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W 
ITHIN the past two years, there has been an expo- 
nential increase in research on transforming growth 
factor-beta (TGF-beta). ~ In this brief minireview, 

we cannot provide a detailed survey of this topic (see refer- 
enees 56 and 73 for other reviews). Rather, we will summa- 
rize some new results, indicative of the importance of this 
peptide as a multifunetional regulator of cellular activity. 
The term ~nultifunetional" implies that TGF-beta may either 
stimulate cell proliferation and growth, or inhibit cell prolif- 
eration and growth, or have numerous other actions having 
little relationship to either of these two processes. We will 
develop the theme that many of the actions of TGF-beta are 
related to the response of cells or tissues to stress or injury, 
and to the repair of resultant damage. However, it is clear that 
there is no one principal action for TGF-beta; moreover, the 
almost universal cellular distribution of its receptor encom- 
passes a very broad spectrum of  target tissues. 

Chemical Structure of TGF-beta 
Despite a common nomenclature, the purification, cloning, 
and sequencing of TGF-alpha and TGF-beta have made it 
clear that these are two entirely distinct peptides, each acting 
through its own unique receptor system. We will not discuss 
TGF-alpha in this minireview. TGF-beta was originally puri- 
fied to homogeneity from human platelets (5), human pla- 
centa (24), and bovine kidney (58) and identified as a homo- 
dimeric peptide with a molecular mass of 25,000 D. The 
human eDNA clone sequence indicates that the monomer is 
synthesized as the COOH-terminal I12 amino acids of a 390- 
amino acid precursor 05). Recent eDNA cloning in our lab- 
oratory has shown that there is total sequence identity be- 
tween the respective human, bovine, and porcine mature 
monomer sequences (Van Obberghen, E., and P. Kondaiah, 
personal communication); there is a single amino acid sub- 
stitution in the mouse peptide (14). 

The original purification of TGF-beta used the stimulation 
of anchornge-independent growth of normal fibroblast indi- 
cator cells as a functional assay (5, 24, 57, 58), and the name 
of the peptide is based on this activity. Since then, TGF- 
beta-like molecules have been purified to homogeneity from 

1. Abbreviations used in this paper: EGE epidermal growth factor; TGF- 
beta, transforming growth factor beta. 

a variety of sources using other assays, reflecting the mul- 
tifunctional nature of this set of molecules. Thus, two bovine 
cartilage-inducing peptides isolated from bone and a human 
immunosuppressive peptide isolated from glioblastoma cells, 
when purified and sequenced, were each found to be one or 
the other of two molecular forms of TGF-beta. These two 
distinct forms were identified first in bovine bone (66), from 
which they were isolated using an assay that measures induc- 
tion of extracellular matrix proteins characteristic of carti- 
lage, and hence were named cartilage-inducing factors A and 
B (66). Cartilage-inducing factor A is identical (67) to the 
form of TGF-beta that was originally isolated from human 
platelets (5), now known as TGF-beta 1 (11), while cartilage- 
inducing factor B represents a novel molecular form of TGF- 
beta (65), now called TGF-beta 2 (11). Both forms have sub- 
sequently been found in porcine platelets (11), and in both 
bovine bone and porcine platelets TGF-beta 2 is less abun- 
dant than TGF-beta 1, constituting only ,o15-20% of the total 
recovered "l'GF-beta. This second type of TGF-beta also 
shows remarkable sequence conservation, in that no differ- 
ences have yet been found in the respective bovine and por- 
cine TGF-beta 2 sequences (11, 65), in spite of the fact that 
both have only a 69% homology with the first 36 residues 
of type I TGF-beta. The recent discovery of TGF-beta 2 in 
the conditioned medium of a human gliohlastoma cell line 
(80) makes it apparent that both types of TGF-heta are also 
represented in the human genome. Interestingly, the human 
type 2 peptide was isolated and characterized by its immuno- 
suppressive activity (many glioblastomas are strongly immu- 
nosuppressive to the patients with such tumors), and the 
purification was monitored with assays that measured the in- 
hibition of mitogenesis in T-lymphoeytes (80), another known 
activity of TGF-beta 1 (34). The exact chemical identities of 
two other peptides clearly related to TGF-beta, namely the 
growth inhibitor secreted by monkey BSC-1 kidney cells in 
culture (29, 74), and the myoblast differentiation inhibitor 
secreted by rat liver cells in culture (21, 45, 50), still need 
to be established. 

In most assays, the two forms of TGF-beta are functionally 
indistinguishable. However, the data at hand indicate that 
there may be separate receptors for TGF-beta 1 and TGF-beta 
2, some of which are cross-reactive (11, 64). All of these new 
findings suggest that there may be some unique function for 
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the second form of TGF-beta, but as yet, none has been 
definitively shown. Is it possibly a protein with a unique em- 
bryonic or tissue-specific function? Why is it found in por- 
cine platelets, but not human? It is conceivable that some of 
the intrinsic cellular activities that have been attributed in the 
past to 'q'GF-beta" are a reflection of the endogenous produc- 
tion of TGF-beta 2, as well as TGF-beta 1. Although greater 
amounts of TGF-beta 2, compared to TGF-beta 1, have not 
yet been reported in any tissue, this may be a possibility. 

It is now also clear that both these forms of TGF-beta be- 
long to a much larger gene family, of which most members 
have growth-regulatory functions (11, 51). This family in- 
eludes two forms of inhibin (a gonadal protein that sup- 
presses pituitary secretion of follicle stimulating hormone), 
three forms of activin (another gonadal protein that stimu- 
lates follicle stimulating hormone secretion), Miillerian in- 
hibitory substance (a protein causing regression of the fe- 
male rudiments in the developing male reproductive system), 
and a transcript from the decapentaplegic gene complex of 
Drosophila, which acts to control morphogenesis in the fly 
embryo. Although all of these peptides show strong homol- 
ogy with TGF-beta with respect to the position of seven of 
nine total cysteine residues, no cross-reactivity with TGF- 
beta with respect to receptor binding has been shown for any 
of these peptides. 

Latent TGF-Beta 
Many studies have shown that TGF-beta is secreted by virtu- 
ally all cell types in a biologically inactive form (35, 37, 39, 
40, 77). The biological latency appears to be due to an inabil- 
ity to bind to the TGF-beta receptor (77). In the laboratory, 
this latent form has generally been activated by transient 
acidification, although alkali or chaotropie agents can also 
activate, suggesting the process may involve disruption of a 
noncovalent complex (37, 39, 40). Recent studies have begun 
to identify the chemical nature of this complex and possible 
physiological mechanisms of activation (35, 76). The com- 
plex itself appears to be formed from the association of ma- 
ture, dimeric TGF-beta, together with the "precursor remain- 
der; which results from the proteolytic cleavage of mature 
TGF-beta from its precth-sor (at the Arg-Ala bond in position 
278), plus a third component (76). By analogy with the epi- 
dermal growth factor- and nerve growth factor-binding pro- 
teins, the third component might be a processing protease, 
involved in cleavage of the TGF-beta precursor. 

While the latent complex might be activated in vivo by ex- 
posure to acidic microenvironments such as are found in the 
vicinity of the osteoclast or in healing wounds, it seems more 
likely that it is activated by the action of exogenous proteases 
that disrupt the quaternary structure of the complex. Thus, 
plasmin and cathepsin D can activate latent TGF-beta in vitro 
(35). The exact chemical structure of latent TGF-beta and the 
physiological mechanism of activation of the complex are of 
great importance. Since the cellular receptor for TGF-beta 
appears to be essentially universally and constitutively ex- 
pressed (77), the target specificity of TGF-beta action may 
be determined by the ability of a cell to activate the latent 
complex, and activation may be a critical regulatory step in 
TGF-beta action. Thus, for example, platelets release TGF- 
beta in the latent form (54, 76). This may provide an ideal 
mechanism to allow sustained action of TGF-beta during 

stress or injury, since the duration of action of many peptide 
hormones is very short if they are not protected by a binding 
protein. In another situation, unregulated epithelial cell 
growth may be a result of failure to activate the latent form 
of autocrine TGF-beta. Thus, the human A549 lung carci- 
noma cell, which has abundant receptors for TGF-beta and 
is strongly inhibited in its growth by exogenous active TGF- 
beta, secretes large amounts of TGF-beta in the latent form. 
However, this tumor cell appears to have lost the ability to 
activate latent TGF-beta and hence continues to proliferate 
in the presence of high concentrations of autocrine latent 
TGF-beta (77); in contrast, the parent normal cell type ap- 
pears to be inhibited by the TGF-beta that it secretes 
(Wakefield, L., and T. Masui, unpublished data). 

Proliferative Effects of TGF-Beta In Vitro 
In most respects, the intrinsic role of TGF-beta in the in vivo 
physiology of the organism is an unknown. On the other 
hand, there are now many different actions that have been 
shown in various cell culture systems, which can arbitrarily 
be categorized as either proliferative, antiproliferative, or 
unrelated to proliferation. The original discovery of TGF- 
beta in an assay that measured promotion of anchorage-in- 
dependent growth of fibroblasts clearly establishes TGF-beta 
as a bona fide growth factor, and there are many examples 
of cells of mesenchymal origin, in which proliferation is en- 
hanced by TGF-beta. One such cell type that is the focus of 
intense interest at present is the osteoblast, because of the 
importance of this cell for the formation of new bone during 
fracture healing, as well as for the maintenance of existing 
bone to prevent osteoporosis. Two groups (10, 61) have re- 
cently shown that not only do cultured osteoblasts have high- 
affinity receptors for TGF-beta and respond to exogenous 
TGF-beta with a mitogenic response, they also produce and 
secrete TGF-beta, implying that there may be some autocrine 
growth control in bone, possibly related to bone remodeling; 
the highly acid microenvironment of the osteoclast may pro- 
vide a mechanism to activate latent TGF-beta released by os- 
teoblasts. The importance of TGF-beta for bone function is 
further emphasized by its key role in controlling formation 
of proteins of extracellular matrix, as will be discussed 
below. 

Another cell type that has recently been shown to have a 
rnitogenic response to TGF-beta is the Schwann cell of the 
peripheral nervous system, for which there are few known 
mitogens (Rather, N., personal communication). The Schwann 
cell makes myelin and is involved in the repair of peripheral 
nerves after injury, although no role for TGF-beta in these 
processes is known at present. Like the osteoblast, the Schwann 
cell is highly specialized for synthesis of extracellular matrix 
(although the set of matrix proteins formed by Schwann cells 
is different from those formed by osteoblasts), and it will be 
of interest to determine whether "l'GF-beta has any unique 
role in promoting matrix formation in this particular cell. 

Antiproliferative Effects of  TGF-Beta In Vitro 
TGF-beta is a potent inhibitor of the proliferation of many 
cells in vitro, particularly of epithelial cells (46, 48, 74). 
Moreover, these antiproliferative actions are not confined to 
epithelial cells, and strong antimitogenic effects are seen in 
mesenchymal cells such as embryonic fibroblasts (1), en- 
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dothelial cells (6, 22, 26), and T- and B-lymphocytes (33, 
34). Based on these in vitro experiments, it appears that 
TGF-beta might be an important negative growth control for 
many cell types. Whether "l'GF-beta truly functions as a 
physiological negative autocrine or paracrine growth factor 
in vivo is still unproven. Enhanced levels of mRNA for TGF- 
beta have been shown in the regenerating liver at a time when 
DNA synthesis begins to diminish, and it has been suggested 
that TGF-beta may act as a regulatory signal to stop further 
cell replication as regeneration is completed (9, 19). Recent 
studies have also implicated TGF-beta as a negative growth 
control for mammary epithelium in vivo; minute plastic im- 
plants, containing TGF-beta in a sustained release form, 
were placed in the mammary glands of mice and found to 
cause marked suppression of the growth of epithelial ductal 
end buds (Daniel, C., and G. Silberstein, personal communi- 
cation). However, this use of exogenous TGF-beta does not 
demonstrate that TGF-beta is an endogenous regulator in 
vivo, and further studies, using antibodies or antagonists, 
will be required to prove this point. 

During carcinogenesis, the parent ceils of the eventual 
malignant clone may lose their sensitivity to growth regula- 
tion by TGF-beta; mechanisms as diverse as failure to syn- 
thesize, process, or release TGF-beta; loss of receptors for 
TGF-beta; loss of ability to activate latent TGF-beta; or a fail- 
ure in the intracellular TGF-beta signaling pathway have all 
been suggested as contributing to carcinogenesis. There is 
some experimental evidence for several of these possibilities 
(68; Wakefield, L., unpublished data). However, there are 
epithelial tumor cells that still retain some measure of growth 
regulation by TGF-beta, particularly the much studied hor- 
monally responsive MCF-7 human breast cancer cell. These 
cells have functional receptors for TGF-beta and secrete 
small amounts of biologically active TGF-beta under basal 
conditions and much larger amounts of active TGF-beta 
when treated with growth-inhibitory concentrations of anti- 
estrogens such as tamoxifen or its active metabolite, hydroxy- 
tamoxifen (36). Thus, in this system, TGF-beta has been 
shown to be a hormonally regulated growth inhibitor with a 
negative autocrine action on its producer cell. 

Biological Effects of TGF-Beta Unrelated to 
Proliferation 
TGF-beta has effects on many different cell types, unrelated 
to control of proliferation. These effects are so varied that 
they do not appear to conform to any particular pattern, al- 
though it is of interest that the action of TGF-beta on many 
cells is often uniquely related to the regulation of the special- 
ized, critical function of a particular cell type. 

Perhaps the most striking recent advance that has occurred 
in TGF-beta studies in the past two years has been the eluci- 
dation of an extensive role for TGF-beta in enhancing the for- 
mation of extracellular matrix, and this is undoubtedly of 
major importance with respect to embryogenesis and to repair 
of tissue injury. TGF-beta has many direct actions on fibro- 
blasts. Thus, it is a potent chemotactic agent for these cells 
(55). Furthermore, it stimulates matrix formation and inhibits 
matrix degradation, as shown in Fig. 1. A primary effect of 
TGF-beta is its strong enhancement of the formation of both 
collagen and fibronectin in fibroblasts of human, rat, mouse, 
and chicken origin (30, 60). Within as little as 6 h, significant 
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Figure l. TGF-beta stimulates the formation of r matrix 
and inhibits its degradation. See text for details. 

increases in collagen can be measured; in normal rat kidney 
cells concentrations of TGF-beta below 100 pg/ml (4 pM) are 
stimulatory. Recent studies have shown that TGF-beta in- 
creases the level of mRNA for collagen (types I, m ,  and V) 
and fibronectin in normal rat kidney cells (31; Roberts, A., 
unpublished data). This increase in collagen and fibronectin 
mRNAs is, at least in part, the result of a stimulation by TGF- 
beta of the promoters for the type I collagen gene and the 
fibronectin gene, as measured in experiments in which the 
respective collagen or fibronectin promoters (Rossi, P., and 
B. de Crombrugghe, manuscript submitted for publication; 
Bourgeois, S., personal communication) have been linked to 
the reporter gene for chloramphenicol acetyltransferase; nu- 
clear RNA runoff experiments still must be performed to 
confirm that TGF-beta induces an actual increase in gene 
transcription. The increased promoter activity for the colla- 
gen gene is mediated by a binding site for nuclear factor I 
(also known as transcription factor CTF), a DNA-binding 
protein that activates eukaryotic gene transcription (32, 69). 
These results have been obtained with specific mutants of the 
promoter of the alpha2(I) collagen gene (63; Rossi, P., and 
B. de Crombrugghe, manuscript submitted for publication), 
which indicate that there is a functional binding site for nu- 
clear factor I in this promoter, mediating the stimulatory 
effect of TGF-beta. 

As shown in Fig. 1, a second action of TGF-beta directly 
related to enhanced formation of extracellular matrix is its 
ability to inhibit the proteolytic degradation of newly formed 
matrix proteins. This occurs by two distinct mechanisms, 
one of which involves an increase in the formation and secre- 
tion of protease inhibitors, and the other of which involves 
a decrease in the secretion of proteases themselves. In sev- 
eral cell types, TGF-beta increases the synthesis and secre- 
tion of a plasminogen activator inhibitor (38) (a member of 
the class of serine protease inhibitors, serpins); it has been 
suggested that such inhihitors function effectively to stabilize 
newly synthesized matrix proteins by protecting them from 
proteolytic degradation. Still another protease inhibitor whose 
synthesis and secretion is increased by TGF-beta is tissue in- 
hibitor of metalloproteinases, a recently cloned (16) potent 
inactivator of yet another set of proteases involved in matrix 
degradation (Postlethwalte, A., and G. Stricldin, personal 
communication). In contrast to its stimulatory effects on pro- 
tease inhibitors, TGF-beta decreases the formation or secre- 
tion by fibroblasts of three different types of proteases them- 
selves, including a serine protease (plasminogen activator) 
(38), a thiol protease ("major excreted protein') (12), and a 

Sporn et al. Advances in TGF-Beta Chemistry and Biology 1041 



metaUoprotease (transin/stromelysin) (47). In this last case, 
it has been shown that TGF-beta can block the induction by 
EGF of the mRNA for transin/stromelysin, which is a major 
proteolytic enzyme of broad specificity, produced in large 
quantities by various fibroblasts (20, 23, 79). Thus, the con- 
certed actions of TGF-beta, to increase synthesis of protease 
inhibitors and to decrease synthesis ofproteases themselves, 
both serve to augment the accumulation of matrix proteins 
by TGF-beta. 

Some of the effects of TGF-beta on extracellular matrix are 
indirect, and are mediated through an intermediate cell such 
as the macrophage. Thus, TGF-beta has been found to be an 
extremely potent chemotactic agent for monocytes (75); peak 
effects have been found at concentrations as low as 1 pg/ml, 
which makes TGF-beta the most potent known agent in this 
regard. At higher concentrations, TGF-beta increases levels 
of mRNA in these cells for a fibroblast mitogen, such as in- 
terleuldn 1 (75). Furthermore, macrophages themselves are 
stimulated to secrete as much as lO-fold more TGF-beta 
when they are activated by an exogenous agent such as lipo- 
polysaccharide (3). This increased secretion of TGF-beta by 
activated macrophages could further stimulate fibroblasts to 
make more matrix. 

All of the above actions of TGF-beta are highly relevant 
to the problems of inflammation and tissue repair in response 
to injury; presumably they may also be of major importance 
with respect to the role of extracellular matrix in controlling 
embryonic development (25). 

Mechanism of Action of TGF-Beta 
As is true for most growth factors, the overall molecular 
mechanism of action of TGF-beta is unknown at present. 
However, the recent discovery of a nuclear factor 1-binding 
site in the alpha2(l) collagen gene, activated by 'l'GF-beta 
(Rossi, P., and B. de Crombrugghe, manuscript submitted 
for publication) represents an important advance. This site 
is found in the promoter for many genes (8, 13, 32, 41, 63, 
81), and its widespread occurrence may account, in part, for 
some aspects of the pleiotropic actions of TGF-beta. Several 
laboratories have reported that there is no detectable tyrosine 
kinase activity associated with TGF-beta receptors (18, 42). 
However, TGF-beta can antagonize the mitogenic actions of 
other growth factors that do act through a tyrosine kinase 
receptor, such as EGF (43, 48, 59, 68, 74), platelet-derived 
growth factor (1), fibroblast growth factor (6, 22), and insu- 
lin/insulin-like growth factor-I (43, 48). This antagonistic ac- 
tion of TGF-beta does not appear to occur directly at the 
respective tyrosine kinase receptors or at some other locus 
close to these receptors. Thus, it has been shown that al- 
though TGF-beta blocks the mitogenic effects of either EGF 
or insulin in mink lung epithelial cells, it does not block the 
elevation of ribosomal $6 kinase activity induced by either 
mitogen (43). 

In a related system, it has been found that although mito- 
genic stimulation of hamster lung fibroblasts by fibroblast 
growth factor or thrombin is completely blocked by TGF- 
beta, the various early signals induced by these mitogens are 
not blocked; these include increases in phospholipid turn- 
over and activation of protein kinase C, in Na§ § antiport 
activity, in expression of myc and los in the nucleus, and in 
ornithine deearboxylase activity (Chambard, J., and J. Pouys- 
sdgur, personal communication). These data all suggest that 

signals from the TGF-beta receptor probably do not involve 
pathways common to receptors with tyrosine kinase activity, 
but rather novel pathways, yet to be discovered, that converge 
in the nucleus to block DNA synthesis at some step distal to 
those already known. The further characterization of the 
structure and function of the TGF-beta receptor (or recep- 
tors) is thus one of the most critical problems in this entire 
field at the present time. 

Another important mechanistic consideration is that many 
of the actons of TGF-beta on individual cell types may be in- 
direct, that is mediated through another cell. This is particu- 
larly true for the effects of TGF-beta on angiogenesis: in vitro 
TGF-beta itself is a strong antimitogenie agent for capillary 
endothelial cells (6, 22, 26), yet, by virtue of its ability to 
act as a chemotactic agent for macrophages (75), and pre- 
sumably by its ability to stimulate macrophages to secrete an- 
giogenic peptides, it can act as a potent stimulator of anglo- 
genesis in vivo (60). 

Roles of TGF-Beta In Vivo 
At present there is relatively little information about the in- 
trinsic physiologic role of TGF-beta in vivo. Exogenous 
TGF-beta, prepared by acid-ethanol extraction of platelets 
(and therefore stripped of the protein that confers latency), 
has been used in a variety of in vivo studies, which have 
demonstrated that TGF-beta can stimulate wound healing 
and can induce the formation of the typical granulation tissue 
found in tissue repair (49, 60, 72). Two other situations in 
which TGF-beta has significant actions in cell culture, name- 
ly stimulation of osteoblasts and suppression of't7- and B-lym- 
phocytes, also have potentially important in vivo applica- 
tions, but investigations along these lines are still in a 
preliminary state. The progress that has been made in wound 
healing studies has benefited greatly from the ability to apply 
TGF-beta directly to a wound site; better methods for com- 
plexing TGF-beta with a binding or a carrier protein will be 
required for in vivo studies of its potential application for use 
in bone formation or as an immunosuppressive agent. 

At present, very little is known about the intrinsic physio- 
logical role of TGF-beta as an endogenous mediator of cell 
function in vivo. Immunohistochemical studies have begun 
to implicate TGF-beta as a mediator that may be important 
in controlling proliferation and differentiation in the develop- 
ing embryo (17, 27), particularly in the differentiation of tis- 
sues of mesenchymal origin such as bone, muscle, blood ves- 
sels, and blood cells, as well as in the differentiation of 
various epithelial tissues. There is no question that TGF-beta 
functions as a mediator of inflammation and repair, since it 
is known to be released from platelets when they are degran- 
ulated with thrombin (2) or from activated macrophages (3) 
and T-lymphocytes (34). Whether there are disease states in 
which TGF-beta contributes to pathogenesis by virtue of 
provoking an excessive inflammatory response (such as over- 
recruitment of macrophages) or an excessive repair response 
(overproduction of matrix proteins such as collagen, charac- 
teristic of many proliferative diseases) remains to be deter- 
mined. 

The intrinsic roles of TGF-beta in the physiology of bone, 
the immune system, and many other tissues also remain to 
be determined. It is not yet clear why bone has such a high 
concentration of TGF-beta relative to most soft tissues (66), 
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and the possible roles of TGF-beta in bone remodeling or re- 
pair are important problems for the future. It has recently 
been found that agents that stimulate bone resorption, such 
as parathyroid hormone, 1,25Mihydroxyvitamin D3, and in- 
terleukin 1, all increase TGF-beta activity in organ cultures 
of fetal rat or neonatal mouse calvaria (53). Whether TGF- 
beta is a direct mediator of the action of these agents, or 
whether the increase in its activity is a compensatory re- 
sponse to their presence, is not yet known. With respect to 
the immune system, the identification of TGF-beta 2 as a 
principal mediator responsible for the in vivo immunosup- 
pression in a patient with glioblastoma suggests that this 
molecule might have an important intrinsic function in con- 
trolling cell kinetics and function in lymphocytes and mono- 
cytes (80). Finally, almost nothing is known about the physi- 
ological role of TGF-beta in adult tissues such as brain, 
heart, and kidney, in which there is little mitotic activity. In 
the initial description of TGF-beta as a new type of molecule, 
it was noted that the specific activity of TGF-beta-like pep- 
tides in acid-ethanol extracts of brain, heart, and kidney was 
almost the same as in extracts of sarcoma cells (57). 

Future Directions 
The numerous actions of TGF-beta in regulating epithelial 
cell proliferation, the growth and activity of immune cells, 
and the synthesis and degradation of extracellular matrix, all 
suggest that significant interactions will be found between 
the TGF-beta system and two other major classes of regula- 
tory molecules, namely the glucocorticoids and the retinoids. 
There is a particularly impressive overlap in many of the ac- 
tions of retinoids and TGF-beta, and it is attractive to suggest 
that the mechanisms of action of these two different mole- 
cules might be closely related (71). There are numerous loci 
at which one might suggest interactions, but this would be 
entirely speculative at the present time. The TGF-beta system 
can potentially be regulated by controlling synthesis of either 
the peptide itself or its receptor, and as we have noted above, 
regulation of the activation of the latent form also appears to 
be an important physiological process. 

Little is known about promoters or enhancers of the genes 
for either TGF-beta 1 or 2, and we would suggest that activa- 
tion of such promoters or enhancers might be useful targets 
for development of new pharmacological agents. There is 
good reason to believe that preneoplastic epithelial lesions, 
as compared with malignant cancers, should be more sus- 
ceptible to control by an inhibitory growth factor (70) such 
as TGF-beta; therefore, an increase in TGF-beta gene tran- 
scription and translation in epithelial target cells might offer 
a new approach to chemoprevention of epithelial cancer, 
which is characterized in general by a very prolonged, 
premalignant, latency period. In any event, the elucidation 
of the regulatory elements that control transcription of the 
TGF-beta gene is a problem of paramount importance. 

We have stressed the importance of TGF-beta in repair of 
tissue damage, and this suggests that there may be significant 
interactions between TGF-beta and another system that ap- 
pears to be intimately involved in repair of cellular damage, 
namely the family of heat shock proteins (28, 52, 62). At 
present no such relationships are known; however, one might 
speculate that TGF-beta exerts some transcriptional or trans- 
lational control over heat shock genes, as it is known to do 

for collagen and fibronectin genes. The occurrence of similar 
nuclear factor I binding sites in the promoters for collagen, 
fibronectin, and heat shock genes (8, B, 41, 63, 81) suggests 
that this may be the case. Many of the roles of TGF-beta in 
tissue repair are suggestive of roles that it might also play in 
embryonic development, and studies in these two areas 
should complement each other. Indeed, cellular and bio- 
chemical mechanisms involved in embryogenesis may be 
reiterated during tissue repair in the adult (25); collagen, 
fibronectin, and heat shock gene products all play major 
roles in early embryonic development. In this regard, we 
would like to suggest that TGF-beta is a morphogenetic sub- 
stance, one that "gives form to things: TGF-beta is a mole- 
cule that somehow regulates and organizes the activities of 
other growth factors (73), and at the cellular level even ap- 
pears to be able to organize cells into functional units. Recent 
experiments showing that TGF-beta can induce disorganized 
capillary endothelial cells to form tubular structures in three- 
dimensional collagen gel cultures are germane to this con- 
cept (Madri, J., personal communication). 

With respect to embryonic development, new studies have 
shown specific immunohistochemical localization of TGF- 
beta in early mouse embryos in both the notochord and so- 
mites (27), critical structures in embryonic morphogenesis. 
In a similar way, the product of the decapentaplegic gene 
complex, related to TGF-beta, is important in morphogene- 
sis of the Drosophila embryo, particularly in establishing 
positional information and dorso-ventral patterning of em- 
bryonic structures (51). It will be of interest to determine 
whether TGF-beta might have a similar role, in the vertebrate 
embryo, in establishing the segmental pattern of somites, 
which in turn is responsible for the segmental nature of much 
of the musculoskeletal system in the adult (7). Although 
there is no known relationship between TGF-beta-like mole- 
cules and the function of the products of other patterning 
genes in Drosophila embryos, the known ability of TGF-beta 
to regulate the function of both EGF and its receptor (4, 44) 
in vertebrate cells and the known presence of EGF-like pro- 
teins in Drosophila (78), suggest that such relationships 
might exist. In this regard it will be of great interest to see 
if additional members of the TGF-beta gene family, beyond 
the decapentaplegic gene complex, will be discovered in 
Drosophila. There is no reason to believe that all members 
of the TGF-beta gene family have already been discovered, 
either in Drosophila or vertebrates. The evolutionary origin 
of this entire family is unknown at present. 

Conclusions 

At the rate that investigation of TGF-beta is proceeding, we 
have only seen the tip of the iceberg, especially in terms of 
understanding its physiology in vivo, in both the developing 
embryo and the adult animal. The discovery of a second form 
of TGF-beta offers a unique opportunity to investigate many 
problems relating to the specificity of the mechanisms of ac- 
tion of these substances. The unusual conservation of amino 
acid sequences across many species suggests that the func- 
tions controlled by both forms of TGF-beta are of critical sur- 
vival value to the organism. The finding that TGF-beta acti- 
vates a collagen gene promoter and that this activation is 
mediated by a functional binding site for the transcription 
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factor, nuclear factor I, represents a new advance in under- 
standing the molecular mechanism of action of TGF-beta. 
The opportunities to use both TGF-beta 1 and 2 for practical 
therapeutic purposes remain an exciting challenge. 

We dedicate this review to the memory of our colleague, 
George Khoury, who contributed so much to the knowledge 
of promoters and enhancers. 

We thank many investigators, listed in the text, for their kind permission 
to cite their work prior to publication; and Victor Fried and Lawrence 
Hightower for discussions of heat shock proteins. Susan Perdue has 
provided expert assistance with the manuscript. 
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