enriched, or pres- 
ent in all regions of  the neuron. Cytoskeletal proteins that 
show selective partitioning are probably specialized for either 
the cell body, axonal, or dendritic cytoskeletons, while those 
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etons are synthesized primarily in the neuron cell body. Thus, 
segregation of these proteins occurs initially within the cell 
body. The nature of the segregation process is unknown, 
although it may be coupled to the assembly of the axonal and 
dendritic cytoskeletons (8, 39, 47). Implicit in this possilyility 
is that the assembly of the axonal and dendritic cytoskeletons 

Figure 8. Distribution of phosphorylated tau in explant cultures. 
CBM and axons from explant cultures labeled with [~2P]PO4 were 
dissolved in 1% SDS and then assayed for tau by immunoprecipita- 
tion. Lanes 1 and 2 show immunoprecipitates from CBM and axons, 
respectively. Tau species of high ( 100,000- 110,000) and low (55,000- 
68,000) molecular weight (49) (HMWtau and LMWtau, respectively) 
are indicated. Lanes 3 and 4 are control (without first antibody) 
precipitates from the CBM and axons, respectively. • identifies a 
band of immunoreactive material that is a fragment of the higher 
molecular weight tau (49). 

present throughout the neuron probably have more general- 
ized functions with respect to these cytoskeletons. 

It is likely that the regional differences in composition of 
the neuronal cytoskeleton generate corresponding differences 
in its structure. For example, the spacing between microtu- 
bules in axons differs dramatically from that in dendrites 
(reference 62 and see introduction). MAPs influence the 
spacing between microtubules (19, 35, 58, 60) and also cross- 
link microtubules with other cytoskeletal structures in vitro 
(27, 35, 40, 44, 45, 55). Moreover, the various MAPs appear 
to differ with respect to these parameters. For example, MAP- 
2, but not tau, is able to cross-link microtubules with actin 
filaments (52) and neurofilaments (54). MAP-2 and tau also 
differ in the extent to which they extend away from the 
microtubule wall (63). These considerations suggest that the 
differences in the complement of MAPs in axons and den- 
drites represent the molecular basis for the differences in 
microtubule organization seen in these neurites. 

Differentiation o f  the Neuronal  Cytoskeleton and 
Neuronal  Form 

The proteins comprising the axonal and dendritic cytoskel- 

Figure 9. Identification of MAPs in CBM and axons by co-assembly 
with brain microtubule proteins in the presence of taxol. Soluble 
extracts from CBM and axons of cultures labeled for 12 d were 
assayed for MAPs by co-assembly with unlabeled brain microtubule 
protein in the presence of taxol (see Materials and Methods). MAPs 
were released from the taxol-microtubules by salt extraction and then 
incubated in a boiling water bath to prepare heat-stable MAPs. Lanes 
1 and 2, salt extract from taxol-microtubules of CBM and axons, 
respectively. Lanes 3 and 4, heat-stable MAPs of CBM and axons, 
respectively. MAP-2, the 210,000-mol-wt MAP (210K) and high and 
low molecular weight taus (HMW tau and LMW tau) are indicated. 
The positions of molecular weight standards are indicated on the left: 
these are, from top to bottom, 200,000, 116,000, 94,000, 68,000, and 
43,000. Control experiments in which soluble and insoluble extracts 
were analyzed by 2-D gels indicated that most of the labeled tubulin 
in the CBM was solubilized, but a majority of the labeled tubulin in 
the neurites was not solubilized. The basis for this difference in tubulin 
solubility in CBM and axons is being studied. Other experiments in 
which soluble and insoluble extracts were probed for MAP-la, MAP- 
l b, and tau by immunoblotting established that the vast majority of 
tau in the CBM and axon-like neurites was solubilized (not shown). 
However, most of the MAP-Ia and MAP-lb in both CBM and axons 
remained insoluble and thus was not available for co-assembly onto 
microtubules. 
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occurs at distinct locations in the neuron cell body, and that 
the composition of the axonal and dendritic cytoskeletons is 
specified at these locations. Enzymes involved in the post- 
translational processing of cytoskeletal components may also 
become associated with the axonal or dendritic cytoskeletons 
at these assembly sites. Regardless of the specific mecha- 
nism(s), this segregation process represents a key event in the 
differentiation of the axonal and dendritic cytoskeletons. 

Table I. Distribution of MAPs between CBM and Axons 

MAP Exp. % in CBM % in axons 

MAP-2 1 100 0 
2 100 0 

210,000-mol-wt MAP 1 11 89 
2 16 84 

Tau 1 7 93 
2 17 83 

Tubulin* 1 41 59 
2 41 59 

These results are based on analyses of MAP distribution beween CBM and 
axons as determined with the taxol co-assembly assay (see Materials and 
Methods), I-D gel profiles of the heat-stable fractions of taxol-microtubules 
from CBM and axons were scanned with a laser densitometer. The area under 
the peaks corresponding to the MAPs was quantified using a digitizer, and the 
distribution of the various MAPs between CBM and axons was calculated as 
follows: 

area of MAP peak in CBM or axons 
area of MAP peak in CBM + axons 

x 100. 

The results from two separate experiments (Exp.) are shown. The cultures were 
labeled for I l d (Exp. 2) or 12 d (Exp. 1). The results of experiment l were 
derived from lanes 3 and 4 of the fluorograph depicted in Fig. 9. 
* The results for tubulin were obtained by dissolving CBM and axonal prepa- 
rations from explant cultures labeled for 12 d in sample buffer, analyzing the 
resulting material on 2-D gels, excising the tubulin spots from the gels, and 
quantifying their [35S]methionine content as described previously (8). 

Individual neurons consist of morphologically distinct do- 
mains such as the axon and dendrites (2, 51, 62). The gener- 
ation of several of the morphological features that distinguish 
axons from dendrites has been attributed to factors that are 
intrinsic to the neuron (2, 3). It has been suggested that the 
differences in the morphology of axons and dendrites reflect 
underlying differences in their cytoskeletons. If this is correct, 
then the segregation of axonal from dendritic cytoskeletal 
proteins may be a manifestation of endogenous determinants 
of neuronal morphology. 

Although aspects of axonal and dendritic morphology are 
apparently endogenously specified, these neurites exhibit con- 
siderable plasticity in their external shapes in response to a 
variety of environmental stimuli (53). This morphological 
flexibility is indicative of a dynamic quality to the cytoskel- 
etons that provide the architectural framework of these neu- 
rites. Cytoskeletal dynamics is defined by the equilibria that 
govern the assembly and disassembly reactions of the various 
cytoskeletal proteins. Posttranslational modification of cyto- 
skeletal proteins influences these reactions in vitro (32, 33, 
42, 44, 45, 52, 54, 57), and may thus constitute a mechanism 
for modulating them in vivo. Subtle alterations of cytoskeletal 
composition occur locally within axons, and possibly in den- 
drites, as a result of posttranslational modifications (18, 46). 
For example, we have identified a variant of the NF145 that 
is apparently generated by posttranslational processing of 
other NF145 variants within the axon (Fig. 5). We have also 
obtained direct evidence for phosphorylation of tau (Fig. 8), 
NFI45, NF68, the 60,000-mol-wt MAP, and tubulin in axons 
(Black, M. M., and P. Keyser, unpublished observations). 
These as well as other posttranslational modifications may 
contribute to the dynamic qualities of the neuritic cytoskel- 
etons that are essential for the expression of morphological 
plasticity. 

Figure 10. 2-D gel profiles of  total proteins in CBM and axons. CBM and axons from a culture labeled for 5 d were dissolved in sample buffer 
and analyzed directly on 2-D gels. Fluorographic exposures of  the CBM (a) and axons (b) are shown. The 60,000-mol-wt MAPs (arrowheads), 
tubulin (T), and actin (A) are indicated. The spots identified as the 60,000-mol-wt MAPs were confirmed as such in peptide mapping 
experiments (not shown) in which the proteins in 2-D gels of  SDS extracts were compared to the bonafide MAPs obtained by a selective 
extraction procedure (9). These data are representative of  more than six experiments. 
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Figure 11. Immunostaining of cultured sympathetic neurons with antibodies to MAP-lb,  MAP-2, and tubulin. (A and B) l-d-old cultures 
were extracted and fixed with glutaraldehyde as described in the Materials and Methods section and then stained with antibodies to tubulin (A) 
or MAP-2 (B). The phase-contrast images of the cells were very faint and did not photograph well. However, the fields depicted in a and b had 
comparable neurite densities. Note that the neuron cell bodies stain with both antibodies. Also most and probably all neurites stain with 
antibody to tubulin. In contrast, only a few neurites stained with antibodies to MAP-2, and these were generally short relative to most neurites 
in the cultures. (C and D) Phase-contrast (c) and immunofluorescent (d) images of a 2-d-old culture stained with antibody to MAP-2. While 
some of the neurites elaborated by the neuron depicted in c and d stained with the antibody, others did not (>). (e and f )  Phase-contrast (e) 
and immunofluorescent ( f )  images of a 7-d-old culture stained with antibody to MAP-lb. All cell bodies and most neurites stain with this 
antibody. Bar, 40 #m. 
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