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Abstract. We report the sequence of a cDNA clone
that codes for the carboxy-terminal portion of the
peroxisomal protein, acyl-CoA oxidase, from the
yeast, Candida tropicalis. This is a newly identified
acyl-CoA oxidase sequence, most likely a second
allele of POX4.
The cDNA clone was expressed by in vitro tran-

scription followed by translation. The major product,

a 43-kD protein, associated with isolated peroxisomes
in an in vitro import assay. More than half of the
peroxisome-associated protein was protected from
added protease, implying that it was internalized
within the organelle. These findings indicate that there
is sufficient information in the carboxy-terminal por-
tion of the protein to target it to peroxisomes.

that all of the organelle’s proteins are synthesized in

the cell cytosol on free polysomes. Most are synthe-
sized at their mature size and all are transported into the or-
ganelle posttranslationally (1, 8). The information for the tar-
geting of proteins to peroxisomes is presumed to reside in the
mature amino acid sequence but the details are unknown.

Candida tropicalis is a useful organism in which to inves-
tigate the nature and location of this topogenic information.
Peroxisomes are markedly induced when this yeast is grown
on alkanes or long-chain fatty acids (12, 20) and repressed
when it is grown on glucose (2). Growth on fatty acids in-
duces approximately nine abundant mRNAs that code for
peroxisomal proteins; when translated in vitro the most
abundant product is acyl-CoA oxidase, the first enzyme in
the peroxisomal B-oxidation system (5, 6). We isolated a
cDNA clone encoding acyl-CoA oxidase (14) and raised an
antiserum against this protein (5).

Recently, we established an in vitro import system in
which peroxisomal cell-free translation products associate
specifically with isolated C. tropicalis peroxisomes in a
time- and temperature-dependent fashion (19). Prominent
among these translation products was acyl-CoA oxidase. We
report here the first of our studies on the targeting of this en-
zyme to peroxisomes. The cDNA encoding the carboxy-
terminal part of acyl-CoA oxidase was expressed in vitro and
the ability of the resultant polypeptide to enter peroxisomes
was tested. Some of these data have been presented in ab-
stract form (18).

OUR current understanding of peroxisome biogenesis is

Materials and Methods

The cDNA clone 1:18 encoding acyl-CoA oxidase (14) was excised from
PBR322 and cut with Mae 1. The 1,161-bp Mae I-Pst I fragment (Fig. 1) was
subcloned in pGEM3 (Promega Biotec, Madison, WI). This construct,
designated pGSP4-2a, was linearized and transcribed, using the SP6 pro-
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moter, with simultaneous capping of the mRNA as described by Promega
Biotec based on the method of Melton et al. (10). After transcription, protein
was extracted with phenol and the mRNA was precipitated with ethanol and
translated in a nuclease-treated, rabbit-reticulocyte lysate (13). The newly
synthesized translation products were used in an in vitro import assay with
freshly isolated C. tropicalis peroxisomes as described (19).

Immunoprecipitation (4) was carried out with an antiserum against C.
tropicalis acyl-CoA oxidase (rabbit 10-297, characterized as anti-AOx, in
reference 5). SDS PAGE (3) and fluorography (7) were as described. Radio-
activity was quantitated by densitometric scanning of the fluorograms with
a densitometer (model 1650; Bio-Rad Laboratories, Richmond, CA).

An overlapping series of DNA fragments, obtained by Bal 31 digestion
from both ends of clone 1:18 (Fig. 1) were cloned into M13 vectors, and se-
quenced by the dideoxy method (15). Portions of clone 1:18 were also se-
quenced according to Maxam and Gilbert (9).

Results

Sequence

The sequence of cDNA clone 1:18 for acyl-CoA oxidase and
the predicted amino acid sequence are shown in Fig. 2.!
This cDNA sequence was compared with the two acyl-CoA
oxidase genes, POX4 and POX5, described by Okazaki et al.
(11). It is 97.2 % homologous to bases 622-2,130 of POX4 and
55.6% homologous to POXS (bases 577-1,989). There are 42
differences in DNA sequence between POX4 and our cDNA,
of which 34 (81%) are third base changes. These result in 11
amino acid differences, of which at least four are conserva-
tive replacements. POX4, POXS, and our cDNA sequence
are all found in C. tropicalis genomic DNA by Southern
analyses (not shown). C. tropicalis is a diploid organism; we
infer that the cDNA is the second allele of POX4, or less
likely a third acyl-CoA oxidase gene.? We provisionally

1. This sequence data have been submitted to the EMBL/Gen Bank Data
Libraries under the accession number Y00623.

2. POX2, another gene with some homology to POX4 (6), differs from all
three sequences by having two internal ECO RI sites.
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Figure 1. Sequencing and expression strategies for the acyl-CoA ox-
idase cDNA. Arrows indicate the Bal 31 fragments that were se-
quenced by the dideoxy method. Dotted arrows indicate sequences
determined by the Maxam and Gilbert procedure (9). The 1,161-bp
Mae I-Pst I fragment was cloned into the expression vector pPGEM3
to form pGSP4-2a. The position of two internal ATGs that could
serve as initiators of translation are indicated, together with the
predicted sizes of the translation products.

designate our cDNA allele pox4-2 and that of Okazaki et al.
pox4-1 in accordance with convention (17).

In vitro expression

The cDNA clone was expressed in pGEM3 (plasmid pGSP4-
2a) from an internal methionine codon just downstream from
a Mae 1 site (Fig. 1). The in vitro expression product had a
mass of ~43 kD (Fig. 3 a), in agreement with the expected
mass of 43,702 D. The predicted mass of the pox4-1 gene
product is 78,554 D (11) and the apparent mass by SDS-PAGE
is 76 kD (5). A second polypeptide with a mass of ~32 kD
was also synthesized; this is consistent with initiation at the
next downstream AUG (Figs. 1 and 2), in which case the
predicted mass would be 33,928 D.

Import

The translation products were used in a posttranslational im-
port assay with C. tropicalis peroxisomes. After a 30-min in-
cubation, there was association of both the 43- and the 32-kD
polypeptides with the peroxisomes (Fig. 3 b and Fig. 4 b).
Some of each of the proteins in the peliet were resistant to
protease digestion whereas the supernatant proteins were
completely digested. In the experiment of Fig. 4 b, 37% of
the added 43-kD expression product was associated with the
peroxisomes; of this, 59 % was protease resistant. 54 % of the
smaller expression product was associated with the peroxi-
somes, of which 63% was protease resistant. The addition
of 1% deoxycholate and 1% Triton X-100 abolished the pro-
tease resistance in all cases. Globin did not associate with the
peroxisomes (Fig. 3 b). These data imply that some of each
of the 43- and 32-kD polypeptides were inside the peroxi-
somes, protected from proteolysis by the organelle’s mem-
brane.

Immunoprecipitation

Both the 43- and the 32-kD cell-free translation products
were immunoprecipitated with an antiserum against acyl-
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Figure 2. Nucleotide and predicted amino acid sequences of the
acyl-CoA oxidase cDNA clone 1:18. Bases and amino acids of
POX4 (1)) differing from 1:18 are indicated in italics above and be-
low 1:18.

CoA oxidase (Fig. 3 ¢). This confirms that plasmid pGSP4-
2a encodes acyl-CoA oxidase and indicates that antigenic
sites are present in the carboxy-terminal portion of this
protein.
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Figure 3. In vitro expression and import into peroxisomes of the
carboxy-terminal portion of acyl-CoA oxidase. (@) Expression.
pGSP4-2a was transcribed and translated in vitro. 1.3 pl of transla-
tion products, in the presence of 5 pg of peroxisomal protein, was
subjected to SDS-PAGE and fluorography. (b) Import. Newly syn-
thesized translation products (180 ul) were mixed with peroxisomes
(700 pg of protein) and divided into three equal samples. After in-
cubation at 26°C for 30 min, aliquots were (+) or were not (—)
digested with 2.5 pug of thermolysin at 4°C for 30 min in the pres-
ence (lane 6) or absence (lanes 2-5) of 1% sodium deoxycholate
and 1% Triton X-100. Supernatants and peroxisome pellets were
then separated by centrifugation; 20% of the pellets and 5% of the
supernatants were analyzed by SDS-PAGE and fluorography. The
pellet after detergent treatment was omitted here because in prelim-
inary experiments it was found to contain negligible protein or ra-
dioactivity (see Fig. 4). Globin is not digested under these condi-
tions. (c) Immunoprecipitation. Samples from a and b (each
equivalent to 5 ul of cell-free translation products) were subjected
to immunoprecipitation with antiserum against acyl-CoA oxidase.
Protease Lanes 7, 8, and 9 contain the immunoprecipitated products from
- DOC/Triton  lanes I, 3, and 5, respectively.

26°C 30 min

s P S P S P

Figure 4. Temperature depen-
dence of import. Newly synthe-
sized translation products (300 ul)
were mixed with peroxisomes
(2.2 mg of protein) and divided
into two equal samples. Incuba-
tion was at 4°C (a) or 26°C (b)
for 30 min. After this each sam-
- - + 4+ + + Protease ple was divided in three and bind-
- - - - + 4+ DOC/Triton ing and import were assessed as
in Fig. 3 b except that only 1 ug

7 8 9 10 11 12 of thermolysin was used.
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Temperature Dependence of Import

When the import assay was carried out on ice (Fig. 4 a), 24 %
of the 43-kD translation product and 40 % of the 32-kD prod-
uct bound to the peroxisomes, but neither product was pro-
tected from proteolysis. Therefore import but not binding re-
quires incubation at 26°C.

Discussion

In the first of a planned series of experiments designed to
study the information that targets a peroxisomal protein to
peroxisomes, we have expressed the DNA encoding the car-
boxy-terminal portion of acyl-CoA oxidase by in vitro tran-
scription and translation, and have followed the import of the
resultant polypeptide into peroxisomes of C. tropicalis.

Our results indicate that sufficient information is present
in the carboxy-terminal 40% of acyl-CoA oxidase to target
it to peroxisomes, resulting in partial import (protease pro-
tection). Under optimal conditions (Fig. 4), 59-63% of the
peroxisome-associated translation products were imported
(protease resistant). Two different-sized carboxy-terminal
polypeptides were expressed from the plasmid pGSP4-2a. It
is interesting to note that both binding and import of the
32-kD polypeptide was greater than that of the 43-kD pro-
tein. This may refiect differences in the transient folding of
these molecules. Although the specificity of binding and im-
port was not tested in these experiments, we know that the
full-length acyl-CoA oxidase associates in vitro only with
peroxisomes (not with mitochondria), and does so in a time-
and temperature-dependent fashion (19). These data suggest
that targeting of peroxisomal proteins may differ from that
of mitochondrial and chloroplast proteins, most of which
possess a cleavable amino-terminal topogenic sequence (16,
21).

Our results do not exclude the possibility that targeting in-
formation may also be located within the amino-terminal
60% of acyl-CoA oxidase. Experiments are in progress to
test this possibility.
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