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Abstract. We describe a novel set of polypeptide anti- 
gens that shows a dramatic change in structural local- 
ization during mitosis. Through metaphase these anti- 
gens define a new chromosomal substructure that is 
located between the sister chromatids. Because the an- 
tigens are concentrated in the pericentromeric region, 
we have provisionally termed them the INCENPs (in- 
ner centromere proteins). The INCENPs (two poly- 
peptides of 155 and 135 kD) were identified with a 
monoclonal antibody that was raised against the bulk 
proteins of the mitotic chromosome scaffold fraction. 
These two polypeptides are the most tightly bound 
chromosomal proteins known. When scaffolds are pre- 
pared, 100 % of the detectable INCENPs remain 
scaffold associated. We were therefore unprepared for 

the fate of the INCENPs at anaphase. As the sister 
chromatids separate, the INCENPs dissociate fully 
from them, remaining behind at the metaphase plate 
as the chromatids migrate to the spindle poles. During 
anaphase the INCENPs are found on coarse fibers in 
the central spindle, and also in close apposition to the 
cell membrane in the region of the forming contractile 
ring. During telophase, the INCENPs gradually be- 
come focused onto the forming midbody, together with 
which they are ultimately discarded. Several possible 
in vivo roles for the INCENPs are suggested by these 
data: regulation of sister chromatid pairing, stabiliza- 
tion of the plane of cleavage, and separation of spindle 
poles at anaphase. 

T 
hE centromere has long been a subject of curiosity 
due to its prominent role in the attachment of sister 
chromatids to each other and to the mitotic spindle. 

However, with the exception of scattered ultrastructural and 
cytochemical analyses (reviewed in 39), the centromere has 
remained an elusive subject, a consequence of the difficulty 
of purifying it free from bulk chromatin. 

In recent years experimental breakthroughs have begun to 
permit the identification and functional analysis of kineto- 
chore components. (The kinetochore is the centromeric sub- 
structure to which microtubules attach). Genetic manipula- 
tions in Saccharomyces led first to the isolation of functional 
kinetochore DNA sequences (reviewed in 2, 5) and ulti- 
mately to the construction of stable artificial chromosomes 
(6, 32). At the same time, substantial progress has been 
achieved in the identification of human centromere proteins 
(13, 18, 33, 42, 48, 49) subsequent to the discovery of cen- 
tromere-specific autoantibodies in the sera of certain patients 
with rheumatic diseases (31). At least some of these autoanti- 
gens are thought to be located in the kinetochore (3). 

Dramatic improvements in our understanding of the dy- 
namics of microtubule assembly and disassembly (28) and 
the organization of microtubules in the spindle (16, 20, 45) 
have yielded new insights into the way in which kinetochores 
and microtubules interact in vivo (17, 29). The convergence 
of this diverse array of knowledge has permitted elaboration 
of detailed hypotheses to explain the function of the kineto- 

chore in mitosis. More importantly, the reagents required to 
test these hypotheses are now available. 

The kinetochore provides only one aspect of centromere 
function, however. It would be pointless for chromosomes to 
be subjected to the poleward forces generated by the mitotic 
apparatus were there not a mechanism for the controlled 
separation of sister chromatids at the metaphase/anaphase 
transition. Cytologists have long been interested in the mech- 
anism of mitotic sister chromatid disjunction, although stud- 
ies of the process have progressed little past the descriptive 
stage. 

It is known that traction forces applied by the spindle are 
not required for mitotic chromosome disjunction since both 
acentric fragments (4) and chromosomes in colcemid (or 
colchicine)-treated cells (30, 40) will separate in a syn- 
chronous (though in the latter case, delayed) fashion. This 
implies that a regulated chromatid-separation activity must 
exist in the cell. This activity has been postulated to involve 
either delayed replication of centromeric DNA (5; for which 
little direct evidence exists), or a regulated action of centro- 
mere-specific type II topoisomerases (43). The latter do ap- 
pear to be involved in mitotic disjunction, since cell death 
of conditional lethal topoisomerase H mutants of both Sac- 
charomyces and Schizosaccharomyces appears to arise from 
an abortive attempt to disjoin sister chromatids (22, 47). 
Type II topoisomerases are located all along the mitotic chro- 
mosome, however (10), and it is not known whether a centro- 
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mere-specific regulator of topoisomerase II function oper- 
ates in vivo. Certainly, the observation that acentric fragments 
disjoin at the normal time (4), together with the fact that in 
many cell types the sister chromatids remain tightly apposed 
along their entire lengths throughout mitosis up to anaphase, 
argues against a special sequestration of disjoining activities 
in the centromere. 

Here we describe a class of polypeptides that we provision- 
ally term INCENPs (inner centromere proteins), t INCENPs 
are localized between the sister chromatids of mitotic chro- 
mosomes through metaphase. At anaphase the antigens re- 
main behind at the metaphase plate as the chromosomes 
begin their poleward migration. This exit from the chromo- 
some is particularly striking in view of the observation that 
in chromosomes isolated from colcemid-blocked cells the 
INCENPs show an extremely tight association with the chro- 
mosome scaffold fraction. As the separated chromatids mi- 
grate to the spindle poles the INCENPs gradually become 
concentrated onto the tightly bundled microtubules of the 
midbody. Several possible roles of INCENPs in vivo are 
discussed. 

Materials and Methods 

Isolation of Mitotic Chromosomes 
Mitotic chromosomes were isolated from MSB-1 cells grown in RPMI 1640 
with 5% iron-supplemented calf serum and blocked overnight with 0.1 lag/ 
ml colcemid as previously described (14). Scaffolds were prepared from 
these chromosomes using 2 M NaC1 lysis mix (1). The final scaffold pellet 
was resuspended in D-PBS (8.06 mM Na2HPO4.7H20, 1.47 mM KHzPO4, 
137 mM NaC1, 2.7 mM KC1, 0.68 mM CaCI2, 0.492 mM MgCI2) for im- 
munizing mice. 

Immunization of Mice and Isolation 
of Monoclonal Antibodies 
6-wk-old BALB/c mice were injected intraperitoneally with an emulsion 
consisting of Freund's complete adjuvant and chromosome scaffolds isolated 
from '~1 • 109 MSB-1 cells. After 4 wk the mice were boosted intraperi- 
toneally with the same amount of antigen in incomplete adjuvant. 10 d after 
the first boost the mice were bled and the serum tested for anti-scaffold anti- 
bodies on immunoblots of MSB-1 chromosomes. Mice producing anti- 
scaffold antibodies were given a final boost of antigen in D-PBS alone 10 
d after the first bleed. 3 d after the final boost the spleen cells were fused 
with P3-X63-AgS.653 mouse myeloma cells (24) according to published 
procedures (25). After the fusion, the cells were resuspended in DME con- 
taining 20% (vol/vol) FCS, 10% (vol/vol) NCTC 135 and HAT (100 ~tM 
hypoxanthine, 0.4 laM aminopterin, and 20 ~tM thymidine) and plated in 
24-well dishes (Flow Laboratories, Inc., McLean, VA) at a density of 1-10 x 
106 spleen cells/well in 1 mi of growth medium. Culture superuatant from 
wells with cell growth was screened on immunoblots of MSB-1 chromo- 
somes. Wells positive for chromosomal proteins were cloned twice in agar 
(25) and later grown in flasks. 

Bookkeeping Experiments 
To assess the distribution of the INCENP antigens between mitotic chromo- 
somes, interphase nuclei and cytoplasm we first pelleted 50 mi of cells taken 
from a 500-ml MSB-1 spinner culture (+ a 15-h block with 0.1 I,tg/ml col- 
cemid). The cells were gently resuspended in RSB (10 mM Tris: HCI pH 
7.4, 10 mM NaCI, 5 mM MgC12) and swollen for 5 min at room tempera- 
ture. After centrifugation, swollen cells were disrupted in 3 ml oflysis buffer 
(26) by Dounce homogenization, and the lysates centrifuged at 3,200 g for 
20 min. The superuatants were removed and placed on ice (cytoplasmic 

1. Abbreviations used in this paper: DAPI, diamioinophenylindole; D-PBS, 
8.06 mM Na2HPO4-7H20, 1.47 mM KH2PO4, 137 mM NaCl, 2.7 mM KCI, 
0.68 mM CaCl2, 0.492 mM MgCiz; INCENE inner centromere protein. 

fraction). The pellets were then resuspended in a volume of final chromo- 
some buffer (buffer 4-26) equivalent to the volume of the starting lysate 
(chromosomal and nuclear fraction). Aliquots (0.2 ml) of the nuclear/chro- 
mosomal and cytoplasmic fractions were resuspended in 0.1 ml of 3• SDS- 
PAGE sample buffer (14), sonicated, and boiled before SDS-PAGE. 

Percoll-purified chromosomes and chromosome scaffolds were then iso- 
lated from the remaining 450 ml of colcemid blocked cells (14). The chro- 
mosome scaffolds were pelleted at 16,000 g for 15 min and resuspended 
directly in 1 • SDS-PAGE sample buffer. The supernatant of proteins solubi- 
lized during the scaffold extraction was precipitated in 15% TCA at 4 ~ for 
30 min and later resuspended in 1x SDS-PAGE sample buffer. 

lmmunofluorescence 
Procedures for indirect immunofluorescence have been modified from those 
described previously (12). For Figs. 1, 5, 6, 7, 9, and 10, cells (chicken hepa- 
toma-derived line 249) were either grown on coverslips, or obtained by mi- 
totic shakeoff, concentrated in warm medium, and centrifuged onto glow- 
discharged coverslips (12). 

Protocol 1. (All operations performed at room temperature.) For local- 
ization of INCENPs (Figs. 1, 5, 9, and 10), the samples were rinsed in D- 
PBS, fixed in 3% HCHO in D-PBS, and subsequently all operations were 
performed in KB (10 mM Tris:HCl pH 7.4, 150 mM NaCI, 0.1% BSA [pen- 
tex grade; Miles Laboratories, Naperville, IL]) plus 0.02% Triton X-100. 
Similar distributions of the INCENP antigens were observed if HCHO fixa- 
tion was replaced by immersion in acetone at -20~ (5 s), followed by re- 
hydration in D-PBS. 

Protocol 2 (modified from reference 34). For simultaneous localization 
of INCENPs and tubulin, the coverslips were incubated in StB (stabilization 
buffer = 0.1 MPipes/HCl pH 6.8, 1 mM EGTA, 1 mM GTP, 4% polyethyl- 
ene glycol [6,000-8,000; Sigma Chemical Co., St. Louis, MO] at 37~ for 
30 s, incubated in StB + 0.2% Triton X-100 for 4 min at 3"/~ washed twice 
in StB for 30 s at 37~ rinsed twice in D-PBS at 25~ fixed in 3% HCHO 
for 30 s at 25~ rinsed three times (2, 5, 3 min) in K.Blight (KB with 0.01% 
Triton X-100), and incubated for 30 min at 370C with a 1:1 mixture of mAb- 
3D3 and affinity-purified rabbit anti-13-tubulin (gift of D. Murphy, Johns 
Hopkins School of Medicine). The coverslips were rinsed as above (three 
times with KB~ght) and then incubated with a mixture of fluoresceinated 
goat anti-rabbit Ig (1:200; Cappel Laboratories, Inc., Cochranville, PAL 
and biotinylated goat anti-mouse Ig (1:100; Vector Laboratories, Inc., 
Burlingame, CA) for 30 min at 37~ After washing (as above), the cover- 
slips were incubated with a 1:800 dilution of streptavidin/Texas red 
(Bethesda Research Laboratories, Gaithersberg, MD) in KBlight for 30 min 
at 37~ washed as above, and mounted in Mowioi (34). 

Protocol 3. For higher resolution localization of INCENPs in mitotic 
chromosomes, cells that had been incubated with colcemid (0.1 I~g/ml) for 
3 h were collected by shakeoff, centrifuged, resuspended in hypotonic 
medium for 5 min (RSB buffer), and centrifuged onto glow discharged cov- 
erslips. These were then processed as above (protocol 1), with the exception 
that the KB buffer used contained 0.1% Triton X-100 throughout. 

Protocol 4. For localization of INCENPs in extracted chromosomes and 
chromosome scaffolds, highly purified mitotic chromosomes were cen- 
trifuged onto glow-discharged coverslips, which were then immersed in D- 
PBS. Where production of scaffolds was desired, the coverslips were first 
incubated with micrococcal nuclease at 40 ~tg/mi for 20 min at 4~ (This 
incubation was omitted for the experiment of Fig. 3, A and B .) Coverslips 
were then incubated with polyanion lysis mix (10 mM Tris:HCl pH 9, 10 
mM EDTA pH 9, 0.4 mg/ml dextran sulphate [Pharmacia Fine Chemicals, 
Piscataway, NJ], 0.04 mg/mi heparin [Sigma Chemical Co.], and 0.1% Am- 
monyx Lo [gift of the Onyx Chemical Co., Jersey City, NJ]) three times 
(2, 5, 3 min) at 4~ and processed for indirect immunofluorescence as 
above for protocol 1, with the exception that KB~t was used throughout. 
Similar results were obtained if coverslips were extracted with lysis mix 
containing 2 M NaC1 in place of the polyanion mixture (data not shown). 

Other Immunological Techniques 
Immunoblotting procedures have been described previously (15), as have 
been procedures for affinity purification of antibodies from nitrocellulose 
blots (13), and methods for immunoabsorption of antigens from cells dis- 
rupted by boiling in SDS solubilization buffer (19, 35). For the experiment 
of Fig. 11, and in all of our more recent immunoblotting work, the blots were 
washed in Triton/SDS buffer (50 mM triethanolamine/HCl pH 7.4, 100 mM 
NaC1, 2 mM K-EDTA, 0.5% Triton X-100, 0.1% SDS; reference 35), which 
significantly decreases background nonspecific binding. 
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Figure 1. Use o f  mAb-3D3 to stain mitotic cells. (A-C) Side view o f  metaphase plate. (D-F) End view o f  plate. The images shown are: 
(A and D) phase contrast;  (B and E)  DAPI stain of  DNA;  (C and F )  mAb-3D3 staining. Note that one ch romosome  (A-C) has not yet 
congressed  to the plate. Note also that the interphase nuclei are also weakly immunoposit ive.  Bar, 10 Ixm. 

Cen t r i f uga l  E lu t r ia t ion  

MSB-1 cells were grown in RPMI t640 medium (Gibco, Grand Island, NY) 
supplemented with 5% FCS (HyClone Laboratories, Logan, UT). 2-4 • 
IO s ceils in log phase were pelleted at 2,000 g and resuspended in 20 ml 
of elutriatiou buffer (Hanks balanced salt solution [Gibco] containing 5% 
FCS). EDTA was added to a final concentration of 0.02% and the cell sus- 
pension passed through a 20-cc syringe fitted with a 22-gauge needle. (This 
step decreased the percentage of G~ cells contaminating the sorted G2 + M 
populations as a result of the tendency of daughter cells to remain associated 
after cytokinesis.) The cell suspension was then separated according to size 
(approximate position in the celt cycle) by centrifugal elutriation using a JE- 
6B elutriator rotor mounted in a J2-21 centrifuge (Beckman Instruments, 
Inc., Palo Alto, CA). Rotor speed was maintained constant at t,800 rpm 
throughout the separation, The staring flow rate of 6 ml/min was increased 
by "~1 ml/min increments. 50 ml of cell suspension was collected on ice af- 

ter each increase in flow rate. The elutriation finished by the time the flow 
rate reached ",,20 mI/min. Fractions were analyzed for size and number of 
cells with a Coulter counter, and cell cycle position determined by flow 
cytometry. After elutriation, cells were washed in cold D-PBS and solubi- 
lized in SDS-PAGE sample buffer at a concentration of 10,000 cells/gl. An 
equal number of cells/lane (2.5 x lO s) from each fraction (including one 
loading from the initial unsorted culture) was subjected to electrophoresis 
through replicate 10% polyacrylamide gels (26). One gel was stained for 
protein content and the others transferred electrophoretically to nitrocellu- 
lose for immunoblotting analysis with various antisera (15). In these experi- 
ments the protein content of fractions 1 and 15 is often underrepresented. 
This is due to the presence of some cell debris in fraction 1 that the Coulter 
counter detects as intact cells, and to mitotic cells in fraction 15 that elutriate 
joined by a midbody, but subsequently separate and are counted by the 
Coulter counter as two separate cells. 
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Results 

Isolation of  a Monoclonal Antibody Recognizing 
Two Chromosome Scaffold Proteins 

In this study we set out to obtain monoclonal antibodies that 
would recognize previously unidentified components of the 
mitotic chromosome scaffold fraction. We prepared scaffolds 
from isolated chicken mitotic chromosomes and injected 
them into mice without further subfractionation, eventually 
obtaining a single hybridoma line that was cloned twice in 
soft agar. This cell line secretes a monoclonal antibody, 
mAb-3D3 (an IgG-2b; data not shown) that recognizes three 
antigens of Mr 80,000, 135,000 and 115,000 in immunoblots 
of whole cells (see Fig. 4, below). For ease in description, 
we initially termed these antigens ag80kD, ag135kD, and 
ag155kD. 

Localization in Mitotic Chromosomes 

mAb-3D3 stains the condensed chromosomes in metaphase 
cells (Fig. 1). In these cells, the chromosomes are organized 
in a ring on the metaphase plate (Fig. 1, D-F). The inner 
part of this ring appears more intensely stained with antibody 
than is the periphery. This is not due simply to the overall 
packing of chromosomes tightly into the plate. The diami- 
oinophenylindole (DAPI) image of total DNA in these struc- 
tures fails to show evidence for a dense inner ring of chroma- 
tin (Fig. 1, B and E). 

In an isolated chromosome that had (presumably) not yet 
congressed to the plate (Fig. 1 C) the centromere was more 
intensely stained than were the distal regions of the arms. 
However it is important to note that mAb-3D3 did signifi- 
cantly stain the entirety of the two sister chromatids, which 
were tightly paired along their entire length. 

To analyze the chromosomal location of the 3D3 antigens 
at higher resolution, chicken cells were blocked in mitosis 
with colcemid, swollen in hypotonic medium, disrupted by 
centrifugation onto coverslips, and subsequently processed 
for immunofluorescence analysis (Fig. 2). Colcemid treat- 
ment causes the association between sister chromatids to 
loosen so that they adopt the classical "X" conformation (27). 
This is accompanied by a change in the distribution of the 
3D3 antigen, which is now localized almost exclusively to 
the centromere. Furthermore, this localization has two un- 
usual features. (a) In many chromosomes the centromeric 
staining is resolved into two dots flanking the centromere. 
These dots are reminiscent of the double dots seen upon 
staining chromosomes with anti-centromere antibodies (15), 
except that the axis connecting the dots is parallel to the long 
axis of the chromosome for the 3D3 antigen and perpendicu- 
lar to it for centromeric autoantigens. Thus the INCENPs are 
apparently present in a chromosomal substructure, distinct 
from that containing the CENP family of centromeric au- 
toantigens (13). (b) The 3D3 antigens are localized between 
the sister chromatids. Thus the two dots appear to corre- 
spond to the two regions of the proximal arms previously 
described by Lima de Faria (27) as the last points of contact 
between the sister chromatids just before separation at ana- 
phase. This suggests that the 3D3 antigens might have some- 
thing to do with sister chromatid adhesion, a hypothesis sup- 
ported by the observation that the antigens are apparently 

Figure 2. Localization of the INCENP antigens in chromosomes 
from colcemid-blocked cells. Blocked cells were spread by cen- 
trifugation on glow-discharged coverslips (12) and stained with 
mAb-3 D3. (A and B) Simultaneous phase contrast/immunofluores- 
cence double exposures. (C) The fluorescence image alone. Note 
that the staining is predominantly just above and below the centro- 
mere, and is concentrated between the sister chromatids. Bar, 
10 ~tm. 

found wherever the sister chromatid arms remain in contact 
(this is particularly noticeable in Fig. 2 A). 

Because of this striking localization of the 3D3 antigens 
between the sister chromatids and especially in the centro- 
mere region, we have given the antigens the provisional 
designation of INCENPs (inner centromere proteins). 

We have performed two extraction experiments to further 
map the location of the INCENPs in mitotic chromosomes. 
In the first, purified mitotic chromosomes on coverslips were 
extracted with a dextran sulphate/heparin lysis mix shown 
previously to efficiently remove the bulk of chromosomal 
proteins, while leaving behind the insoluble proteins of the 
chromosome scaffold fraction (1, 11). When these extracted 
chromosomes were examined under fluorescence after stain- 
ing with the DNA-binding dye DAPI, the DNA was seen to 
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Figure 3. Localization of 
INCENPs in extracted mitot- 
ic chromosomes and chromo- 
some scaffolds. Highly purified 
mitotic chromosomes were 
centrifuged onto coverslips and 
treated as follows. (A and B) 
Coverslips were treated with 
dextran sulphate/heparin lysis 
mix to remove histones. (,4) 
DAPI image of DNA; (B) im- 
munolocalization of INCENP 
antigens. (C-E) Coverslips 
were immersed in a solution 
with 1 Ixg/ml micrococcal nu- 
clease and subsequently ex- 
tracted with the polyanion ly- 
sis mix. (C) Phase contrast; 
(D) immunolocalization of 
INCENP antigens; (E) DAPI 
staining of DNA. In both cases 
the centromere-linked dots of 
INCENP antigens resist the 
extraction. Bar, 10 ~m. 

be widely dispersed (Fig. 3 A), as shown previously in the 
electron microscope (36). In contrast, the INCENPs re- 
mained localized in discrete dots, many of which appear dou- 
ble (Fig. 3 B). If both DNA and histones were removed by 
nuclease digestion followed by polyanion extraction, the dot- 
like localization of the INCENPs remained unaltered (Fig. 
3 D). Staining with DAPI confirms that the vast majority of 
the DNA is removed by this procedure (Fig. 3 E). Thus, in 
chromosome scaffolds the INCENPs are localized in discrete 
foci. 

Mapping the IntraceUular Distribution of  lNCENPs 
by SubceUular Fractionation 

The immunofluorescence data suggest strongly that the 
INCENP antigens are localized in mitotic chromosomes and 
in chromosome scaffolds. However, to control for possible 
losses of antigen during processing for immunofluorescence 
and for possible masking of epitopes in situ, we have also ex- 
amined the cellular localization of the INCENP antigens by 
subcellular fractionation, SDS-PAGE, and immunoblotting. 

Fig. 4 presents results of a bookkeeping experiment de- 
signed to examine the association of the INCENP antigens 

with interphase nuclei and mitotic chromosomes. Interphase 
or mitotic (colcemid-blocked) cells were gently disrupted by 
Dounce homogenization, and centrifuged at low speed (10, 
11) to give a pellet of crude chromosomes and nuclei (Fig. 
4, lanes 1 and 3, respectively) and a supernatant of mitotic 
or interphase cytoplasm (lanes 2 and 4). The protein compo- 
sition of these samples, stained with Coomassie Blue, is 
shown in Fig. 4 A. The immunoblot (Fig. 4 B) shows that 
mAb-3D3 recognizes the three antigens (ag155kD, ag135kD, 
ag80kD) in both interphase nuclei and mitotic chromosomes. 
The two larger antigens appear exclusively nuclear/chromo- 
somal, while a trace of ag80kD is found in the cytoplasm. 
We demonstrate below that the two larger antigens are re- 
sponsible for the INCENP staining pattern of mAb-3D3. We 
therefore designate them INCENP A (155 kD) and INCENP 
a (135 kD). 

When the crude chromosomes were further purified by 
centrifugation through sucrose and Percoll gradients (Fig. 4, 
lanes 5), ag80kD was removed. Thus this component, 
while weakly associated with mitotic chromosomes (or pos- 
sibly other rapidly sedimenting cellular debris), is appar- 
ently not an intrinsic protein of mitotic chromosomes. The 
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cellular localization of this antigen has been examined fur- 
ther using specific polyclonal antibodies (see below). 

In contrast, the two high molecular mass antigens are 
intrinsic chromosomal proteins. Both cofractionate with mi- 
totic chromosomes and are quantitatively retained in chro- 
mosome scaffolds (Fig. 4, lanes 5 and 6). They are unde- 
tectable among the proteins released from chromosomes 
by nuclease digestion and 2 M NaCl extraction (Fig. 4, lanes 
7). Thus INCENP A and INCENP B are among the most 
tightly associated mitotic chromosome scaffold components 
described to date. 

Dynamic Redistributions of  the INCENPs 
during Mitosis 

The biochemical and immunocytochemical experiments de- 
scribed above indicate clearly that the INCENPs are an inte- 
gral part of the mitotic chromosome infrastructure. In fact, 
we know of only one other mitotic chromosome scaffold 
component that is recovered quantitatively in the chromo- 
some scaffold fraction. (This is CENP C, the 140-kD centro- 
meric autoantigen [Earnshaw, W. C., unpublished observa- 
tions] .) 

We were therefore unprepared for the fate of the INCENPs 
during mitosis. As is shown in Fig. 5, they appear to dissoci- 
ate completely from the chromosomes at the metaphase- 
anaphase transition. Fig. 5 (G-I) shows a metaphase plate 
(end view) and midanaphase side by side. The former shows 
the typical chromosomal staining seen above (Fig. 1), while 
in the latter cell the INCENPs appear distributed in a belt 
across the central region. Other examples of early, mid, and 
late anaphases are also shown in Fig. 5 (A-F). In all cases 
the antigen appears to be localized on coarse fibers in the 
zone of overlap of the two half spindles. In through-focus se- 
ries, the antigen is also seen to be closely apposed to the cell 
membrane in the region of the cleavage furrow (see arrow- 
heads in Fig. 5, D and G). 

As mitosis continues, the INCENPs ultimately end up in 
the midbody (Fig. 5, D-F; see also Fig. 6, D-F, and Fig. 9, 
D-F). We have never detected staining of the nucleus of a 
cell to which a prominent midbody was attached. 

The experiments shown in Figs. 1 and 5 used gentle fixa- 
tion conditions that were chosen for optimal observation of 
chromosomal antigens. However, such conditions give poor 
preservation of microtubules. In view of the apparent local- 
ization of the INCENP antigens in the central spindle after 
sister chromatid separation, we therefore decided to examine 
cells that were fixed under conditions that better preserve 
microtubule structures. Fig. 6 shows the simultaneous 
colocalization of tubulin and INCENPs in metaphase, late 
anaphase, and telophase cells. Fig. 7 presents similar data for 
two cells in early and midanaphase. These images confirm 
that the INCENPs are present on the metaphase chromo- 
somes and are not found on the spindle microtubules. At 
anaphase, the antigen is distributed across the center of the 
cell in a zone about the thickness of the original metaphase 
plate. While exact comparison of the fluorescence images is 
difficult, it appears that the INCENP antigen may show some 
association with the microtubules of the central spindle. At 
telophase (Fig. 6, D-F, an abnormal three-way division is 
shown) the INCENPs are restricted to the midbody, while 
microtubule bundles project out from this structure. 

These data indicate that subsequent to the onset of ana- 

Figure 4. Distribution of the INCENP antigens in subcellular frac- 
tions. (A) Coomassie Blue-stained gel with molecular mass mark- 
ers (in kilodaitons) at left. (B) Immunoblot of parallel samples 
showing species recognized by mAb-3D3. The lanes show: (1) 
crude interphase nuclei; (2) interphase cytoplasm; (3) crude mitotic 
chromosomes; (4) mitotic cytoplasm; (5) highly purified mitotic 
chromosomes; (6) the chromosome scaffold fraction prepared from 
these chromosomes by the 2 M NaCI extraction; (7) supernatant 
fraction of proteins solubilized by the 2 M NaCI extraction. In all 
cases comparable numbers of cell equivalents were loaded per lane. 
Binding of mAb was detected with ~25I-goat anti-mouse Ig. 

phase the INCENPs may associate with specific regions of 
the microtubules. Alternatively, the primary association may 
be with other structures in the region of the forming cleavage 
furrow. 

Demonstration that the Antigens Identified 
in Immunoblotting Give Rise to the INCENP 
lmmunofluorescence Pattern 

It is very difficult to prove that an immunofluorescence stain- 
ing pattern obtained with a single mAb is due to specific 
polypeptides recognized by that mAb in immunoblots. The 
possibility that different species are recognized in immu- 
nofluorescence and immunoblots must always be considered, 
particularly in view of the well known tendency of mAbs for 
unexpected cross-reaction. However three lines of evidence 
suggest that the striking immunofluorescence patterns ob- 
tained with mAb-3D3 are due to recognition of INCENPs A 
and B. (a) Immunofluorescence of highly purified mitotic 
chromosomes gives the characteristic inner centromere 
staining. Immunoblotting analysis of the same material dem- 
onstrates the presence only of immunoreactive INCENPs A 
and B (not shown). (b) The nuclei of early G~ cells (still 
connected by a prominent cytoplasmic bridge) do not bind 
mAb-3D3 in indirect immunofluorescence. Immunoblotting 
of cells separated according to cell cycle position by centrifu- 
gal elutriation confirms that INCENPs A and B are much re- 
duced in early GI cells (see below). 

A more definitive experiment would be to affinity purify 
antibody from INCENPs A and B on nitrocellulose blots and 
show that this antibody gives the characteristic immunofluo- 

The Journal of Cell Biology, Volume 105, 1987 2058 



Figure 5. Redistribution of the INCENPs at the metaphase-anaphase transition. The images are as follows: (A, D, and G) phase contrast; 
(B, E, and H) DAPI staining of DNA (C, F, and I) immunolocalization of INCENP antigens. (A-C) Early anaphase. (D-F) Midanaphase, 
early telophase, late telophase (with forming midbody indicated by m). (G--l) Side by side comparison of a metaphase plate (end view) 
and midanaphase. At anaphase the antigens are localized in coarse fibers covering the central zone of overlapping microtubules in the 
spindle. In D and G, arrowheads indicate two cells in which an apparent association of the antigens with the membrane at the cleavage 
furrow can be seen. Bar, 10 Ixm. 
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Figure 6. Simultaneous localization of tubulin and INCENPs in mitotic cells. Images shown are (A and D) phase contrast, (B and E) immu- 
nolocalization of rabbit tubulin with polyclonal antibody, (C and F) immunolocalization of INCENPs. The stages shown are (A-C) 
metaphase and late anaphase; and (D-F) telophase of an abnormal division. The INCENPs appear to colocalize with very limited regions 
of microtubules in the postmetaphase cells. Bar, 10 I~m. 

rescence pattern. Unfortunately it is meaningless to do this 
experiment with a mAb, since only a single-binding specifi- 
city is present to begin with. We have, however, performed 
the experiment using polyclonal serum from a mouse im- 
munized with chicken chromosome scaffolds. This mouse 
was immunized in an earlier attempt to obtain anti-scaffold 
mAbs. (This was not the mouse that eventually gave rise to 
mAb-3D3.) When serum from this mouse was used to probe 
an immunoblot of the proteins of isolated chicken chromo- 
somes, >15 polypeptides were recognized, including four 
prominent species in the 130-170-kD molecular mass range 
(Fig. 8 A). 

Antibodies were affinity purified from each of these four 
polypeptides as described previously (13), and the specificity 
of the eluted antibodies confirmed by reblotting against the 
proteins of isolated chromosomes (Fig. 8 B). It is apparent 
from Fig. 8 B that bands 1 and 2 contain distinct antigens, 
while the antibodies that bind to bands 3 and 4 cross react 
strongly (Fig. 8 B, lanes 1-4). The immunoblotting pattern 
obtained with the latter two affinity-purified antibodies is in- 
distinguishable from that obtained with mAb-3D3 (Fig. 8 B, 
lanes 3-5). Thus both polyclonal and monoclonal antibodies 
to INCENPs A and B cross react strongly. 

In indirect immunofluorescence, anti-band 1 and anti- 

band 2 gave patterns distinct from that obtained with mAb- 
3D3. Anti-band 1 recognizes the condensed chromosomes 
in metaphase, anaphase, and telophase cells. In the latter an 
extremely faint staining of midbodies may be seen (perhaps 
due to contaminating anti-band 3 and anti-band 4, which 
may be faintly seen in the control immunoblot; Fig. 8 B, lane 
1 ). Anti-band 2 yields a similar fluorescence pattern, with 
stronger recognition of midbodies (again possibly due to 
presence of contaminating anti-band 3 and anti-band 4). 

Indirect immunofluorescence of dividing cells using affin- 
ity-purified anti-band 3 is shown in Fig. 9. This fluorescence 
is essentially identical to that obtained using mAb-3D3, 
showing strong binding to metaphase chromosomes (Fig. 9, 
A-C), the central zone of overlap of the anaphase spindle 
(Fig. 9, A-C), and to the midbody (Fig. 9, D-F). Similar 
fluorescence images were obtained with anti-band 4 (not 
shown). Thus the unusual pattern of immunostaining of di- 
viding cells with mAb-3D3 appears to derive from recogni- 
tion of INCENPs A and B. 

The 80-kD Antigen 

We have further investigated the relationship between 
ag80kD and INCENPs A and B by preparing a polyclonal 
antibody specific for agS0kD. The ag80kD band was excised 
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Figure 7. Simultaneous localiza- 
tion of tubulin and INCENPs in 
anaphase cells. Images shown are 
(A) phase contrast, (B) immuno- 
localization of tubulin, and (C) 
immunolocalization of INCENPs. 
Late (lefO and midanaphase are 
shown. The INCENPs are con- 
centrated at the original loca- 
tion of the metaphase plate. Bar, 
10 lam. 

from a gel of total cellular proteins immunoprecipitated with 
mAb-3D3, macerated, and injected into a guinea pig. The 
resultant serum recognized only ag80kD on immunoblots of 
whole cell lysates (not shown). This polyclonal serum and 
mAb-3D3 recognize the same polypeptide. When immuno- 

reactive species were precipitated from cells solubilized in 
SDS using anti-ag8OkD (19, 35), subjected to SDS-PAGE, 
and analyzed by immunoblotting with mAb-3D3, the mono- 
clonal antibody reacted strongly with the imrnunoprecipi- 
tated ag80kD (data not shown). 
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Figure 8. Affinity purification of polyclonal antibodies recognizing 
INCENPs A and B. (A) Serum from a mouse immunized with chro- 
mosome scaffolds was used to stain an immunoblot of total chro- 
mosomal proteins (immunoperoxidase detection). (B) Antibodies 
eluted from the four bands indicated in (A) were used to probe par- 
allel strips of chromosomal proteins (lane number corresponds to 
band number in A). The immunoblots obtained with polyclonal 
anti-bands 3 and 4 were indistinguishable from that obtained with 
mAb-3D3 (lane 5). 

The pattern of immunofluorescence observed upon stain- 
ing cells with anti-ag80kD (Fig. 10) differs from that ob- 
tained with mAb-3D3 in two significant ways. First, neither 
prophase or metaphase chromosomes are stained (Fig. 10, 
A-C). Anti-ag80kD stains the entire cytoplasm diffusely in 
mitotic cells, being excluded from the condensed chromo- 
somes. Second, the antibody does not stain midbodies (m in 
Fig. 10 D). The latter is the most consistent and unmistakable 
feature of staining exhibited with mAb-3D3. 

Given the failure of anti-ag80kD to decorate mitotic chro- 
mosomes in situ, we wished to know the reason for the bio- 
chemical cofractionation of this antigen with crude mitotic 
chromosomes (Fig. 4). Indirect immunofluorescence analy- 
sis of crude chromosome preparations indicated that anti- 
ag80kD was present solely on contaminating interphase 
nuclei and debris (data not shown). This material is effi- 
ciently removed by the Percoll gradient during the standard 
chromosome isolation procedure. 

We conclude that ag80kD exhibits a different cellular dis- 
tribution from INCENPs A and 13. Thus ag80kD is not an 
INCENP, and the basis of its reaction with mAb-3D3 is not 
known. 

Cell Cycle Analyses 

The nuclei of early G~ cells (recognized as small cells that 
remain joined by a conspicuous intercellular bridge with 
midbody) were consistently negative in immunofluores- 
cence with mAb-3D3. This suggested that the cellular levels 
of INCENPs might vary widely across the cell cycle. 

To test such a hypothesis, cells were separated according 
to size (a function of cell cycle position) by centrifugal elutri- 
ation. An equal number of cells from each fraction was then 
boiled in SDS sample buffer and analyzed by SDS-PAGE and 
immunoblotting (Fig. 11). The total protein in each fraction 
is shown in Fig. 11 A. The intensity of Coomassie Blue stain- 
ing gradually increases in subsequent fractions, reflecting 
the increase in cell size. 

In the immunoblot with mAb-3D3 (Fig. 11 B) INCENPs 
A and B were observed to vary dramatically across the cell 
cycle. They are barely detectable in early G~ cells (fractions 
1 and 2), and increase to a maximum value in G~. This 
variation in staining is consistent with the INCENP staining 
pattern seen in immunofluorescence experiments. In contrast 
ag80kD shows much less variation across the cell cycle. 

Discussion 

Protein Antigens that React with mAb-3D3 
One major concern when using monoclonal antibodies to 
analyze hitherto unknown structures is the possibility that 
different aspects of the staining may arise from cross- 
reactions with different antigens. We have therefore exam- 
ined the interactions of mAb-3D3 with cellular antigens in 
a number of ways. mAb-3D3 interacts with three polypep- 
tides in immunoblots: INCENP A (155 kD), INCENP B (135 
kD), and agS0kD. Only INCENPs A and B can account for 
the observed immunofluorescence patterns, however. This is 
deduced from the following observations. (a) Polyclonal se- 
rum from an independently injected mouse was affinity 
purified from INCENPs A and B. Both purified antibodies 
reacted with both polypeptides (as does mAb-3D3), and both 
gave immunofluorescence staining patterns similar to that 
seen with mAb-3D3. (b) Purified mitotic chromosomes con- 
tain only INCENPs A and B (detectable by immunoblotting). 
These chromosomes show the characteristic INCENP stain- 
ing by indirect immunofluorescence. (c) Measurement of the 
levels of total INCENPs A and B across the cell cycle reveals 
that early G1 cells, which show no nuclear fluorescence 
with mAb-3D3, have only minute amounts of the two anti- 
gens detectable by immunoblotting. (d) Polyclonal anti- 
ag80kD has been prepared, and precipitates the same 80-kD 
polypeptide recognized by mAb-3D3. This polyclonal serum 
gives an immunofluorescent staining pattern distinct from 
that seen with mAb-3D3, ag80kD shows no association with 
either mitotic or prophase chromosomes (at which stage it 
is still nuclear). Thus agS0kD is not an INCENP. 

The basis of the crossreaction of mAb-3D3 with ag80kD 
remains obscure. An obvious possibility is that the mAb 
recognizes a posttranslational modification, as previously 

The Journal of Cell Biology, Volume 105, 1987 2062 



Figure 9. Indirect immunofluorescence with polyclonal anti-band 3 (see Fig. 8). Images are: (A and D) phase contrast; (B and E) DAPI 
binding to DNA; (C and F) immunostaining with affinity-purified polyclonal anti-band 3. The antibody binds to mitotic chromosomes 
(A-C), the midzone of anaphase spindles (A-C), and midbodies (D-F, m in D). Bar, 10 ~tm. 

shown for certain other mitosis (7) and nuclear envelope (8, 
42)-specific mAbs. The former has been shown to recognize 
specific mitotic phosphoproteins (7), while the latter recog- 
nize an unusual O-linked glycosylation (23, 41). We have at- 
tempted to exclude these obvious possibilities by showing 

that the interaction of INCENPs A and B with mAb-3D3 is 
not inhibited by preincubation of the antigens with alkaline 
phosphatase, hexoseaminidase, or galactosyl transferase (data 
not shown). Recent experiments suggest strongly that mAb- 
3D3 recognizes a peptide epitope, since the antibody has 
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Figure 10. Immunolocalization of ag80kD in interphase and mitotic cells. Images are (A and D) phase contrast; (B and E) DAPI staining 
of DNA; (C and F) immunolocalization of ag80kD. In A a metaphase (M) and prophase (P) are indicated. In D a midbody (m) is indicated. 
This polyclonal antibody does not bind to condensed chromosomes of either prophase or metaphase cells, and shows no binding to midbod- 
ies. Bar, 10 Ixm. 
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~gure H, Levels of INCENP antigens across the cell cycle. Cells were sorted according to size by centrifugal elutriation, counted with 
a Coulter counter, and solubilized in boiling SDS-PAGE sample buffer. Equal numbers of cells were loaded per lane. (A) Coomassie Blue 
stain. (B) Parallel gel analyzed by immunoblotting with mAb-3D3. Elutriation fraction numbers are indicated below each panel (e, unfrac- 
tionated population). The cell cycle phases of the various fractions (determined by flow cytometry) are displayed at the bottom of B. 

been used to obtain immunopositive clones from a X-gtll ex- 
pression library (Earnshaw, W. C,, unpublished data). Bac- 
teria are not thought to perform the same spectrum of post- 
translational modifications observed in mammalian cells. 
(Significantly, the immunopositive clones are not recognized 
by anti-ag80kD.) 

We conclude that the immunofluorescence patterns pre- 
sented above are due to the specific recognition of peptide 
epitopes on INCENPs A and B by mAb-3D3. 

The relationship between INCENPs A and B is unknown, 
It is possible that they represent the products of a single gene 
and differ as a result of posttranslational modification. If  this 
is so, then the modification is unlikely to be either phos- 
phorylation or O-linked glycosylation for the reasons men- 
tioned above. However, other modifications (such as poly- 
ADP ribosylation) might also cause alterations in mobility 
of the magnitude observed. It is also possible, however, that 
INCENPs A and B are the products of distinct genes. 

Localization of the INCENP Antigens in Mitotic 
Chromosomes and in Cells 

Separation of cells by centrifugal elutriation indicates that 
levels of INCENPs A and B vary widely across the cell cycle. 
The antigens are present in much reduced amounts in early 
G1 cells, begin to increase dramatically during S phase, and 
attain their maximum levels during G2, 

Fig. 12 provides a recapitulation of the changes in localiza- 
tion and amounts of the INCENPs that occur during the cell 
cycle. In early G~ the INCENPs are detectible only in the 

midbody, which remains from the previous mitosis. Im- 
munofluorescent staining of interphase cells shows a speck- 
led nuclear distribution of antigen (Fig. 1). The INCENPs 
undergo a dramatic series of changes in their cellular local- 
ization during mitosis. Through metaphase, the antigens are 
intimately associated with the mitotic chromosomes, where 
they are concentrated between the sister chromatids at points 

Figure 12, Summary diagram showing the location of the INCENPs 
at various times during the cell cycle. 
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of contact. At the onset of anaphase the antigens separate 
from the chromosomes, remaining behind at the site of the 
metaphase plate. As the chromosomes migrate to the poles, 
the INCENP antigens are localized in a belt across the cen- 
tral spindle, with local regions of concentration proximal to 
the cell membrane in the region of the contractile ring. As 
cytokinesis proceeds, the INCENP antigens gradually be- 
come concentrated in the midbody. 

Speculations Concerning the Possible Role of  
the INCENP Proteins In Vivo 

The localization of the INCENP antigens in mitotic chromo- 
somes and the dramatic alterations in this localization that 
occur during mitosis suggest several possible roles for these 
polypeptides during mitosis. 

The INCENPs May Regulate the Pairing of Sister Chro- 
matids. That sister chromatid separation is a regulated pro- 
cess is suggested by the classical observation that the onset 
of anaphase is abrupt, with the vast majority of chromo- 
somes separating at nearly the same time. Further, the spin- 
dle is not required for this separation, which also occurs in 
certain cells in the presence of levels of colchicine or col- 
cemid sufficient to prevent the assembly of spindle microtu- 
bules (30, 40). This regulation might be achieved via direct 
structural interactions (i.e., the antigens might form a "zip- 
per" between sister chromatids that dissociates in response 
to some signal). Alternatively, the INCENPs might act as 
modulators of the enzymatic activity of topoisomerase II (a 
major structural component of mitotic chromosome scaf- 
folds [14], that is known to be required for mitotic disjunction 
in lower eukaryotes [9, 46]). 

Two observations support such a role for the INCENPs. 
First, through metaphase, the INCENPs are the two most 
tightly bound chromosome scaffold components identified 
to date, This association is strikingly reversed at the onset 
of anaphase, at which point the antigens appear to leave 
the chromosomes entirely. It is tempting to speculate that 
some irreversible modification of the INCENPs (proteoly- 
sis?) serves as the trigger for anaphase chromatid separation, 
with the modified antigen being subsequently removed from 
the cell by sequestration in the midbody. 

The distribution of the INCENPs within metaphase chro- 
mosomes from both normal and colcemid-blocked cells is 
also consistent with their potential involvement in sister 
chromatid pairing. In normal metaphase, the sister chro- 
matids are tightly apposed along their entire lengths (Fig. 1). 
Furthermore, the ability of sister chromatids to undergo a 
timed anaphase separation is not limited to the centromere; 
acentric fragments derived from the distal arms also separate 
coordinately with their centric counterparts (4). This implies 
that the components that regulate pairing are distributed 
along the entire length of the chromosome, as are the 
INCENP antigens. 

In colcemid-blocked cells, the distal chromatid arms sepa- 
rate and the sister chromatids remain joined by two bridges 
between the proximal arms just above and below the centro- 
mere (which itself may separate; 27). The localization of the 
INCENP antigens in colcemid-blocked chromosomes shows 
a remarkable correlation with this pattern of sister chromatid 
separation. As the distal arms separate, the distal INCENPs 
disappear. The INCENPs are ultimately found in two small 
dots just above and below the centromere (t~ig. 2). The coin- 
cidence between the classical observation of sister chromatid 

attachment and the localization of the INCENP antigens is 
striking. 

The INCENPs Might Be Involved in Stabilization of the 
Cleavage Furrow at Cytokinesis. Examination of through- 
focus series of images from an_aphase cells shows that the 
INCENP antigens permeate the central spindle, extending 
outward to form a concentrated zone subjacent to the cell 
membrane in the region of the contractile ring (Fig. 5). It is 
thus tempting to speculate that INCENP antigens, which 
define the center of the metaphase plate (as the point midway 
between oppositely oriented sister kinetochores), might, 
upon their release from the chromosomes, interact with the 
components of the contractile ring. 

Classical experiments suggested that the location of the 
metaphase plate specifies the location of the cleavage furrow 
at cytokinesis (reviewed in 37), but more recent observations 
cast doubt on this. For example, disruption (44) or removal 
(21) of the spindle does not prevent formation of the cleavage 
furrow, provided that late metaphase or early anaphase has 
first been reached. These results suggest that spindle compo- 
nents are not directly involved in stimulating formation of the 
cleavage furrow. However they do not rule out a mechanism 
whereby components essential for furrow formation are 
moved to the metaphase plate as part of the spindle, and then 
are released from the spindle at anaphase onset. 

The micromanipulation studies of Rappaport, which have 
been interpreted as showing that cleavage furrows always ap- 
pear midway between asters regardless of whether or not a 
spindle is present in this region (37, 38), suggest that cleavage 
furrow initiation is independent of the structure of the central 
spindle. However a factor liberated from the spindle at 
anaphase onset might be required in order to stabilize the 
forming furrow so that cytokinesis may proceed to comple- 
tion. In future experiments it will be informative to deter- 
mine the distribution of INCENPs in echinoderm eggs, both 
during normal cytokinesis and subsequent to micromanipu- 
lations that induce the formation of extra furrows. This will 
be particularly important, since the presence of maternal 
stores of INCENPs in eggs and oocytes (if these exist) could 
conceivably lead to a "deregulation" of normal pathways of 
furrow formation. 

The INCENPs Might Promote the Microtubule-based 
Movements of Mitosis. The anaphase movements of mitosis 
have two components: migration of the chromosomes to the 
spindle poles, and the separation of the poles themselves. 
The localization of the INCENPs in anaphase is consistent 
with their participation in the latter. The distribution of 
INCENPs on anaphase spindles coincides with the zone of 
overlapping microtubules that project inward from the two 
poles, suggesting that they could somehow be involved in 
microtubule sliding. Alternatively, the INCENPs could be 
part of a stable anchoring complex against which the separat- 
ing spindle poles exert force. 
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