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Abstract. A glycoprotein that exhibits alkaline phos- 
phatase activity and binds Ca 2÷ with high affinity has 
been extracted and purified from cartilage matrix vesi- 
cles by fast protein liquid chromatography. Antibodies 
against this glycoprotein were used to analyze its dis- 
tribution in chondrocytes and in the matrix of calcify- 
ing cartilage. Under the light microscope, using im- 
munoperoxidase or immunolhorescenee techniques, 
the glycoprotein is localized in cbondrocytes of the 
resting zone. At this level, the extracellular matrix 
does not show any reaction. In the cartilage plate, be- 
tween the proliferating and the hypertrophic region, a 
weak immune reactivity is seen in the cytoplasm, 
whereas in the intercolumnar matrix the collagen 
fibers appear clearly stained. Stained granular struc- 
tures, distributed with a pattern similar to that of 

matrix vesicles, are also visible. Calcified matrix is 
the most stained area. These results were confirmed 
under the electron microscope using both im- 
munoperoxidase and protein A-gold techniques. In 
parallel studies, enzyme activity was also analyzed by 
histochemical methods. Whereas resting cartilage, the 
intercellular matrix of the resting zone, and calcified 
matrix do not exhibit any enzyme activity, the zones 
of maturing and hypertrophic chondrocytes are highly 
reactive. Some weak reactivity is also shown by chon- 
drocytes of the resting zone. The observation that this 
glycoprotein (which binds Ca 2+ and has alkaline phos- 
phatase activity) is synthesized in chondmc3~s and is 
exported to the extracelhlar matrix at the time when 
calcification begins, suggests that it plays a specific 
role in the process of calcification. 

THOUGH the molecular mechanism of tissue calcifica- 
tion still awaits full elucidation, undisputed evidence 
points to the involvement of alkaline phosphatase in 

this process. First, it has been repeatedly reported that the 
enzyme is present at significant levels in precalcifying ma- 
trices. Second, in cartilage and in other mineralizing tissues, 
an intense alkaline phosphatase activity is detected in matrix 
vesicles, where the earliest crystals of calcium phosphate are 
formed (5). In contrast, matrix vesicles of the elastic carti- 
lage of the epiglottis, a tissue that does not calcify, show no 
alkaline phosphatase activity (24). 

Studies on alkaline phosphatase extracted from various 
mineralizing tissues (8, 13, 14, 19, 20, 31) have shown that 
the purified enzymes are heterogeneous with respect to 
molecular weight, isoelectric point, substrate specificity, and 
stability. Thus, despite the great deal of data accumulated 
and of the discovery of its natural substrates, ATP and 
pyrophosphate (28), the function of the enzyme in calcifica- 
tion is not yet well understood. 

To gain further evidence for its role in tissue mineraliza- 
tion, we have purified alkaline phosphatase from matrix vesi- 
cles of calf scapula epiphyseal cartilage and have then in- 
vestigated its biochemical properties and the possible corre- 

lation between the degree of cartilage calcification and the 
tissue distribution of the enzyme, as detected by immuno- 
histochemical techniques. Epiphyseal cartilage is an ideal 
tissue for this purpose, since it eoatains a spectrum of 
regions ranging from noncalcifying (the resting cartilage) to 
the fully mineralized (the zone of provisional caleitieafion), 
including the area where the matrix is prepared to be miner- 
alized. Preliminary results of this work have been published 
elsewhere (10). 

Materials and Methods 

Calf scapulae, provided by an abattoir in Udine (Italy), were removed from 
the animals immediately after death and transferred in ice to the laboratory 
where they were immediately processed. 

Preparation of Matrix Vesicles from Scapula Cartilage 
Once cleaned of adherent tissues, the transforming and ossifying zones of 
the preosseous cartilage were collected. The pmc.zxlare for the preparation 
of matrix vesicles was essentially as described by All et al. (1). Pieces of 
the tissue were digested in a solution (10 ml/g of tissue) containing 1,000 
U of collagenase/ml (Worthington Biochemical Corp., Free&old, NJ), 120 
mM NaCI, 10 mM KCI, 1,000 U of penieillin/ml, 1 nag of streptomycin/ml, 
and 20 mM Hepes buffer, pH 7.45. The digestion was carried out at 370C 
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for 2 h in the presence of the following protease inhibitors: ct-cysteine pro- 
teinase inhibitor (0.1 libl), cystatin (0.1 laM), and N-ethylmaleimide (0.1 
mM). The digested mixture was centrifuged at 20,000 g for 10 min and the 
sediment was discarded. The supernate was then spun at 200,000 g for 20 
min and the resulting precipitate was washed once with 10 mM Tris-buffered 
saline solution, pH 7.6. 

Extraction and Purification of Alkaline Phosphatase 
from Matrix Vesicles 
The matrix vesicles fraction was suspended in 0.1 M deoxycholate-10 mM 
Tris-HCl buffer (pH 7.6) containing 150 mM NaC1, and incubated for 30 
min at 37°C before adding an equal volume of n-butanol, as described by 
Hsu et al. (18). The extraction was repeated twice. The combined extracts 
were centrifuged and the aqueous extract was extensively dialyzed against 
20 mM Tris-HCl buffer, pH 7.5 (buffer A). A protein sample of ,~4 mg in 
2.5 ml of buffer A was then applied to a MONO Q HR 5/5 anion-exchange 
column of the fast protein liquid chromatography (FPLC) ~ apparatus 
(Pharmacia Fine Chemicals, Uppsala, Sweden), pre-eqnilibrated with the 
same buffer. The material was then eluted from the column by applying a 
stepwise gradient (up to 1.2 M) of KCL in buffer at a flow rate of I ml/min. 
Fractions (1.0 ml) of the eluate were collected and analyzed for enzymatic 
activity, Ca2+-binding, and protein content. The peak fractions were pooled 
and subjected to slab gel electrophoresis. 

Alkaline Phosphatase Assay 
The activity was assayed in l-m] cuvettes by measuring the release ofp-ni- 
trophenol from p-nitrophenylphosphate (2 mM) at 37°C using a Pye Uni- 
cam SP8-400 recording spectrophotometer at a wavelength of 410 nm. The 
assay mixture (1.0 ml) contained 0.2 M diethanolamine-HCl, pH 10.0, and 
2 mM substrate, 1 mM MgCI2. Alternatively, the enzyme activity was de- 
termined with either 2 mM ATP as substrate in 0.2 M Tris-HC1 buffer, pH 
7.4 containing 1 mM MgCI2, or with 2 mM pyrophosphate in 0.2 M 
diethanolamine-HCl, pH 8.5, containing 1 mM MgCI2. In both cases, the 
time of incubation was 30 rain at 37°C and the released phosphate was deter- 
mined by the method of Baginski et al. (2). 

Protein concentrations were determined by the method of Bradford (6), 
using bovine immunoglobulin as standard. 

SDS Slab Gel Electrophoresis and 
Electrophoretic Blotting 
Proteins were separated by SDS gradient gel electrophoresis (12 h at 12 mA) 
in 10-20% polyacrylamide gels (9.5 x 18 cm) using the discontinuous sys- 
tem of Laemmli (23). Staining was performed with Coomassie Blue G-250 
for proteins and with the periodic acid/Schiff reagents (22) for glycopro- 
reins. Cytochrome c (12,500), chymotrypsinogen A (25,000), ovalbumin 
(45,000), and bovine serum albumin (BSA) (68,000), all provided by 
Boehringer Mannheim GmbH (Mannheim, FRG), were used as protein 
standards for the calculations of apparent molecular weights. Electropho- 
retic blotting was carried out according to Towbin et al. (30). 

2 +  ° ° Ca -binding Measurements 
Ca2÷-binding measurements were performed essentially by the technique 
of Gratzer and Beaven (16) using Arsenazo III (E. Merck, Darmstadt, FRG). 
The Ca 2+ indicator was purified on a Chelex colunm (12). Measurements 
of free and total Ca 2+ concentrations were obtained spectrophotometrically 
at 685-665 nm using a Phoenix dual wavelength recording spectrophotome- 
ter (Phoenix Precision Instrument Co., Philadelphia, PA) by a back-titration 
with 2 mM EDTA (pH 7.4) of a mixture containing in 3 ml ~100 ~tg of pro- 
tein, 0.16 mM Arsenazo III, 50 mM Tris-glycine buffer (pH 8.3), and 
sufficient free Ca 2+ to obtain an absorbance of ,'~0.07. Aliquots of 5 nmol 
EDTA were repeatedly added to the mixture until titration was complete. 
Data were plotted according to Scatchard (26). 

Analysis of Amino Acid and Carbohydrates 
Amino acids were determined in the glycoprotein hydrolyzate (6 N HCI, 
24 h at 105°C) with the Aminoacid Analyzer Technicon NC 2 (Technicon 
Instruments Corp., Tarrytown, NY). Sugars were determined in a sample 
hydrolyzed in 2 N HCI for 2 h. Derivatization was carded out with dansyl- 
hydrazine, and reversed-phase high performance liquid chromatography 

1. Abbreviation used in this paper: PAP, peroxidase-antiperoxidase. 

was performed using a 250 x 4.6-mm column of Ultrasphere-ODS (C-18) 
(5 ~tm) (model 344, connected with a fluorimeter; Beckman Instruments, 
Inc., Palo Alto, CA). The areas of peaks were calculated using a Hewlett- 
Packard 3390 automatic integrator. 

Production of Antibodies 
200 Ixg of protein, showing alkaline phosphatase activity and Ca 2+ binding 
capacity, was subjected to SDS PAGE according to Laemmli (23). The gel 
was then stained with Coomassie Blue in water, and the protein correspond- 
ing to a 52,000-mol-wt band was extracted by grinding the gel in a Potter 
with 0.9% NaC1 to a final volume of 1 ml. The homogenate was then added 
to 1 rnl of complete Freund's adjuvant (Difco Laboratories Inc., Detroit, MI) 
and administered by intramuscular injection into the leg of rabbits. Bi- 
monthly booster injections of 0.2 mg of antigen in incomplete adjuvant were 
given until a satisfactory titer was obtained. Blood samples were taken from 
the marginal vein of the ear before each injection, and serum antibodies 
directed against the cartilage alkaline phosphatase were assayed by using the 
radial immunodiffusion method of Ouchterlony (25). 

lmmunofluorescence Microscopy 
Indirect immunofluorescence was performed on both undecalcified and 
decalcified (10% EDTA in pH 7.2 phosphate buffer for 10 min) 8-1xm thick 
frozen sections. After a short fixation in methanol, sections were rinsed in 
0.05 M phosphate buffer normal saline (PBS), then incubated in a moist 
chamber for 30 min at room temperature with anti-alkaline phosphatase 
antiserum diluted 1:20 in PBS. After three washes in PBS, the sections were 
incubated for 20 min at room temperature with fluorescein isothiocyanate- 
conjugated goat anti-rabbit IgG (1:5 dilution in PBS). Sections were then 
washed three times (10 rain each) with 0.05 M PBS, mounted in a glycerin- 
PBS mixture, and examined under a Leitz Orthoplan microscope equipped 
with an Hg light source, using a KP 490 excitation filter and a K 510 barrier 
filter. Controls included omission of anti-alkaline phospbatase antiserum 
and its replacement with rabbit nonimmune serum. 

Immunoperoxidase Microscopy 
Immunoperoxidase studies were performed both at the light and electron 
microscopic levels. For this purpose, blocks of tissue were frozen in isopen- 
tane, in liquid nitrogen, and sectioned at 10 Ixm. Sections were fixed with 
4% phosphate-buffered paraformaldehyde: fixed floating sections were 
thoroughly washed in PBS, treated with H202 to inhibit endogenous perox- 
idase, and finally incubated with anti-alkaline phosphatase antiserum (1:20) 
in a glass vial at room temperature for 45 min. After three washes in PBS 
(10 min each), the sections were maintained for 45 min in a new vial contain- 
ing goat anti-rabbit IgG (1:5, DAKO Corp., Santa Barbara, CA), washed 
again (PBS, three times for 10 min each), and finally incubated with rabbit 
peroxidase-antiperoxidase (PAP) complexes (DAKO Corp.) in another vial 
for 45 min. After careful washing in PBS, the reaction for peroxidase was 
performed according to Graham and Karnovsky (15). Washed sections either 
were mounted on coverslips for light microscopy or postfixed in 1% OsO4 
in 10 mM phosphate buffer, pH 7.2, and embedded in Araldite for electron 
microscopy. Controls were performed as above. 

lmmunogold Electron Microscopy 
Colloidal gold was prepared by reducing 50 rnl of 0.01% HAuCI with 2.5 
ml of 1% sodium citrate. Stabilization of 10 ml of colloidal gold was ob- 
tained by adding 38 I.tg of protein A (0.06 ml of a stock solution containing 
634 ktg/ml) after serial dilution tests. 1 mg of protein A in 0.1 ml of H20 
was added to 10 ml of stabilized colloidal gold, allowed to stand, then mixed 
with 1 ml of 1% polyethylene glycol. The suspension was centrifuged at 
100,000 g for 1 h at 4°C. The supernatant containing free protein A was dis- 
carded and the pellet resuspended in 6 ml of PBS containing 0.2 mg poly- 
ethylene glycol/ml. Tissue samples were fixed in 4% phosphate-buffered 
paraformaldehyde and embedded in araldite without OsO4 postfixation. 
Ultrathin sections were cut with a diamond knife and mounted on formvar- 
coated golden grids. After a rinse in PBS, the sections were exposed to a 
solution of 0.5 % ovalbumin in PBS, then incubated with anti-alkaline phos- 
phatase antiserum (1:10 in PBS) overnight at 4°C. After three washes in PBS 
(20 min each), the sections were incubated with protein A-gold for 1 h at 
room temperature, washed in PBS, and some sections were stained with ei- 
ther uranyl acetate and lead citrate or with uranyl acetate only. Controls in- 
cluded omission of the antiserum, use of nonimmune rabbit serum, and use 
of uneomplexed protein A before application of protein A-gold complexes. 
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Figure 1. F P L C  of  deoxycholate-butanol extract of  matrix vesicles. A sample of  4 mg protein was applied to a M O N O  Q anion-exchange 
column equilibrated with 20 m M  Tris-HC1 buffer, pH 7.5. The column was run at room temperature and the material was eluted by applying 
a stepwise gradient  of  KC1 (up to 1.2 M) in buffer at a flow rate of  1 ml/min.  The eluate was continuously monitored by measuring the 
absorbance at 280 rim. 

Enzyme Histochemistry 

Histochemical assays of alkaline phosphatase activity with naphthol-AS- 
phosphate and Fast Blue BB was performed on both frozen and glycol- 
methacrylate sections. These were prepared and stained as reported else- 
where (4). 

Results 

As shown in Fig. 1, the application of the aqueous phase of 
the deoxycholate-butanol extract of matrix vesicles to the 
FPLC column, followed by the elution with increasing con- 
centrations of KCI, produces the separation of four peaks. 
Fractions of each peak were then analyzed for their en- 
zymatic activities using p-nitro-phenyl-phosphate, ATP, and 
pyrophosphate as substrates (data are summarized in Table I) 
and for their CaZ+-binding activity. All peaks exhibited phos- 

phatase activities. However, only fractions of peak 1 also 
showed Ca 2÷ binding with high affinity and for this reason 
they were further analyzed. Fractions were pooled, dialyzed 
against distilled water, and lyophilized. Proteins in this pool 
were analyzed by SDS gel electrophoresis. As shown in Fig. 
2, the pool contained a single component, a glycoprotein 
with an apparent molecular weight of 52,000 (lanes c and d). 
The phosphatases present in peaks 2-4 (Fig. 1) have lower 
molecular weight (~30,000) and are not recognized by the 
antibodies raised against the phosphatase of peak 1 (see be- 
low). Their presence in the deoxycholate-butanol extracts 
very likely account for the relatively small increase in 
specific activity of the Ca2+-binding phosphatase, lower 
than that expected on the basis of protein recovery in peak 
1. In this respect, the change in microenvironment around 
the enzyme (from the lipid-containing extract to the water so- 

Table I. Purification of Alkaline Phosphatase from Cartilage Matrix Vesicles by FPLC 

Specific activities (~tmol substrate/min per mg protein)* 

Purification steps Total protein pNPPase* ATPase§ PPasell 

Matrix vesicles 

Deoxycholate-butanol extract 

FPLC 
Peak 1 
Peak 2 
Peak 3 
Peak 4 

Residual fractions 

Total FPLC 

mg 

20.20 ± 1.35 

4.05 ± 0.32 

0.78 ± 0.15 
0.21 ± 0.10 
1.03 ± 0.20 
0.37 ± 0.07 

0.78 + 0.26 

3.17 ± 0.60 

14 ± 2 0.10 ± 0.02 0.4 ± 0.1 

63 ± 7 0.43 ± 0.08 1.8 ± 1.0 

116 ± 11 0.73 ± 0.07 3.4 ± 1.0 
74 + 15 0.54 ± 0.15 2.1 ± 0.5 
95 ± 15 0.61 ± 0.10 2.7 + 0.6 

113 ± 20 0.76 ± 0.11 3.1 ± 0.6 

* Mean values ± SD (from 6-14 experiments); assays in the presence of 1 mM Mg +÷. 
* p-Nitro-phenyl-phosphatase activity was measured in 0.2 M diethanolamine-HCI pH l0 containing 2 mM substrate. 
§ ATPase activity was measured in 0.2 M Tris-HCI pH 7.4 containing 2 mM substrate. 
I[ Pyrophosphatase (PPase) activity was measured in 0.2 M diethanolamine-HCl pH 8.5 containing 2 mM substrate. 
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Figure 2. SDS PAGE of protein during alkaline phosphatase puri- 
fication. Proteins were analyzed by SDS gradient gel electropho- 
resis in 10-20% polyacrylamide gels (9.5 x 18 cm) using the dis- 
continuous system of Laemmli (23). Samples and amount loaded 
are: lane a, standards (BSA, ovalbumin, chymotrypsinogen A, cy- 
tochrome c, 10 ~tg each); lane b, deoxycholate-butanol extract of 
matrix vesicles, 30 lag protein; lanes c-e, 5 lag protein of peak 1. 
Samples were subjected to electrophoresis for 12 h at 12 mA and 
stained with Coomassie Blue G-250 (lanes a-c); glycoprotein were 
evidentiated by periodic acid/Shift reaction according to Konat et 
al. (22) (lane d). Proteins of lane e were transferred to nitroceUu- 
lose, reacted with rabbit antiserum raised against phosphatase, and 
stained with peroxidase-eonjugated swine immunoglobulins to rab- 
bit IgG. 

lution) might also be critical. In fact a six- to sevenfold incre- 
ment of the specific activity of peak 1 phosphatase was ob- 
served upon addition of phosphatidylcholine (0.5 mg/ml) to 
its assay mixture. 

The Ca2÷-binding properties of  the phosphatase of  peak 1 
were then analyzed (Fig. 3). The enzyme binds Ca 2÷ with 
high affinity (Kd of 0.31 IxM), and the number of binding 
sites are 25 + 3 per mole of  protein (mean value of four ex- 
periments + SEM). The deoxycholate extract and peak 1 
bind 270 + 10 and 490 + 50 nmol of  Ca 2÷ per milligram of 
protein, respectively, with a purification ratio of 1.8, the 
same observed for the phosphatase activity. 

To evaluate possible antigenic similarities of the four phos- 
phatases, fractions of peaks 1-4 were subjected to SDS PAGE 
under reducing conditions, followed by electroblotting and 
staining of the nitrocellulose fingerprints with the antiserum 
to the peak 1 phosphatase (30). These experiments showed 
that the antiserum reacted intensely only with the reduced 
molecule of 52,000 mol wt (Fig. 2, lane e) and was not react- 
ing with the proteins of  the other three peaks (data not 
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52,000 glycoprotein. Samples (100 lag) of the purified glycoprotein 
were added to a mixture containing 0.16 mM Arsenazo III, 50 mM 
Tris-glycine buffer (pH 8.3), and free Ca 2+. Aliquots of 5 nmol 
EDTA were added until titration was complete as described in Ma- 
terial and Methods. Measurements of free Ca 2÷ concentration 
were obtained spectrophotometrically. Data are plotted according 
to Scatchard (26). 

shown). The specificity of  antiserum was also documented 
by the formation of immunocomplexes whose removal, by 
addition of protein A and centrifugation, caused the same ex- 
tent of  decrease of  total phosphatase activity and of the num- 
ber of Ca2+-binding sites (from 50 to 75 %). 

The Ca2+-binding alkaline phosphatase was shown to 
have a different localization in the different zones of  the carti- 
lage by immunohistochemical methods (peroxidase-antiper- 
oxidase and immunofluorescence techniques). In resting 
cartilage, both methods showed that the enzyme has an intra- 
cellular localization, the intercellular matrix being com- 
pletely negative (Figs. 4 and 5). Under the electron micro- 
scope, by both PAP and protein A-gold methods, a reactivity 
was evident only for perinuclear cisterna and cisternae of 
granular endoplasmic reticulum, where the strongest reac- 
tion was found in ribosomes (Figs. 7 and 8). 

In the zones of  sedated cartilage (maturing, hypertrophic, 
and degenerating), the chondrocytes were still positive (Fig. 
4). Furthermore, a positive reaction was found in the matrix 
between chondrocyte columns, related to thin filaments and 
small granular structures. In oblique (Fig. 6) and transverse 
sections, these granular structures appeared to be distributed 
around cbondrocytes, a localization similar to that of  matrix 
vesicles. Immunostaining was very intense at the level of the 
calcifying and calcified cartilage (Fig. 4). 

Figures 4-8. (Fig. 4) Immunoperoxidase staining of epiphyseal cartilage reacted with anti-alkaline phosphatase; resting zone (top) and 
calcified matrix (bottom). Note that the PAP reaction is positive in chondrocytes, intercellular longitudinal bundles where granules and 
fibrils are detectable and, above all, in calcified matrix. Matrix of the resting zone is negative. (Fig. 5) lmmunoperoxidase staining of the 
resting cartilage; detail. Note the intense PAP reaction in chondrocytes and the negative reaction in intercellular matrix. (Fig. 6) Im- 
munoperoxidase staining of the maturing zone of epiphyseal cartilage; section cut obliquely through chondrocyte columns; halos of positive 
granules surround the chondrocytes. (Fig. 7) Immunocytochemical localization of alkaline phosphatase in a resting chondrocyte using the 
PAP method on frozen 8-I.tm thick sections, subsequently postfixed in OsO4 and embedded in araldite. Ultrathin sections examined with- 
out further staining. Note the intense reaction in perinuclear cisterna and endoplasmic reticulum. (Fig. 8) Immunocytochemical localization 
of alkaline phosphatase in resting cartilage; control section. Detail of a chondrocyte (compare with Fig. 7). 

The Journal of Cell Biology, Volume 103, 1986 1618 



2+ de Bernard et al. Cartilage Ca -binding Alkaline Phosphatase 1619 



Figures 9-11. (Fig. 9) Immunogold staining of alkaline phosphatase in calcifying cartilage: samples embedded in araldite without OsO4 
postfixation. Tissue was fixed in paraformaldehyde. Uranyl acetate and lead citrate staining. (a) Control section; arrows point to a few 
background gold particles, easily distinguishable from proteoglycan granules. Note negativity of matrix vesicles. (b) Specific immunostain- 
ing of matrix vesicles of different width (arrows). (c) Specific immunostaining of two matrix vesicles. (Fig. 10) Immunogold staining of 
alkaline phosphatase in three partially calcified matrix vesicles; detail. Tissue preparation as in Fig. 9. (Fig. 1t) Immunogold staining of 
alkaline phosphatase in an area of initial cartilage calcification. Note colloidal gold particles in calcification nodules. Tissue preparation 
as in Figs. 9 and 10. 

Under the electron microscope, besides intracellular reac- 
tion of granular endoplasmic reticulum, positive reaction 
was found in the intercellular matrix, where collagen fibrils 
and, to a greater extent, matrix vesicles were labeled by the 
peroxidase and gold reactions (Fig. 9). The gold particles 
were often placed over the outer membrane of the matrix 
vesicles. Calcifying matrix vesicles, i.e., matrix vesicles 
containing early crystals, were also reactive (Fig. 10). 

In the areas of  initial calcification, positive reaction was 
found over and at the periphery of calcification nodules (Fig. 
11). The fully calcified matrix was also labeled by the gold 
particles that, however, were mostly placed at its periph- 
ery. None of the control sections gave a positive reaction 
(Fig. 9 a). 

In parallel with the immunochemical study of the distribu- 
tion of the alkaline phosphatase, the enzyme activity was also 

The Journal of Cell Biology, Volume 103, 1986 1620 



Figures 12-15. (Fig. 12) Histochemical demonstration of alkaline phosphatase activity in epiphyseal cartilage; note weak reaction of resting 
(upper) and degenerating (bottom) chondroeytes, strong reaction of maturing chondrocytes (center), and extraceUular reaction at their 
sites. Naphthol-AS-phosphate and Fast Blue BB. (Fig. 13) Histochemical demonstration of alkaline phosphatase activity in epiphyseal 
cartilage; detail of Fig. 12. Note weak reactivity of resting chondrocytes (upper left) and strong reactivity of maturing chondrocytes. The 
enzyme is also active extracellularly, at both sites of these chondrocytes, where matrix vesicles are usually located. Naphthol-AS- 
phosphate and Fast Blue BB. (Fig. 14) Histochemical demonstration of alkaline phosphatase activity in epiphyseal cartilage; cross-section 
of chondrocyte columns. Note alkaline phosphatase activity in the membrane of the chondrocytes and their processes (arrow) and reactivity 
of pericellular areas, corresponding to those where matrix vesicles are usually located. Naphthol-AS-phosphate and Fast Blue BB. (Fig. 
15) Histochemical demonstration of alkaline phosphatase activity in epiphyseal cartilage; detail of calcified cartilage. Alkaline phosphatase 
activity, visible in noncalcified matrix (left), is completely absent in the calcified cartilage (center and right). Naphthol-AS-phosphate 
and Fast Blue BB. 

analyzed by histochemical methods. No reaction was found 
in the resting cartilage (Fig. 12). The reaction became 
strongly positive in the zones of maturing and hypertrophic 
chondrocytes (Figs. 12 and 13). This was chiefly seen on pe- 
ripheral membrane of chondrocytes and their cytoplasmic 
processes (Figs. 13 and 14). Moreover, at the level of these 
zones, there was an evident extracellular reaction, which oc- 
curred in the same pericellular areas, where matrix vesicles 
are usually located (Figs. 13 and 14). 

In the hypertrophic and degenerating zones, where the 
early calcification nodules can be found, the chondrocyte 
membrane,  as well as cytoplasmic processes, stain positively 

and the reaction was also positive along a pericellular halo, 
roughly corresponding to the area of  matrix vesicles (Fig. 
14). On the contrary, no enzymatic activity was detectable 
in the calcified matrix (Fig. 15). 

Discussion 

The rate of hydrolysis of  phosphate esters by alkaline phos- 
phatase at physiological pH is considered by some investiga- 
tors to be too low for being relevant to the process of miner- 
alization. Other investigators are more inclined to consider 
the enzyme as a phosphate transporter (14). However, eluci- 
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dation of the role of alkaline phosphatase in the mechanism 
of calcification requires an analysis that goes beyond the 
catalytic properties of the protein. In this regard, it is in- 
teresting that production of inorganic phosphate by the phos- 
phatase can be associated with high capacity binding of 
Ca 2+ to the enzyme molecule, as shown here. This is not 
the only Ca2+-binding protein discovered in a mineralizing 
tissue. A dentine phosphoprotein has been extensively stud- 
ied from this point of view (35). Also interesting is that this 
protein, like the phosphatase here described, shows many 
high-affinity binding sites (35), very likely for the specific 
sequence of oxygen- and phosphate-containing amino acids, 
suitable for the coordination of Ca 2÷, as shown by nuclear 
magnetic resonance analysis (7). This feature seems to be 
unique for Ca2+-binding proteins, as most of them have few 
binding sites. This points to a specific role of this class of 
proteins in calcifying tissues. 

The alkaline phosphatase purified from matrix vesicles of 
epiphyseal cartilage is not different from the enzyme previ- 
ously purified from the whole tissue (28). The two glycopro- 
teins have the same fundamental biochemical features: 
amino acid and carbohydrate composition (data not shown) 
(9, U), Ca 2+ affinity (32), substrate specificity (28), and 
molecular weight (32), with the present enzyme being puri- 
fied to the monomer condition and the previous one as a 
tetramer. Also the alkaline phosphatase purified from micro- 
somes of chicken epiphyseal cartilage (8) has practically the 
same molecular weight (53,000) and similar catalytic and 
structural properties. 

The amino acid composition of another alkaline phospha- 
tase, very recently purified from matrix vesicles of fetal bo- 
vine epiphyseal cartilage (19), is similar to that of the enzyme 
here described (11), although the molecular weight reported 
for the former is higher (81,000). Unfortunately no data were 
given on the amount of sugars bound to the enzyme of fetal 
epiphyseal cartilage, which might be higher in fetal glyco- 
proteins than in those of grown up animals. An alkaline phos- 
phatase was recently purified also from teeth with a molecu- 
lar weight of 50,200 and an isoelectric point of 3.7 (13), very 
close to the pI of our phosphatase, which is 4.15 (29). 

Some degradation of the enzyme may have occurred, how- 
ever, during the course of the isolation, during either the 
crude collagenase digestion step or the detergent extraction 
step. Furthermore matrix vesicles contain a metallo-protein- 
ase (21), which may also contribute to a partial degradation 
of the phosphatase. It appears therefore that different labora- 
tories have purified similar if not identical phosphatases. Un- 
fortunately Ca 2÷ binding was measured only in our glyco- 
protein or in nonhomogeneous preparations (17, 34). 

The role of the Ca2÷-binding phosphatase in the preosse- 
ous cartilage and its participation in the process of calcifica- 
tion are illustrated by the results of immunostainings, both 
at the light and electron microscope. 

These results, in fact, show that in all cartilage zones 
cytoplasms react positively. At the light microscope, immune 
reactivity is present between the territorial and interter- 
ritorial matrix and discrete focal sites appear around mature 
and hypertrophic chondrocytes. Longitudinal septa are also 
positive. Moreover, the calcified matrix is strongly reactive. 
Electron microscopy confirms this distribution and shows re- 
activity of matrix vesicles, of calcification nodules, and of 
calcified matrix, especially at the periphery. The immuno- 

gold reaction observed under the electron microscope is un- 
evenly distributed and less marked than that obtained with 
the PAP method. This may be simply because samples are 
treated differently. It is surprising but interesting to note that 
the enzyme activity distribution in epiphyseal cartilage only 
in part coincides with that of the enzyme molecule, as de- 
tected by immune reactivity. In fact, an alkaline phosphatase 
activity is detected by histochemical techniques in the 
plasma membrane and cytoplasmic processes of maturing 
and, to a lesser extent, degenerating chondrocytes and their 
territorial matrix, including matrix vesicles. On the con- 
trary, in the calcified matrix the enzyme protein, although 
present, does not show any activity. 

The fact that the enzyme is active in the extracellular ma- 
trix of the maturing and hypertrophic regions, where calci- 
fication starts, and inactive, although present, in calcified 
matrix, suggests that the enzyme molecules are inhibited af- 
ter calcification. The mechanism of this inhibition is un- 
known. It might be suggested that the molecules are incorpo- 
rated in, and consequently masked by, inorganic substance. 

In conclusion, the results reported in this paper strongly 
indicate that the cartilage phosphatase has the property of a 
Ca:+-binding protein. By following its way to the calcifica- 
tion area, from the chondrocytes where the molecule is syn- 
thesized, the glycoprotein appears extruded from cells partly 
via matrix vesicles and partly into the surrounding environ- 
ment. The enzyme appears to belong then to the same series 
of nucleating agents as dentine phosphoprotein, another 
Ca2+-binding protein (35), with the important difference 
that the latter is not extruded with matrix vesicles. We have 
already shown that at least in vitro (33) cartilage phosphatase 
interacts with proteoglycan subunits and with type II colla- 
gen. This protein thus possesses all the features one would 
expect for an agent that catalyzes calcium phosphate forma- 
tion and orients its deposition (Bangs et al. [3]). The crucial 
moment in the process of calcification is the passage of the 
glycoprotein from membranes of cells to the extracellular 
territory. On the basis of the present data and on those ob- 
tained with a study on the control of Ca 2÷ movements in 
chondrocytes (36), the triggering event appears to be the rise 
of Ca 2÷ concentration in cells. In epiphyseal cartilage this 
event seems to be promoted by a lack of oxygen (27). In other 
calcifying tissues the mechanism of Ca 2+ elevation is still 
not known. At any rate, the transient Ca 2+ rise very likely 
triggers the release of both matrix vesicles, with their Ca 2+- 
binding phosphatase, and hydrolytic enzymes which, by dis- 
sociating proteoglycans, greatly increase the availability of 
free Ca 2+ in the extracellular matrix. 
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