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Abstract. One of the early events after stimulation of 
Swiss 3T3 cells with either platelet-derived growth fac- 
tor (PDGF), 12-O-tetradecanoyl-phorbol-13-acetate 
(TPA), diacylglycerol, or several other mitogens is the 
near stoichiometric phosphorylation at tyrosine and 
serine of a scarce cytoplasmic protein (p42). TPA and 
diacylglycerol are known to directly stimulate the ac- 
tivity of a protein-serine/threonine kinase, protein ki- 
nase C (PKC). PDGF and several other mitogens 
stimulate tyrosine kinases directly and PKC indirectly. 
We have therefore examined the involvement of PKC 
in p42 tyrosine phosphorylation in Swiss 313 cells. 
Firstly, six agents which stimulated phosphorylation of 
p42 also stimulated phosphorylation of a known PKC 
substrate, an 80,000-Mr protein (p80). Secondly, in 
PKC-deficient cells (cells in which PKC activity was 

reduced to undetectable levels by prolonged exposure 
to TPA), PDGF-induced p42 phosphorylation was re- 
duced three- to fourfold. Phosphoamino acid analysis 
of phosphorylated p42 from PDGF-stimulated PKC- 
deficient cells revealed primarily phosphoserine and 
only a trace of phosphotyrosine, suggesting that the 
reduction in PDGF-stimulated tyrosine phosphoryla- 
tion of p42 resulting from PKC deficiency is greater 
than three- to fourfold. Finally, comparison of an- 
tiphosphotyrosine immunoprecipitates of PKC-deficient 
versus naive cells revealed that most other PDGF- 
induced tyrosine phosphorylation events were quite 
similar. These data suggest that mitogens such as 
PDGF, which directly stimulate phosphorylation of 
some proteins at tyrosine, induce p42 tyrosine phos- 
phorylation via a cascade of events involving PKC. 

T 
HE interaction between mitogenic agents and their tar- 
get cells usually proceeds via specific cell surface re- 
ceptors, which in numerous instances are protein- 

tyrosine kinases (24, 27). In these cases, mitogen binding 
stimulates protein phosphorylation at tyrosine, and this, or 
other as yet unknown activities of the receptor, initiates mul- 
tiple changes within the cell. One of these changes is the 
accelerated turnover of phosphoinositides, which leads to 
increases in intracellular concentrations of both Ca 2§ and 
membrane diacylglycerol (DAG) t (2). This triggers protein 
phosphorylation at serine and threonine by protein kinase C 
(PKC), a family of Ca2+/phospholipid-dependent protein ki- 
nases (26, 31, 34, 44). Direct activation of PKC by phorbol 
diesters, or indirect activation by mitogens such as thrombin, 
platelet-derived growth factor (PDGF), and bombesin, stim- 
ulates the proliferation of many cell types (7, 25, 28, 34, 36, 
39, 40), suggesting that PKC activation via increased phos- 
phoinositide turnover is an important part of the response to 
many mitogens. 

Among the proteins identified to be phosphorylated at 
tyrosine in response to mitogenic stimulation is p42-an 
evolutionarily conserved cytoplasmic protein constituting 

-1. Abbreviations used in this paper: DAG, diacylglycerol; EGE epider- 
mal growth factor; PDGF, platelet-derived growth factor; PKC, protein ki- 
nase C. 

~0.002% of total protein (4, 12, 16, 21, 32, 33). Within 10 
min of adding any of several different mitogenic agents, 
~50 % of p42 molecules become phosphorylated on tyrosine 
and serine (12). Quantitatively, phosphorylated p42 (pp42A 
and pp42B) and related phosphoproteins (pp45A and pp45B) 
contain a large proportion of the phosphotyrosine in a stimu- 
lated cell, as detected by one-dimensional (33) or two- 
dimensional electrophoresis of total phosphoproteins (12). 

The kinase which phosphorylates p42 on tyrosine is un- 
known. Induction of tyrosine phosphorylation of p42 by 
those mitogens that activate receptor protein-tyrosine ki- 
nases could result from the direct action of receptor tyrosine 
kinases. Alternatively, activation of the receptor kinase could 
indirectly stimulate one or more other protein-tyrosine ki- 
nases that phosphorylate p42. It is also possible that the 
phosphotyrosine content of p42 could be increased if the ac- 
tivity of a specific phosphatase were inhibited, or if the con- 
formation or localization of p42 were modified so that its in- 
teractions with a constitutively active kinase or phosphatase 
were altered. The possibility of both serine and tyrosine ki- 
nases being involved in p42 tyrosine phosphorylation is sug- 
gested by the observation that compounds such as 12-0- 
tetradecanoyl-phorbol-13-acetate (TPA) and DAG stimulate 
p42 tyrosine phosphorylation even though they appear not to 
stimulate protein-tyrosine kinases directly (4, 16, 21, 32). In- 
deed, the data presented here suggest that there exists a 
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PKC-regulated p42-specific enzyme responsible for mito- 
gen-induced phosphorylation of p42. 

Materials and Methods 

Materials 
PDGE purified by a modification of the Raines and Ross protocol (38), was 
a generous gift of Paul Dicorleto of the Cleveland Clinic Foundation, Cleve- 
land, OH. Monoclonal antibody against phosphotyrosine (IG2) coupled to 
Sepharose 4B was generously provided by Raymond Frackelton of Brown 
University, Providence, RI. Epidermal growth factor (EGF) was obtained 
from Collaborative Research, Lexington, MA; TPA, DAG (l-oleoyl-2- 
acetyl-rac-glycerol), cAMP-dependent protein kinase inhibitor, and histone 
HI (III S) were from Sigma Chemical Co., St. Louis, MO. 

Cell Culture 
Murine Swiss 313 cells were maintained in DME supplemented with 5% 
calf serum. 

Metabolic Labeling and Lysis of Cells 
Confluent, quiescent cultures of cells were washed two times in H/S buffer 
(20 mM Hepes, pH 7.4, 150 mM NaCI) and incubated overnight in labeling 
medium (DME containing t0% of the normal phosphate concentration, 15 
mM Hepes, pH 7.4, 0.1% calf serum). H332PO4 was added to a final con- 
centration of I mCi/ml (unless indicated otherwise) and the incubation at 
37~ continued for 4 h. When labeling with [35S]methionine, the same 
protocol was followed, except that the labeling medium lacked methionine 
and had the normal concentration of phosphate. After an overnight incuba~ 
tion in the methionine labeling medium, [3SS]methionine was added to a 
final concentration of 0.2 mCi/ml and incubated for an additional 4 h. The 
desired mitogens were added during the last t0 rain of the 4-h incubation, 
after which cells were transferred to ice and washed twice with ice-cold H/S 
buffer. 2 • ceils were lysed in 100 lal of lysis buffer (0.3% SDS, 65 mM 
dithiothreitol [DTT], 1 mM EDTA, 20 mM Tris, pH 8.0), which was pre- 
heated to 100~ immediately before addition to cells. The dishes were 
scraped with a rubber policeman, and 0.1 vol of DNase-RNase (20) was 
added. The sample was transferred to a microfuge tube, vortexed, incubated 
l rain at 0~ frozen on dry ice, lyophilized, resuspended in sample buffer 
(20), and stored at -70~ 

Samples prepared by this procedure from mitogen-stimulated cells show 
increased tyrosine phosphorylation of pp42A and plM5A, with only slight 
phosphorylation of related proteins pp42B and plM5B. A different sample 
preparation procedure (20) yields samples in which pp42B and pp45B are 
more highly labeled than pp42A and pp45A (13, 16, 21). We do not know 
which procedure more accurately represents the situation in the intact cell, 
but both procedures are highly reproducible. 

7tvo-dimensional Electrophoresis 
Samples were separated in the first dimension by IEE using pH 3.5-10 am- 
pholytes (unless otherwise indicated), followed by SDS-PAGE (15% acryl- 
amide, 0.375% his acrylamide) in the second dimension, as previously de~ 
scribed (10, 20). Acidic proteins focused to the left of the gels. Samples were 
normalized on the basis of cell number. Unless otherwise stated, 2 • 104 
cells were loaded per gel. For alkali treatment (8, 10), dried gels were re- 
hydrated, incubated in 1 M KOH for 2 h at 56~ fixed in 10% acetic acid 
and 10-20% isopropanol, and dried under vacuum. All gels were exposed 
with intensifying screens at -70~ 

Phosphoamino Acid Analysis 
The phosphoamino acid content was determined as previously described 
(15). Briefly, gels were washed in water and dried after electrophoresis; pro- 
teins were located by autoradiography, extracted, TCA precipitated, and 
partially hydrolyzed by incubating in 5.7 N HCI for I h at IIO~ The 
resulting phosphoamino acids were applied onto a lO0-~am cellulose plate 
and separated by two-dimensional thin layer electrophoresis, first at pH 1.9, 
followed by electrophoresis at pH 3.5 in the second dimension. Authentic 
phosphoamino acids, mixed into the sample, were visualized by staining 
with ninhydrin (0.25% in acetone). 

lmmunoprecipitation 
Confluent, quiescent, 90-mm dishes of Swiss 3T3 were metabolically la- 
beled with Ha32po4 and stimulated with the desired mitogen as described 
above. Dishes of cells were placed on ice and quickly cooled by washing 
twice with H/S buffer. Cells were lysed and immunoprecipitated as de- 
scribed by Frackelton et al. (18). Briefly, 0.4 ml of ice-cold EB (1% Triton 
X-t00, 5 mM EDTA, 50 mM NaCl, 50 mM NaF, 2 mM Na3VO4, 0.1% 
BSA, 1% Aprotinin, I0 mM Tris, pH Z6, l mM phenylmethylsulfony! fluo- 
ride [PMSF]) was added, and the cells were scraped with a rubber police- 
man and transferred to a microfuge tube on ice. The culture dish was rinsed 
with an additional 0.4 ml of EB which was combined with the first extrac- 
tion. Samples were incubated on ice with occasional vigorous vortexing for 
20 min, and centrifuged at 15,000 g for 15 min at 4~ to remove insoluble 
debris. The supernatant was incubated with 100 pA of Sepharose CL-4B 
beads for 30 min at 4~ with continual mixing. The precleared samples 
were added to fresh tubes containing 10 pA Sepharose 4B to which the mono- 
clonal antibody to phosphotyrosine (IG2) had been covalemly attached, and 
incubated for 2 h at 4~ with inversion mixing. The beads were washed 
three times with EB, twice with EB without BSA, and the antigen was eluted 
by incubating for 10 min on ice with gentle vortexing in eluting buffer (EB 
with 1 mM phenyl phosphate, 0.0t % oval bumin instead of 0.I % of BSA, and 
If) mM NaCI instead of 50 mM). Eluted samples, normalized on the basis 
of cell number, were analyzed by two-dimensional electrophoresis as de- 
scribed above. 

Down Regulation 
Confluent, quiescent cultures of cells were incubated at 37~ in DME, 1% 
calf serum containing I lig/ml TPA for ",,30 h, washed twice with H/S 
buffer, and incubated at 37~ overnight in labeling medium containing 
1 p.g/ml TPA. 

Histone Phosphorylation 
PKC activity was quantitated in crude cell lysates essentially as described 
by Pelech et af. (35). 35-mm dishes of cell were rinsed twice with ice-cold 
H/S buffer and solubilized in 0.4 ml buffer A (35) + 0.5% Triton X-100. 
10 ~tl of these extracts was incubated with or without 8 ~g/ml trypsin for 
10 min at 30~ Excess aprotinin was added to all tubes; and then MgCI.,, 
3:P-ATP, cAMP-dependent protein kinase inhibitor, and histones H1 were 
added to a final concentration of 15 mM, 10 IxM, 1 I.tM, and 1 mg/ml, 
respectively, and incubated for 15 min at 30~ Aliquots were spotted onto 
P-81 phosphocellulose paper, which was washed five times in 140 mM phos- 
phoric acid and the radioactivity was quantitated by Cerenkov counting. 

Results 

Phosphorylation of p42 and of p80 

Although the PDGF receptor kinase is activated after PDGF 
stimulation, it may not directly phosphorylate p42. Other 
mitogens able to induce tyrosine phosphorylation of p42 in- 
clude TPA and DAG, neither of which stimulates the PDGF 
receptor kinase. However, PDGE TPA, and DAG are similar 
in their ability to activate PKC (23, 34). Thus, we tested the 
theory that PKC may be involved in mitogen-stimulated tyro- 
sine phosphorylation of p42. 

If tyrosine phosphorylation of p42 is dependent on PKC 
activity, then agents that stimulate p42 tyrosine phosphoryla- 
tion should also activate PKC. As a measure of PKC activity 
we examined the phosphorylation of p80, which is a well- 
characterized in vivo and in vitro PKC substrate (1, 5, 6, 28, 
41, 46). As shown in Fig. 1, EGE TPA and PDGF stimulated 
both pS0 phosphorylation (large arrowhead) and p42 phos- 
phorylation (small arrowhead). In addition, DAG (200 l.tg/ 
ml), calf serum (10%), and even precipitates of calcium 
pyrophosphate (reported to stimulate DNA synthesis [refer- 
ence 42]), stimulated both pS0 and p42 phosphorylation 
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Figure 1. Phosphorylation of p80 and p42.32p-labeled Swiss 3T3 cells were incubated for 10 min at 37~ with no additions (CONT), EGF 
(100 ng/ml), TPA (100 ng/ml), or PDGF (10 ng/ml). Samples containing equal numbers of cells were analyzed by two-dimensional elec- 
trophoresis as previously described (10, 20). The values along the top and bottom indicate pH of the IEF gels, while the molecular mass 
in kilodaltons is indicated along the left side. Each panel of this figure is a composite of two smaller panels; the upper panel is a portion 
of a nonalkali-treated gel containing pp80 (large arrowhead), while the lower panel is a portion of an alkali-treated gel containing pp42A 
(small arrowhead). The tiny arrowhead in the lower quadrant of the EGF and PDGF panels points to pp41. 

(data not shown). Furthermore, insulin (which does not 
stimulate PKC activity [reference 29]) did not induce phos- 
phorylation of either p80 or p42 (data not shown). Thus p42 
is phosphorylated when PKC is activated. 

p42 Phosphorylation in PKC-deficient Cells 

Exposure of cultured cells to TPA activates PKC, presum- 
ably by mimicking the action of DAG, the physiological acti- 
vator of this enzyme (34). However, TPA is stable relative 
to DAG, resulting in prolonged activation of PKC. Because 
the degradation of PKC is enhanced when PKC is activated, 
but its synthesis rate remains unchanged, exposure of cells 
to TPA for extended periods of time results in PKC-deficient 
cells (6, 9, 41, 44). 

Cells were exposed to 1 0g/ml TPA for 48 h (see Materials 
and Methods), and the PKC activity was quantitated accord- 
ing to the method of Pelech et al. (35). As shown in Table 
I, the PKC activity was reduced to undetectable levels by 
prolonged exposure to TPA (the minimum level of detection 
is ,~15 % as estimated from the average of the ranges). We 
called such cells "PKC-deficient;' and control cells "naive" 

Table L Trypsin-sensitive Histone H1 Phosphorylation 

Trypsin 
Cells -Trypsin +Trypsin stimulation 

Naive cells 12,500 + 2,400 36,500 + 1,100 24,000 + 3,500 
PKC deficient 

cells 11,500 4- 1,200 11,300 + 2,900 - 2 0 0  ___ 4,100 

PKC activity was measured in crude cell lysates of naive and PKC-deficient 
Swiss 3T3 cells by examining trypsin-inducible histone phosphorylation ac- 
cording to the method of Pelech et al. (35). Similar results were obtained in 
replicate independent experiments, Values displayed are cpm incorporated, 
mean + range of duplicates. 

As reported by others (6, 17, 41), induction of p80 phos- 
phorylation by either TPA or PDGF was dramatically re- 
duced in PKC-deficient cells, although the unstimulated level 
of p80 phosphorylation was increased relative to naive cells 
(Fig. 2 A, large arrowhead). Using such PKC-deficient Swiss 
3T3 cells, we tested whether the activation of PKC was man- 
datory for tyrosine phosphorylation of p42. Both the PDGF- 
and TPA-induced phosphorylation of pp42A (small arrow- 
head) and pp45A (asterisk) was markedly reduced in PKC- 
deficient cells relative to naive cells (Fig. 2 B). Quantitating 
pp80 (from nonalkali-treated gels) and pp42 (from alkali- 
treated gels) densitometrically revealed that in PKC-deficient 
cells, the PDGF- and TPA-induced phosphorylation of p80 
was reduced 5.0- and 10.4-fold, respectively, while p42 phos- 
phorylation was reduced 4.9- and 7.0-fold in response to 
PDGF and TPA, respectively (Table II). Quantitation of 
pp42A excised from replicate nonalkali-treated gels by Cer- 
enkov counting revealed that PDGF-induced phosphoryla- 
tion of p42 was reduced 3.5-fold in PKC-deficient cells. 
Since the reduction of p42 phosphorylation in PDGF-stim- 
ulated cells is most apparent at tyrosine (see below), and 
because the ratio of phosphotyrosine to phosphoserine is in- 
creased in alkali-treated gels, the 4.9-fold reduction of p42 
phosphorylation due to PKC deficiency, measured from al- 
kali-treated gels, probably more accurately reflects the extent 
of attenuation of p42 tyrosine phosphorylation. Phosphory- 
lation of p80 and p42 in response to calf serum (10 % concen- 
tration) or EGF (100 ng/ml) was also greatly reduced in 
PKC-deficient cells (not shown). These results have been 
consistently obtained in numerous experiments in Swiss 3T3 
cells, as well as with two other cell types (NR-6 3T3 [refer- 
ence 37] and B-82, a line of mouse L-cells). 

Because pp42 contains both phosphoserine and phospho- 
tyrosine (13), it was important to determine the phospho- 
amino acid composition of pp42 in PDGF-treated PKC- 
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Figure 2. PDGF- and TPA-induced phosphorylation of p80 and p42 in naive vs. PKC-deficient cells. Naive (N) or PKC-deficient (DR) 
Swiss 3T3 cells were metabolically labeled with H332PO4, incubated with no additions (C), TPA (100 ng/ml), or PDGF (10 ng/ml) for 10 
min at 37~ lysed, and analyzed by two-dimensional electrophoresis as in Fig. 1. (A) Portions of autoradiograms of nonalkali-treated gels 
illustrating pp80 (large arrowhead) and PDGF receptor (small arrowhead) (19). (B) Portions of autoradiograms of alkali-treated gels from 
naive and PKC-deficient cells containing pp42A (arrowhead) and pp45A (asterisk). 

deficient cells. Phosphoamino acid analysis of pp42A from 
PDGF-treated naive cells exhibits more phosphate on tyro- 
sine than serine (Fig. 3 A), whereas pp42A from PDGF- 
treated PKC-deficient cells contains primarily phosphoser- 
ine and only a small amount of phosphotyrosine (Fig. 3 B). 
Thus down regulation of PKC reduced PDGF-induced phos- 
phorylation of p42 at tyrosine, and slightly stimulated p42 
serine phosphorylation. These data suggest that the presence 
of functionally active PKC is required for the phosphoryla- 
tion of p42 on tyrosine. 

Abundance of p42 in Naive and PKC-deficient Cells 

The reduction of PDGF-induced phosphorylation of 1M2 in 
PKC-deficient cells could simply represent a smaller pool 
of p42 (the unphosphorylated form of pp42A). To deter- 

mine whether the process of down regulation of PKC alters 
the abundance of p42, we compared the amount of p42 in 
PSS]methionine-labeled PKC-deficient vs. naive Swiss 3T3 
cells. It is evident from Fig. 4 that the amount of p42 (medi- 
um-sized arrowheads pointing left) in naive (Fig. 4 A) and 
PKC-deficient (Fig. 4 B) cells is quite similar. Stimulation 
of naive cells with PDGF diminished the abundance of p42 
(Fig. 4 C, medium-sized arrowhead pointing left) concomi- 
tant with the appearance of pp42A (Fig. 4 C, large arrow- 
head). More than 50% of p42 molecules were converted to 
pp42A. In PKC-deficient cells, however, stimulation with 
PDGF resulted in the appearance of very little pp42A (Fig. 
4 D, large arrowhead), and the abundance of p42 relative to 
other cell proteins (e.g., small arrowhead pointing right) was 
not markedly affected. Thus, while both cell types have com- 

Table I1. Quantitation of pp8O and pp42 from Naive and PKC-deficient Cells 

Integrated intensity Stimulated/control* 

Naive PKC deficient Naive PKC deficient Naive/PKC deficient:~ 

pp80 
C 2.3 6.3 1.0 1.0 0.4 
PDGF 61.6 12.4 26.8 2.0 5.0 
TPA 57. I 5.5 24.8 0.9 10.4 

pp42 
C 0.1 0.4 1.0 1.0 0.3 
PDGF 12.3 2.5 82.5 5.6 4.9 
TPA 4.2 0.6 28.2 1.3 7.0 

pp80 and pp42 were quantitated densitometrically with a Visage system equipped with a Eikonix camera from Bio Image, Ann Arbor, MI. pp80 was quantitated 
from autoradiograms of untreated gels exposed for 1 d, and pp42 from autoradiograms of alkali-treated gels exposed for 4 d. 
* Calculated by dividing the integrated intensity of PDGF- or TPA-stimulated samples by the integrated intensity of control samples. 
:~ Calculated by dividing the integrated intensity value of naive by PKC-deficient samples. 
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Figure 3. Phosphoamino acid analysis of pp42A and pp41 from 
PDGF-stimulated, naive, and PKC-deficient Swiss 3T3 cells. Naive 
and PKC-deficient cells were labeled with H332po4 (2.5 mCi/ml), 
incubated with PDGF (10 ng/ml) for 10 min at 37~ lysed, and ana- 
lyzed by two-dimensional electrophoresis, pp42A and pp41 were 
excised from replicate gels, the proteins extracted, and acid hy- 
drolyzed. The resulting phosphoamino acids were separated via 
two-dimensional thin layer electrophoresis and detected by autora- 
diography as described in Materials and Methods. (A) pp42A, na- 
ive cells; (B) plM2A, PKC-deficient cells; (C) pp4l, naive cells; (D) 
pp41, PKC-deficient cells. The p~Jsitions of phosphoamino acid 
standards, visualized by ninhydrin staining, are indicated by S, T, 
and Y (phosphoserine, phosphothreonine, and phosphotyrosine, 
respectively). The origin was to the lower right of each panel and 
is not shown. 

parable quantities of substrate protein (p42), the stoichiome- 
try of phosphorylation of this protein is reduced in PKC- 
deficient cells. 

Other ~ros ine  Phosphorylation Events in 
PKC-deficient Cells 

To what extent are other early growth factor-induced tyro- 
sine phosphorylation events, aside from p42 tyrosine phos- 
phorylation, altered in PKC-deficient cells? We addressed 
this question by comparing antiphosphotyrosine immuno- 
precipitates of control and PDGF-stimulated, naive and 
PKC-deficient Swiss 3T3 cells (Fig. 5). In naive cells, PDGF 
stimulated the phosphorylation of numerous phosphopro- 
teins including the PDGF receptor (large arrowhead) and 
seven unidentified phosphoproteins (A, D, E, O, G, H, I) 
(Fig. 5, top right panel), pp42A and pp45A were not detected 
(see Discussion). These proteins were much less radioactive 
in immunoprecipitates from control cells (Fig. 5, top left 
panel). All immunoprecipitated proteins analyzed contained 
phosphotyrosine as a major phosphorylated amino acid (not 
shown). Mixtures of the PDGF-treated total cell lysates 
(typically containing 2 x 104 cells) and antiphosphotyro- 
sine immunoprecipitates (from 9.2 • 105 cells) revealed 
that, with the exception of the PDGF receptor, most other 
substrates were too minor to be detected on two-dimensional 
gels of total cell lysates (not shown). The immunoprecipi- 
tates of PDGF-treated PKC-deficient cells were overall quite 
similar to immunoprecipitates of PDGF-treated naive cells 
(Fig. 5, top and bottom righthand panels). One surprising 
difference between naive and PKC-deficient samples was the 
presence of pp42A (small arrowhead), in greater amounts in 
immunoprecipitates from PDGF-treated, PKC-deficient cells 
than in PDGF-treated, naive cells (Fig. 5, top and bottom 
righthand panels). This is the opposite of what was observed 
in total phosphoproteins of identically treated cells (Fig. 2B). 

Figure 4. Abundance of p42 in naive 
and PKC-deficient cells. Naive (N) 
and PKC-deficient (DR) Swiss 3T3 
cells were labeled with 200 laCi/ml 
[35S]methionine for 4 h, incubated 
with (C and D) or without (A and B) 
PDGF for 10 min at 37~ lysed, and 
analyzed by two-dimensional elec- 
trophoresis as in Fig. 1, except IEF 
was performed with mixed pH 6-8 
and pH 8-10 ampholytes, and gels 
were impregnated with 2,5-diphenyl- 
oxazole before fluorography. Large 
arrowheads point to the position of 
pp42A (identified by co-migration 
with 32p-labeled pp42A [data not 
shown]). Medium-sized arrowheads 
mark p42, (identified previously 
[12]). Small arrowheads point to a 
reference protein. 
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Figure 5. Antiphosphotyrosine immunoprecipitates of PDGF-stimulated naive and PKC-deficient cells. Both naive (N) and PKC-deficient 
(DR) Swiss 3T3 cells were incubated without (CONT) or with PDGF (10 ng/ml) for 10 min at 37~ lysed, and immunoprecipitated with 
a monoclonal antibody to phosphotyrosine. Aliquots were normalized on the basis of cell number and analyzed by two-dimensional elec- 
trophoresis as in Fig. 1. The pH of the IEF gels are indicated along the bottom, while molecular mass in kilodaltons is designated along 
the left side of the top right panel. Large arrowheads point to the PDGF receptor (19), small arrowheads mark the position of pp42A, and 
the letters mark unidentified PDGF-inducible phosphoproteins. 
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Note that the immunoprecipitate of unstimulated PKC-de- 
ficient cells did not contain pp42 (Fig. 5, bottom left panel). 

Additional evidence that tyrosine phosphorylation events, 
other than p42 phosphorylation, are unaffected in PKC- 
deficient cells relative to naive cells is provided by phos- 
phoamino acid analysis of pp41. p41 is phosphorylated on 
tyrosine in response to PDGF stimulation (Fig. 1 and Fig. 
3 C; reference 13). The extent of tyrosine phosphorylation 
of p41 is similar in PDGF-treated PKC-deficient cells and 
PDGF-treated naive cells (Fig. 3, C and D). Thus, with the 
exception of p42 and p45, PKC-deficient cells retain their 
ability to phosphorylate proteins on tyrosine in response to 
PDGF. 

D i s c u s s i o n  

We have shown that numerous agents that stimulate phos- 
phorylation of the PKC substrate, p80, also stimulate p42 
phosphorylation. In addition, cells must possess function- 
ally active PKC to mediate growth factor-induced p42 tyro- 
sine phosphorylation. These results suggest that the enzyme 
responsible for tyrosine phosphorylation of p42 is dependent 
on PKC. J. Vila and M. Weber have also observed that mito- 
gen-induced p42 phosphorylation is greatly reduced in PKC- 
deficient chick embryo fibroblasts (manuscript submitted for 
publication). 

In addition to directly measuring PKC activity, we exam- 
ined the extent of p80 phosphorylation. The disappearance 
of p80 phosphorylation in PKC-deficient cells correlated 
with the absence of PKC enzymatic activity in such cells, and 
is consistent with the observations of numerous other groups 
(1, 5, 6, 28, 41). It is conceivable that prolonged exposure of 
cells to TPA results in alterations in addition to a PKC de- 
ficiency; however, we have found that with the exception of 
the inhibited tyrosine phosphorylation of p42 (Fig. 2 B, 3, 
A and B; Weber, M., personal communication), many tyro- 
sine phosphorylation events proceed in PKC-deficient cells 
much as they do in naive cells (Fig. 3, C and D, and Fig. 5). 

Curiously, pp42A and pp45A are poorly precipitated by 
antiphosphotyrosine antibodies. Only '~1% of pp42A is 
precipitated (unpublished data, compare Figs. 1 and 5). It is 
possible that the phosphotyrosine in pp42 is masked by sec- 
ondary structure, although the immunoprecipitability of 
pp42 is not increased by boiling in SDS before immuno- 
precipitation (unpublished results). Such results raise the 
possibility that pp42 may be modified via a phosphodiester 
linkage to tyrosine; however, this is unlikely because the 
phosphate in pp42 is unaffected by incubation with phospho- 
diesterase, and is labile to phosphatase treatment (unpublished 
results). Even though pp42A from naive, PDGF-stimulated 
cells is poorly immunoprecipitated by antiphosphotyrosine 
antibodies, the small amount of p42 whose tyrosine phos- 
phorylation is stimulated by PDGF in PKC-deficient cells 
(Fig. 2) is very efficiently immunoprecipitated (Fig. 5; three 
independent experiments). A likely explanation of this result 
is that the site of tyrosine phosphorylation of p42 in naive 
and PKC-deficient cells is not the same, and that only p42 
with phosphate at the PKC-deficient site is efficiently recog- 
nized by the antiphosphotyrosine antibody. 

Unlike mitogens such as PDGF, TPA, or calf serum, the 
ability of EGF to stimulate PKC appears somewhat variable. In 
some cell types EGF clearly activates PKC, whereas in others 

it does so weakly or not at all (6, 28, 30). In addition, in- 
creases in phosphoinositide turnover are only detected in 
some cell types in response to EGF (3, 43). Thus it appears 
that EGF-induced signal transduction does not always re- 
quire PKC activation. We have reproducibly observed that 
EGF stimulates p80 phosphorylation in Swiss 3T3 cells. 
That PKC mediates EGF-induced tyrosine phosphorylation 
of p42 in these cells is further suggested by the observation 
that, in PKC-deficient cells, EGF-induced phosphorylation 
of both p80 and p42 is dramatically reduced (unpublished 
results). Perhaps in some cell types the EGF stimulation of 
phosphoinositide turnover is a local phenomenon, and DAG 
accumulation is insufficient to activate a large fraction of 
PKC molecules, but could be sufficient to trigger other events 
including p42 tyrosine phosphorylation. 

PDGF can initiate proliferation in PKC-deficient human 
fibroblasts (17) and Swiss 3T3 cells (our unpublished re- 
suits). This suggests either that PKC does not participate in 
growth signal relay or that there are alternate or "backup" 
pathways. However, there is a low level of residual PKC in 
PKC-deficient cells (45). Indeed, PKC-deficient cells have 
increased basal p80 phosphorylation, and incubation with 
PDGF results in a slight stimulation of p80 phosphorylation 
and p42 phosphorylation at serine (Figs. 2 and 3; Table II). 
Thus it is conceivable that the low level of PDGF-induced 
p42 serine phosphorylation in PKC-deficient cells is suffi- 
cient to relay the mitogenic signal. Alternatively, the tyrosine 
phosphorylation of p42 that occurs transiently at the start of 
the down regulation procedure may place the cells in a differ- 
ent state, from which PDGF can stimulate mitogenesis with- 
out PKC involvement. Whether the phosphorylation of p42 
on tyrosine constitutes a significant event of a relay network, 
which can be circumvented when PKC is nonfunctional, re- 
mains to be determined. 

These studies provide a possible explanation to the follow- 
ing discrepancy. Infection of avian cells with transforming 
retroviruses encoding protein tyrosine kinases (v-fps, v-src, 
v-erb-B) results in p42 tyrosine phosphorylation (10, 11, 22), 
but in mammalian cell lines transformed with v-fps, v-src, 
v-fgr, v-fes, or v-abl, p42 is not phosphorylated (11, 14, and 
unpublished results ofJ. A. Cooper and T. Hunter). The ab- 
sence of phosphorylated p42 in retrovirally transformed 
mammalian cells may be due to the failure of these retro- 
viruses to chronically augment PKC activity in mammalian 
cells. 

Perhaps the most interesting implication of these studies 
is that tyrosine phosphorylation of p42, initiated by mitogens 
such as PDGF, occurs via a cascade of events. This cascade 
includes at least three kinases: the PDGF protein-tyrosine 
kinase, PKC, and the PKC-dependent p42-specific kinase. In 
vitro attempts to identify and characterize the last member 
of this cascade (i.e., the PKC-dependent, p42-specific en- 
zyme) are in progress. 
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