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Abstract. A 75-kD protein was purified from sea ur- 
chin egg microtubule proteins through gel filtration. It 
enhanced the polymerization of porcine brain tubulin, 
but was not heat-stable and did not bind to calmodulin 
in the presence of calcium as demonstrated by 
calmodulin affinity column chromatography. Rotary 
shadowing of the freeze-etched 75-kD protein adsorbed 
on mica revealed the protein to be a spherical mole- 
cule (',,9 nm in diameter). Quick-freeze deep-etch 
electron microscopy revealed that the surface of 
microtubules polymerized with 75-kD protein was en- 
tirely covered with hexagonally packed, round, button- 

like structures that were quite uniform in shape and 
size (,o9 nm) and similar to the buttons observed on 
microtubules of mitotic spindles in vivo or microtu- 
bules isolated from mitotic spindles. Judging from cal- 
ibration studies of molecular mass by gel filtration, the 
75-kD protein probably exists in a dimeric form (,o150 
kD) in its native condition. The stoichiometry of tubu- 
lin (dimer) versus 75-kD protein (dimer) in the poly- 
merized pellet was 3-3.4:1. Hence, we concluded that 
the 75-kD protein was a unique microtubule-associated 
protein that formed the microtubule button in vivo and 
in vitro. We propose to name this protein "buttonin'. 

M 
ICROTUBULES folTn one of the main cytoskeletal 
elements and play a role in various important cel- 
lular functions. They are composed of tubulin 

dimers and a number of microtubule-associated proteins 
(MAPs).1 Nerve cells, for example, contain a large number 
of microtubules and several kinds of MAPs. Because tubulin 
is a very conserved molecule, the functions of microtubules 
may be determined by their associated MAPs. Brain micro- 
tubules have been most extensively studied. The main MAPs 
in the brain are composed of high molecular mass MAPs 
(MAP1 and MAP2) (5, 24) and the low molecular mass pro- 
tein named tau (35). MAP1 and MAP2 form arm-like struc- 
tures and cross-link microtubules (7, 20, 29, 33, 34). Re- 
cently it has been determined that MAPI and MAP2 a r e  

components of cross-bridges between microtubules in the 
neuronal cytoskeleton (13, 29, 30). 

The mitotic apparatus is also a structure composed mainly 
of microtubules and related proteins. Molecular dissection 
of microtubule-associated structures and proteins in the mi- 
totic apparatus has been less frequently performed than with 
that of nerve ceils. Using monoclonal antibodies, Izant et al. 
found several mitotic apparatus-specific proteins (18). Rebhun 

1. Abbreviations used in this paper: MAP(s), microtubule-associated pro- 
tein(s); MAPI and MAP2, high molecular mass microtubule-associated 
proteins 1 and 2; PCM, 1 mM MgC12, 1 mM CaC12, 1 M Pipes; PC tubu- 
lin, phosphocellulose column-purified tubulin; PEM, 0.1 M Pipes, 1 w_M 
EGTA, 1 m/Vl MgCI2. 

and co-workers have described an 80-kD protein in microtu- 
bules extracted from isolated mitotic spindles of sea urchin 
eggs (19, 25). Vallee and Bloom have identified several mi- 
totic spindle MAPs from sea urchin egg microtubules with 
monoclonal antibodies (32). In an attempt to understand the 
structure and molecular composition of mitotic apparatus, 
we previously investigated the cytoskeletal architecture of 
the isolated mitotic apparatus by the quick-freeze, deep-etch 
method (14). We found that the surface of spindle microtu- 
bules was densely covered with hexagonally packed, small, 
round, button-like structures which were quite uniform in 
shape and size (14). The microtubules were extensively 
linked by cross-bridges. We found the microtubule recon- 
stituted from the isolated mitotic apparatus to be composed 
of high molecular mass proteins (245 kD and 250 kD), 75- 
and 45-kD proteins, and tubulin (14). The unique microtu- 
bule buttons attracted our attention, and we attempted to de- 
termine their protein composition. 

In this study, we purified the 75-kD MAP using gel filtra- 
tion, and characterized it. The 75-kD protein was found to 
be a MAP in the sense that it enhanced the polymerization 
of tubulin. Its molecular mass was close to that of tau, but 
this protein was not heat-resistant and did not bind to cal- 
modulin, giving it characteristics quite different from tau 
(22, 31). A quick-freeze deep-etch study demonstrated that 
the 75-kD protein is a spherical molecule ('~9 nm in di- 
ameter) and forms microtubule buttons when it is polymer- 
ized with porcine brain tubulin. 
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Materials and Methods 

Preparation of Microtubule Proteins and MAPs 
from Sea Urchin Eggs 
Taxol-stabilized micrombules were prepared using modifications of the 
method of Vallee (31) from eggs of the sea urchins Pseudocentrotus depres- 
sus and Hemicentrotus pulcherrimus. 

Unfertilized eggs were dejellied by decreasing the pH of artificial sea- 
water to 5. After being washed with Ca++-free seawater and 0.1 M Pipes, 
1 mM EGTA, 1 mM MgCI2 (PEM) containing 1 M glycerol, the eggs were 
homogenized in 1.5 vol of PEM buffer containing 1 mM PMSE 10 Bg/ml 
leupeptin, and 10 BU/ml aprotinin at 4°C. They were centrifuged at 16,000 
rpm at 40C for 30 rain. The supernatant was further centrifuged at 180,000 g 
at 4°C for 75 min and the pellets were discarded. Taxol and GTP were added 
to the superuatant to get final concentrations of 20 BM taxol and I mM GTP, 
respectively. The supernatant was kept warm at 30°C for 10 rain and chilled 
on ice for 15 rain, and the microtubules that had formed were centrifuged 
at 30,000 g for 30 rain through a cushion of 10 % sucrose in PEM containing 
10 ~tM taxol and 1 mM GTP. The resulting pellets were suspended in PEM 
containing 0.6 M NaCl, 20 I.tM taxol, and 1 mM GTP on ice and incubated 
for 20 rain. Then the suspensions were centrifuged at 40,000 g for 30 min 
at 4°C and the superuatant was collected for gel filtration. 

Preparation of Microtubule Proteins and MAPs 
from Isolated Mitotic Apparatus 
Microtubule proteins were prepared from the isolated mitotic apparatus 
using taxol, as described in previous papers (14, 26). 

Fractionation of High Molecular Mass 
and 75-kD MAPs 
The superuatant of high salt extracts of the microtubule protein was further 
fractionated by gel filtration chromatography using a Bio-Gel A-1.5 m 
column (Bio-Rad Laboratories, Richmond, CA) with PEM buffer contain- 
ing 1 mM PMSF and 1 Ig/mi leupeptin. The protein composition of each 
fraction was analyzed by SDS PAGE using 7.5% acrylamide (21). For mo- 
lecular mass calibration the gel filtration standard (Bio-Rad Laboratories, 
Richmond, California) was applied through the same column. 

Test for Heat Stability of the 75-kD MAP 
The 75-kD protein fraction in PEM buffer containing 0.75 M NaC1 and 
10 rnM 2-mercaptoethanol (protein concentration, 0.6 mg/ml) was rapidly 
pipetted into tubes set in boiling water for 4 min (8). The tubes were then 
rapidly cooled in ice water and the solution was centrifuged at 4°C for 30 
rain at 10,000 g. The resulting pellets and supernatant were analyzed by SDS 
PAGE. 

Test for Calmodulin Binding Ability of the 75-kD MAP 
Calmoduiin was purified from porcine brain and coupled to cyanogen bro- 
mide-activated sepharose 4B (16). 75-kD protein was applied in the pres- 
ence of 1 mM CaC12 on a calmodulin-Sepharose 4B equilibrated with 
1 mM MgC12, 1 mM CaC12, and 0.1 M Pipes buffer (PCM), pH 6.6. After 
washing the column with the same buffer (15 ml), and then with PCM con- 
taining 0.5 M NaCI (15 ml), the protein adsorbed on the column in a Ca ++- 
dependent manner was ehited with PEM (pH 6.6). 

Stimulation of Polymerization of Porcine Brain Tubulin 
by the 75-kD MAP 
Microtubule protein from porcine brains was purified by two cycles of 
temperature-dependent assembly and disassembly in PEM buffer as de- 
scribed by Shelanski et al. (28). Tubuiin was purified by phosphocellulose 
column chromatography as described by Herzog and Weber (8). 

Stimulation of polymerization of phosphocellulose column-purified 
tubuiin (PC tubulin) by 75 kD was assayed by turbidity in a constant tubulin 
concentration (1 mg/rnl) by varying the concentration of 75 kD. The 75-kD 
protein and porcine tubulin were mixed at 0.57:1, 0.29:1, and 0.14:1 mass 
ratios in PEM buffer containing 1 mM f l iP  and incubated at 37°C for 20 
rain. As a control, tubuiin alone was processed similarly. In the case of the 
sample containing 75-kD protein and tubulin at a 0.57:1 ratio, the sample 

was cooled on ice for 5 min and then rewarmed at 37°C to examine the effect 
of cooling. Microtubule polymerization was also ascertained by negative 
staining electron microscopy. 

To examine the stoichiometry of tubulin versus 75 kD, mbulin was mixed 
with a large amount of 75-10) protein (75 kD/tubulin was 0.57:1) in PEM 
buffer containing 1 mM GTP and incubated at 37°C for 20 rain. The aliquots 
of the solutions were diluted 5-10-fold by PEM buffer with 1 mM G'TP and 
dropped on grids coated with Formvar and carbon. They were stained with 
2 % uranyl acetate and examined with an electron microscope. Other parts 
of the solutions were centrifuged at 10,000 g for 30 rain at 30°C. The result- 
ing pellets and supernatants were analyzed by SDS PAGE and the pellets 
were concomitantly quick-frozen and deep-etched. The SDS gels were 
scanned by a densitometer. The area of the peaks of tubulin and the 75-kD 
protein were measured and the relative ratio of tubulin to 75-kD protein was 
calculated to determine the stoichiometry. 

Analytical Methods 

SDS PAGE was performed according to the method of Laemmli using 7.5 % 
acrylamide (21). Gels were stained with Coomassie Brilliant Blue. 

Protein concentration was determined according to a method described 
by Bradford (6) using bovine serum albumin as a standard. 

Quick-Freeze Deep-Etch Electron Microscopy of 
Polymerized Microtubules with 75-kD MAP and 75-kD 
MAP Adsorbed on Mica 
Pellets of porcine brain PC tubulin polymerized with 75-kD MAP in the 
presence of 1 mM GTP at 37°C were quick-frozen, freeze-fractured, and 
deep-etched at -95°C for 6 min (9, 11). Then they were rotary shadowed 
with platinum (at 24 ° ) and carbon as described previously (9, 11). The speci- 
mens were dissolved in chromesulfuric acid. The purified 75-kD protein 
dissolved in PEM (•100 Bg/ml) was dropped onto fragmented mica flakes 
and quick-frozen as described by Heuser (10). Then the flakes were frac- 
tured at -95°C and etched for 6 min and rotary shadowed with platinum 
(at 10 °) and carbon. The mica and proteins were dissolved in hydrofluoric 
acid. After being washed with distilled water, the replicas were viewed with 
a JEOL 1200 EX or 2000 EX electron microscope at 100 kV with + 10 ° tilt. 

Results 

Fractionation of 75-kD MAPs 
High salt extract from taxol-microtubule proteins was gel- 
filtrated on Bio-Gel A-1.5 m column. Fig. 1 shows an exam- 
ple of its elution pattern. The 75-kD protein was a main 
component of the second peak (Fig. 2). As shown in Fig. 2, 
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Figure 1. Gel filtration chromatography on a Bio-gel A-1.5 m 
column of  high salt extract. About  2 ml of  high salt extract was ap- 
plied on a 1 x 50-cm column of  Bioogel A-1.5 m preequilibrated 
and eluted in P E M  buffer containing 1 gg/ml leupeptin at 4°C. Flow 
rate was 12 ml/h;  l-ml fractions were collected. OD2s0 of  the frac- 
tions was measured.  

The Journal of Cell Biology, Volume 104, 1987 1554 



Figure 2. SDS gels of fractions from a Bio-gel A-1.5 m column. 
Fraction number is indicated at the bottom of the gels. Lane 0, a 
gel of microtubule proteins obtained from isolated mitotic spindles. 
HMM, high molecular mass proteins; 75 kD, 75-kD protein; Tub, 
tubulin. 

75-kD proteins were almost purified by this gel filtration 
alone (see fractions 27 and 28). The peak fractions (25 and 
26) contained minor contaminated proteins. Fractions 27 and 
28 were composed mainly of 75-kD proteins, and these frac- 
tions were used for further experiments. We calibrated this 
column using the gel filtration standard in order to learn the 
molecular mass of the native form of 75-kD MAP molecules 
(Fig. 3). We found that 75-kD MAP was eluted in a position 
of 150 kD. Because the 75-kD protein was a globular protein, 
as described below, we assume that it may exist as a dimer 
in its native condition. 

75-kD MAP-stimulated Polymerization of Porcine 
Brain Tubulin 

Purified 75-kD protein was assayed for the polymerization- 
promoting activity it exerts on PC tubulin using both light 
scattering analysis (Fig. 4) and electron microscopy (Fig. 5). 

PC tubulin purified from porcine brains was mixed with 
75-kD protein at various ratios. The suspension was incu- 
bated at 37°C for 10-20 min in the presence of 1 mM GTP. 
Fig. 4 shows the result of light scattering analysis, which 
demonstrates the polymerization of tubulin by increasing the 
amount of 75-kD protein. Aliquots of the suspension were 
examined by the negative staining method, as shown in Fig. 
5. Numerous microtubules were formed, but microtubule 
buttons were not recognizable with the negative staining. We 
did not find any microtubules in the solution that contained 
only tubulin. As a result we concluded that the 75-kD protein 
enhances the polymerization of tubulin, and, thus, this pro- 
tein can be categorized as a MAP. It was also apparent that 
microtubules assembled in the presence of the 75-kD protein 
are cold-labile. 

Stoichiometry of Tubulin and 75-kD MAP 

The PC tubulin was mixed with a large amount of 75-kD 
MAP. After incubation at 37°C for 20 min in the presence 
of 1 mM GTE the suspension was centrifuged. The resulting 
pellet and supernatant were subjected to SDS PAGE (Fig. 6). 
We found that the pellet was mainly composed of 75-kD 
MAP and tubulin, while in the supernatant we found a 47-kD 
polypeptide in addition to 75-kD MAP and tubulin. Since 
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Figure 3. Estimation of the molecular mass of buttonin (75 kD) 
using the gel filtration standard. Calibration of the Bio-gel A-I.5 m 
column was carried out under the same conditions as that of the 
chromatography of 75 kD using Bio-Rad gel filtration standard. 
Ve, elution volume; Vo, void volume. Small dots indicate marker 
molecules (from larger to smaller: thyroglobulin [670 kD], gamma 
globulin [158 kD], ovalbumin [44 kD], myoglobulin [17 kD]). A 
large dot indicates buttonin (75 kD) and an arrow shows its molecu- 
lar mass. 

this 47-kD polypeptide increased in amount after long stor- 
age of 75-kD MAP and after heat treatment of 75 kD, we con- 
sidered this to be a degradation product of 75-kD MAP. Be- 
cause 75-kD protein was detected in the supernatant and 
because we found by quick-freeze deep-etch study that the 
surface of the microtubules was largely covered with micro- 
tubule buttons (see Fig. 8), we considered that in these 
pellets the binding sites of tubulin were essentially saturated 
by the 75-kD MAP. Therefore, we analyzed the SDS gel with 
a densitometer to determine the stoichiometry of tubulin 
versus 75-kD MAP (Fig. 7). We measured the area of peaks 
of tubulin and 75-kD protein; as a result, the mass ratio of 
tubulin versus 75-kD MAP was 2.3-2.5:1. Therefore, we es- 
timate that the molar ratio of tubulin (dimer, U0 kD) versus 
75-kD MAP (dimer, 150 kD) could be '~3-3.4:1. 
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Figure 4. Polymerization-promoting activity of purified buttonin 
(75-kD protein) on PC tubulin measured by light scattering analy- 
sis. The tubulin concentrations are 1 mg/ml. Concentrations of but- 
tonin (mg/ml) are (A) 0.57; (B) 0.29; (C) 0.14; and (D) 0. In the 
case of A the solution was cooled at 0°C for 5 min after a 20-min 
incubation at 37°C and then rewarmed at 37°C. 
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Figure 5. Negative stained microtubules reassembled from porcine brain tubulin plus buttonin (75 kD) (tubulin, 0.35 mg/ml; buttonin, 
0.35 mg/mi) incubated at 37°C for 10 min in the presence of 1 mM GTP. Numerous microtubules are formed. Bar, 0.1 tun. 

The 75-kD Protein Was Not Heat-Stable and Did Not 
Bind to Calmodulin in the Presence of  Calcium 

Heat stability of 75-kD protein was examined by boiling fol- 
lowed with analysis on SDS PAGE. SDS PAGE of.the pellets 
and supernatant after boiling showed hhat the 75-kD protein 
had sedimented into the pellet :  This proved that  the 75-kD 
protein was heat-labile under our  conditions, 

The binding of the 75-kD protein to calmodulin was as- 
sayed using a calmodulin-Sepharose 4B column. The 75-kD 
protein was washed out with PCM containing 0.5 M NaC1. 
Very little protein was eluted with PEM. Therefore, although 
the 75-kD might weakly interact with calmodulin or might 
remain in the calmodulin column nonspecifically, it did not 
bind to calmodulin in a Ca++-dependent manner. These re- 
sults indicated that the 75-kD MAP was different from tau, 
which is known to be a neuronal MAP with a similar molecu- 
lar mass and is heat-resistant and binds to calmodulin in the 
presence of Ca ++ . 

Molecular Structure of  75-kD M A P  

The suspension containing tubulin and 75-kD protein was 
centrifuged after incubation for 20 min at 37°C. The pellets 
were quick-frozen and deep-etched. 

We found that the surfaces of the microtubules were en- 
tirely covered with hexagonally packed, round, button-like 
structures quite uniform in shape and size ( ~ 9  nm) (Figs. 8, 
9, and 10). The structure and arrangement of this molecule 
looked quite like those of the microtubule buttons seen on 

Figure 6. SDS gels of supernatant (lane 
S) and pellet (lane P) of the PC tubulin 
(Tub) mixed with an excess amount of 
buttonin (75 kD), incubated at 37°C for 
20 min in the presence of 1 mM GTP, 
and centrifuged. 

75KD '[ub 

Figure 7. A densitometric scanning of an SDS gel of tubulin-butto- 
nin pellet equivalent to the gel shown in Fig. 6. (Left) Top of the 
gel; (right) bottom of the gel. 75 kD, buttonin; Tub, tubulin. 
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Figure & A quick-freeze deep-etch view of the pellet of porcine brain tubulin polymerized with buttonin (75 kD) (tubulin/75 kD = 1). 
Numerous microtubules are formed. The surface of microtubules is mostly covered with round button-shaped molecules that tend to be 
packed hexagonally (arrows). Bar, 0.1 Inn. (Inset) A higher magnification of microtubules covered with 75-kD MAP. Bar, 0.1 Ima. 

the surfaces of microtubules in the mitotic apparatus (Fig. 
10). These button-like structures were arranged in a line ris- 
ing at an angle of 11 ° to the horizontal axes of the microtu- 
bules (Figs. 9 and 10). 

We analyzed the structure of single molecules of the 75-kD 
MAP using the low angle shadowing technique combined 
with the quick-freeze deep-etch method. The 75-kD MAP 
solution was adsorbed on mica flakes. Then it was quick- 
frozen and deep-etched. We frequently found spherical 
structures '~9 nm in diameter on the mica (Fig. 10). These 
structures appeared similar to the microtubule buttons on the 
surfaces of the microtubules polymerized with 75-kD MAP 
(Fig. 10). Occasionally, smaller granules were also found on 
the mica. Because a ~ 9  nm structure can be the dimeric 
form (~150 kD) of 75-kD MAP, this smaller one could very 
well be a monomer. 

Discussion 

In the previous study we found that the surfaces of spindle 
microtubules were covered quite regularly with hexagonally 

packed button-like spherical structures 8-9 nm in diameter 
(14). The surfaces of microtubules polymerized in vitro from 
isolated mitotic spindles using taxol were also entirely cov- 
ered with similar kinds of spherical molecules. The usual 
cross-bridges were also found between the polymerized mi- 
crotubules. The microtubule fractions contained proteins of 
250, 245, 75, and 45 kD as the main components besides 
tubulin. High salt treatment (0.6 M NaCl) removed both 
microtubule buttons and cross-bridges from the surfaces of 
the microtubules and concomitantly released high molecular 
mass proteins, the 75- and 45-kD proteins. Therefore, we 
were able to conclude that the microtubule buttons could 
very well be composed of one of these proteins. However, 
our previous studies could not ascertain which protein was 
a main component of the microtubule button. 

In the present study we purified the 75-kD protein from sea 
urchin eggs, characterized it, and examined its molecular 
structure. A single molecule of 75-kD MAP (probably exist- 
ing as a dimer [150 kD]) assumed a spherical shape ~ 9  nm 
in diameter, and looked quite like the microtubule buttons. 
Furthermore, the 75-kD protein enhanced the polymeriza- 
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Figure 9. A higher magnification view of microtubules polymerized with buttonin (75 kD) (tubulin/75 kD = 1). Although at some portions 
the knife hit the surface of microtubules and removed the microtubule buttons, it is obvious at this magnification that most of the microtubule 
surfaces are decorated with hexagonally packed microtubule buttons. Bar, 0.1 ~trn. 

tion of  porcine brain tubulin, and the surface of  the formed 
microtubules was entirely covered with hexagonally packed 
spherical structures ( * 9  nm in diameter),  again quite similar 
in appearance to the microtubule buttons. Therefore, we con- 
clude that the microtubule buttons are composed of 75-kD 
M A E  

The microtubule buttons were aligned at an angle of  11 ° 
to the horizontal axes of the microtubules. The center-to- 
center distance between adjacent buttons that were side by 
side and parallel to the horizontal axes of  the microtubules 

was ~15 nm. The characteristic striations observed on the 
inner luminal walls of the microtubules were three start 
helices and were separated by ~ 4  nm. They were also ar- 
ranged at an angle of  11 ° to the horizontal axes of  the microtu- 
bules. Because these striations probably reflect the arrange- 
ment of tubulin monomers,  we can suppose that the 75-kD 
M A P  is arranged in close relationship to the tubulin lattice. 
The center-to-center distance between adjacent buttons 
aligned at an angle of  11 ° to the horizontal axes of  the 
microtubules was ~15 nm (the distance between oblique stri- 

Figure 10. (,4) Quick-frozen deep-etched spindle microtubules in isolated mitotic apparatus. Micmtubules are covered with microtubule 
buttons (arrows) that tend to be packed hexagonally. (B) Quick-frozen deep-etched microtubule proteins that were isolated from mitotic 
spindles and polymerized in vitro. Surface of microtubules is decorated with microtubule buttons (arrows). (C and D) Quick-frozen freeze- 
etched, low angle rotary-shadowed buttonin (75 kD) absorbed on mica. Most spherical molecules (arrows) are ~9  nm in diameter, while 
smaller ones also exist. These spherical molecules are similar in shape and size to those on the microtubules polymerized with buttonin 
(75 kD) (E and F)  and also to the microtubule buttons observed on spindle microtubules (A) or microtubule proteins polymerized in vitro 
(B). (E and F)  Quick-frozen deep-etched microtubules polymerized with buttonin (75 kD) MAP. In E (75 kD/tubulin = 1) the entire surface 
of the microtubules is covered with spherical buttons (*9 run in diameter) that are packed hexagonally (arrows). In F (75 kD/tubulin = 
1/20), microtubule buttons are observed sporadically on the surfaces of mierotubules (arrows). In this case (F), microtubules were polymer- 
ized in the presence of taxol (10 I~M). Bar, 0.1 Ixm. 
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ations on the inner surface was ~4  rim), and the buttons were 
8-9 nm in diameter. Therefore, it is reasonable to assume 
that each button mainly associates with two tubulin mono- 
mers (alpha, beta or beta, alpha) and tends to span the imme- 
diately adjacent two protofilaments arranged side by side. 
Thus, a single button is related to about three tubulin dimers. 
This configuration was depicted in Fig. 9 in our previous pa- 
per (14). Theoretically if 75 kD fully saturated binding sites 
on mierotubules, the molecular ratios of 75 kD versus tubu- 
lin could be 1:2.2-2.4. However, the stoichiometry of tu- 
bulin versus 75-kD MAP examined in the present study is 
3-3.4:1. This is probably because either the binding sites on 
microtubules have not yet been fully saturated by 75-kD 
MAP in spite of the excess amount of 75-kD proteins, or the 
densitometric measurement underestimated the amount of 
tubulin. 

Among the MAPs present in nerve cells and other cells, 
high molecular mass MAP1 and MAP2 and low molecular 
mass tau are the species that have been studied most exten- 
sively (1, 2, 3, 13, 17, 23). The molecular mass of 75-kD 
MAP was close to that of tau, but this protein was heat-labile 
and did not bind to calmodulin in the presence of Ca ++. In 
this regard 75-kD MAP is different from tan. This 75-kD 
protein may be similar to the protein that was reported by 
Keller and Rebhun (19), Vallee and Bloom (32), and Scholey 
et al. (27), who referred to it as 80-kD protein (19, 27) or 77- 
kD protein (32). However, although the 80-kD protein of 
Keller and Rebhun cycled with tubulin, it was not shown to 
have any effect on the rate or extent of spindle tubulin assem- 
bly under the conditions employed (19). Further, the micro- 
tubules assembled from microtubule protein that contained 
the tubulins, the 80-kD protein, and little else were con- 
nected by bridges; thus the 80-kD protein was assumed to act 
as a cross-bridge (25). Difference between species of tubu- 
lins, i.e., spindle tubulin (19) versus brain tubulin (this 
study), may explain different effects of these proteins on the 
tubulin assembly. 

In terms of molecular structure, MAF2 was revealed to 
consist of arm-like projections from the microtubule surface 
(20, 24). The quick-freeze deep-etch technique showed brain 
high molecular mass MAPs as cross-bridges between micro- 
tubules in vitro (12, 13). MAP1 was also reported to consist 
of arm-like projections from the surfaces of microtubules 
(29, 33), and recently it has been found that it comprises a 
family of polypeptides, namely MAPIA, 1B, and 1C (2, 3). 
Rotary shadowing revealed that both MAPIA and MAP2 
take the form of long, thin, flexible structures (7, 29, 34). 
270-kD MAP from crayfish peripheral nerve axons that 
cross-reacted with anti-MAP2 antibodies also revealed a 
similar kind of structure (15). Thus, many high molecular 
mass MAPs have appeared as thin rod-like structures (15, 29, 
34). Recently we have identified both MAP1 and MAP2 as 
components of cross-bridges between microtubules in neu- 
ronal cytoskeletons (13, 29, 30). In this regard the 75-kD 
MAP is unique in that it is spherical in shape and quite regu- 
larly and densely arranged on the microtubules in vivo and 
in vitro. Because we have previously identified unique mi- 
crotubule buttons on the spindle microtubules in mitotic ap- 
paratus in vivo and in pellets of microtubule proteins from 
isolated mitotic spindles that contained 75-kD protein as a 
major protein (14), and because we observed identical micro- 
tubule buttons on rnicrotubules formed from purified tubulin 

and 75-kD protein in this study, this molecule is the first 
MAP whose molecular structure has been clearly identified 
at a single molecular level both in vivo and in vitro. 

Because in the present study it becomes clear that the 75- 
kD MAP takes a unique button-like shape, we propose to call 
this MAP "buttonin 7 The physiological function of buttonin 
is still unknown. However, we found that microtubule but- 
tons densely cover the surface of spindle microtubules and 
that the buttonin stimulates polymerization of tubulin. In ad- 
dition, because Bloom and Vallee recently reported that the 
anti-77-kD antibody stained the mitotic spindle specifically 
(4), we can readily suppose that buttonin may play an impor- 
tant role in spindle formation and may as well be involved 
in somehow stabilizing spindle microtubules. 
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