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Abstract. Specific DNA fragments complementary to 
the 3' untranslated regions of the 13-, ~t-cardiac, and 
~t-skeletal actin mRNAs were used as in situ hybrid- 
ization probes to examine differential expression and 
distribution of these mRNAs in primary myogenic cul- 
tures. We demonstrated that prefusion bipolar-shaped 
cells derived from day 3 dissociated embryonic so- 
mites were equivalent to myoblasts derived from em- 
bryonic day 11-12 pectoral tissue with respect to the 
expression of the ~t-cardiac actin gene. Fibroblasts 
present in primary muscle cultures were not labeled 
by the ~t-cardiac actin gene probe. Since virtually all 
of the bipolar cells express a-cardiac actin mRNA be- 
fore fusion, we suggest that the bipolar phenotype may 
distinguish a committed myogenic cell type. In con- 
trast, a-skeletal actin mRNA accumulates only in mul- 

tinucleated myotubes and appears to be regulated in- 
dependently from the ct-cardiac actin gene. Accumula- 
tion of a-skeletal but not ~t-cardiac actin mRNA can 
be blocked by growth in Ca2+-deficient medium which 
arrests myoblast fusion. Thus, the sequential appear- 
ance of a-cardiac and then ~t-skeletal actin mRNA 
may result from factors that arise during terminal dif- 
ferentiation. Finally, the 13-actin mRNA was located in 
both fibroblasts and myoblasts but diminished in con- 
tent during myoblast fusion and was absent from 
differentiated myotubes. It appears that in primary 
myogenic cultures, an asynchronous stage-dependent 
induction of two different a-striated actin mRNA spe- 
cies occurs concomitant with the deinduction of the 
nonmuscle fi-actin gene. 

M 
VOGENESIS in culture parallels embryonic muscle 
development to the extent that myoblasts prolif- 
erate, withdraw from the cell cycle, fuse to form 

myotubes, and elaborate functional myofibrillar sarcomeres 
(reviewed in reference 30). Biochemical differentiation, as 
evidenced by the induction of muscle-specific gene products 
and the repression of subsets of nonmuscle genes, normally 
occurs after myoblast terminal commitment and fusion. Myo- 
blasts grown in Ca2÷-deficient medium have demonstrated 
that biochemical differentiation does not require irreversible 
withdrawal from the cell cycle or the formation of mul- 
tinucleated myotubes (12, 23, 25, 31, 33). Myoblast fusion 
may also be inhibited by certain N-carbobenzyloxy dipeptide 
amides that compete with the protein substrate of a soluble 
cytoplasmic metalloendoprotease (MEPr) t (9, 10). Recent 
evidence suggests that MEPrs may be required for biochemi- 
cal differentiation (3, 12) as well as fusion. 

We examined the switch in expression of the chicken actin 

1. Abbreviations used in this paper: LCM, low Ca2+-containing medium; 
MEPr, metalloendoprotease. 

multigene family during the terminal differentiation of skele- 
tal myoblasts (29). We recently showed that primary cul- 
tures of chicken myoblasts express specific actin mRNAs in 
a sequential pattern leading to terminal differentiation (17). 
Nonmuscle 13-actin mRNA was detected predominantly in 
proliferating myogenic cultures and declines in content as 
myogenesis continues. Within 24 h after the plating of dis- 
sociated embryonic myoblasts, a-cardiac actin mRNA is in- 
duced and later is maintained as the major postfusion actin 
mRNA. In contrast, a-skeletal actin mRNA, the predomi- 
nant skeletal muscle actin mRNA in vivo, is induced only af- 
ter fusion is under way (17). 

We reasoned that the temporal pattern of induction and 
deinduction of actin genes could be explained by the spatial 
distribution of actin mRNAs among cells at different stages 
of myogenesis. Therefore, several questions regarding myo- 
genic regulation of the actin multigene family remained un- 
answered by previous studies. Specifically: (a) Does the low, 
but significant, level of 13-actin mRNA in late muscle cultures 
result from low constitutive expression in myotubes or from 
abundant 13-actin mRNA in the relatively few residual 
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Figure I. Effect of probe con- 
centration upon in situ hy- 
bridization. 32P-labeled single- 
sWanded RNA probes to or-skel- 
etal (o),  a-cardiac (D), and 
13-actin (A) mRNA were hy- 
bridized at various concentra- 
tions to 76-h myogenic cultures 
for 4 h at 45°C. A background 
control probe consisting of the 
a-skeletal probe sequence in 
reverse orientation (i.e., non- 
complementary to mRNA) was 
also incubated on separate cov- 

erslips under the same conditions. Nonspecific background radio- 
activity was subtracled from hybridization signal at each concentra- 
tion and the resulting signal was converted to molecules of probe 
hybridized (See Materials and Methods). Background radioactivity 
increased linearly with a slope of 9.6 x 106 molecules per Ixg/ml 
probe. Each point represents the mean from four determinations. 

proliferating and nonmuscle cells? (b) Is the muscle-specific 
a-cardiac actin mRNA expressed synchronously by all myo- 
blasts in early cultures or is the a-cardiac actin gene selec- 
tively expressed within a developmental subset of myoblasts? 
(c) Is the expression of the a-skeletal actin gene fusion de- 
pendent? These questions were answered by determining the 
cellular localization of actin mRNA transcripts by in situ hy- 
bridization in primary myogenic cultures. 

Materials and Methods 

Plasmid DNA 
MI3 clones containing nucleotide sequences from the 3' untranslated region 
of the chicken a-skeletal, a-cardiac, and 13-actin genes were described pre- 
viously (17). For synthesis of single-stranded RNA probes, the M13 probe 
sequences were inserted into plasmids pTZ18R and pTZI9R (Pharmacia 
Fine Chemicals, Piscataway, NJ), which contain the T7 RNA polymerase 
promoter and fl origin of replication. Plasmids were purified according to 
Katz et al. (18). 

Synthesis of Radiolabeled Hybridization Probes 
Radioactive single-stranded DNA probes were prepared by the procedure 
of Bergsma et al. (4). The calculated specific activity for 3~P-labeled DNA 
probes was '~1.5 x 109 cpm/gg, while that for ~25I-labeled probes was 1 × 
10 s cpm/~tg. Single-stranded RNA probes were generated using T7 RNA 
polymerase (Pharmacia Fine Chemicals) according to protocols obtained 
from the manufacturer. The specific activity of the 32P-labeled RNA probes 
was 1.5 x l0 s cpm/gg. 

Primary Myoblast Cultures 
Myoblasts were obtained from ll-12-d chicken embryonic pectoral muscle 
and were cultured as described previously (17) except that 50 ~tg/ml gen- 
tamicin (Sigma Chemical Co., St. Louis, MO) was substituted for penicil- 
lin/streptomycin. Cells were grown on 22-mm-diam Thermanox plastic 
coverslips (Miles Scientific Die., Naperville, IL) coated with rat tail colla- 
gen in 8-well multiplates (Miles Scientific Div.) containing 1.5 ml of media 
per well in preparation for in situ hybridization. Some cultures were in- 
cubated with a low Ca2+-containing medium (LCM; 110-150 gM Ca 2+) 
consisting of 93% suspension culture MEM (Gibco, Grand Island, NY) 
supplemented with 5% horse serum, 2% chick embryo extract, and gen- 
tamicin. Myoblasts to be grown in LCM were rinsed twice with Hank's 
CMF at 24 h after plating and then maintained in LCM until confluency 
(66-72 h after plating). 

RNA Dot Blots and Hybridization 
Total nucleic acid and total RNA were isolated from muscle cultures as de- 
scribed (17). RNA was spotted onto Biotrans nylon membranes (ICN Radio- 
chemicals, Div. ICN Biomedicals Inc., Irvine, CA) and hybridized accord- 
ing to Bergsma et al. (4). The DNA content of total nucleic acid preparations 
was determined by a fluorescence assay using the DNA-binding dye bis- 
benzimidazole (Hoechst 33258) and a Hoefer mini-flaorometer (Hoefer 
Scientific Instruments, San Francisco, CA). 

In Situ Hybridization 
In situ hybridizations of cultured cells were carried out according to the pro- 
tocols of Lawrence and Singer (20, 21) with minor modifications. For detec- 
tion and quantitation of 32P-labeled probes, coverslips were cut in half and 
placed in scintillation vials containing PBS to measure Cerenkov radiation 
at an efficiency of "~30%. Nuclei were Fuelgen stained and the number of 
mononuclear cells and nuclei within myotubes was determined. For au- 
toradiographic detection of ~zSI-labeled probes, coverslips were mounted 
on microscope slides and dipped in NTB-2 nuclear track emulsion (East- 
man Kodak Co., Rochester, NY) at 450C, stored at 4°C for 7-9 d. Slides 
were developed and stained with hematoxylin and eosin. Photographs were 
taken using Kodak Tri-X film and a 50x oil immersion objective. 

Results 

Optimization of Conditions for Hybridization In Situ 
The effect of probe concentration on hybridization signal was 
assessed with single-stranded 32p-labeled RNA and DNA 
probes hybridized to muscle cells grown on plastic cover- 
slips. The 32p assay (20) proved an efficient means of simu- 
lating conditions that would later be used for hybridization 
of probes suitable for autoradiography. Hybridizations with 
single-stranded RNA probes were carried out for 2--4 h at 
45°C, while single-stranded DNA probes were hybridized 
for 10-14 h at 37°C. Fig. 1 indicates that hybridization of 
single-stranded RNA probes to a-skeletal, a-cardiac, and 
13-actin mRNAs of 76-h myogenic cultures appears to satu- 
rate at probe concentrations exceeding 2 gg/ml. The signal- 
to-background ratio at half-maximal hybridization (0.1-0.3 
gg/ml) was routinely 20-60:1 for RNA probes under these 
hybridization and washing conditions. Similar hybridizations 
of 32p-labeled DNA probes yielded signal-to-background 
ratios of 50:1 at probe concentrations up to 0.4 gg/ml, the 
maximum tested. 

Cellular Localization of Specific Actin mRNAs during 
Muscle Development 
~25I-labeled single-stranded DNA probes were hybridized in 
situ to primary skeletal muscle cultures to determine the dis- 
tribution of actin mRNAs among the heterogeneous cell 
types present. Autoradiographs in Fig. 2 summarize the dis- 
tribution of actin mRNAs at three time points after plating: 
18 h (prefusion), 38 b (start of fusion), and 76 h (postfusion). 

Early primary cultures 18 h after plating (Fig. 2, A, D, G, 
and J)  consisted mainly of proliferating myogenic and non- 
myogenic cells. All cells contained I~-actin mRNA (Fig. 2 
A), as expected for proliferating cells, since the nonmuscle 
actins form the microfilaments necessary for mitotic cytoki- 
nesis. A subset of 17% of cells had begun to express 
a-cardiac actin mRNA by 18 h at substantial levels, while the 
majority of cells remained unlabeled (Fig. 2 D). Binding of 
the a-skeletal actin probe (Fig. 2 G) was comparable to the 
level of nonspecific binding of a reverse-orientation control 
probe (Fig. 2 J).  
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Figure 2. Content and localization of actin mRNAs during myogenesis in culture, mI-labeled DNA probes complementary to [~-actin 
(A-C), a-cardiac (D-F), and a-skeletal (G-I) mRNA sequences, and a reverse-orientation a-cardiac probe (J-L) were hybridized to pri- 
mary myogenic cultures fixed at 18 (A, D, G, and J), 38 (B, E, H, and K), or 76 (C, F, L and L) h after plating. The probe-specific activity 
was 1 x 108 cpm/gg, probe concentration was 0.1 txg/ml, and exposure was for 9 d. Cells were stained with hematoxylin and eosin. Ar- 
rows in B point to fibroblasts labeled with the 13-actin mRNA probe. Bar, 20 gtm. 

By 38 h, as myoblasts began to fuse (Fig. 2, B, E, H, and 
K), lYactin mRNA had become preferentially restricted to 
nonfused ceils. Fibroblasts at this stage were recognized as 
pale-staining, pleiomorphic cells (arrows in Fig. 2 B), while 
myoblasts were spindle-shaped, bipolar-appearing cells with 
dark-staining, elongated nuclei. Grains representing hybrid- 
ization to 13-actin mRNA were localized over the cytoplasm 
and at the cell periphery but were minimal over cell nuclei. 
In contrast, a-cardiac actin mRNA (Fig. 2, D and E) was 
distributed throughout myoblast cytoplasm and over nuclei. 
At this time, 58 % of the mononucleated myoblasts expressed 
a-cardiac actin mRNA, while fibroblasts did not (Fig. 2 E). 
This analysis excludes •20% of cells, which were fusing at 
this time in more densely populated clusters and labeled 
positive for a-cardiac actin mRNA. Expression of a-skeletal 
actin mRNA was not detected above background in myo- 
blasts before fusion (Fig. 2, H and K). 

By 76 h (Fig. 2, C, F, I, and L), ~actin mRNA was found 
exclusively in nonfused myoblasts and fibroblasts inter- 
spersed between newly formed myotubes (Fig. 2 C). 
a-Cardiac actin mRNA attained very high levels in myotubes 
but was scarce in surrounding cells (Fig. 2 F). At the com- 
pletion of fusion, a-skeletal actin mRNA was detected in myo- 
tubes but was not present above background in neighboring 
unfused cells (Fig. 2, I and L). 

Calculation of the Number of 
Probe Molecules Hybridized Per Differentiated Cell 
and the EJSiciency of In Situ Hybridization 

We quantitated the number of probe molecules hybridized 
per differentiated cell. Table I indicates the total RNA con- 
tent per coverslip based on the DNA content of total nucleic 
acid preparations and the number of nuclei per coverslip. 
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Table L Determination of Nucleic Acid Content during Myogenesis in Culture 

Time in 
culture DNA* RNA~ 

Nuclei/ 
coverslip§ RNAII 

h #g/ltg of total nucleic acid pg/nucleus 

18 0.294 6.2 
38 0.291 6.3 
76 0.203 10.2 

/10 ~ 

0.033 
0.072 
0.271 

#g/coverslip 

0.20 
0.46 
2.77 

* Determined by fluorometric assay of total nucleic acid preparations. 
~t This number = (l/[Ixg DNA/I.tg total nucleic acid] - 1) × (2.6 x 10 -t2 g of DNA per chick nucleus). 
§ Cell nuclei were counted from coverslips stained by the Fuelgen technique. 
11 Calculated from (pg RNA/nucleus) x (nuclei/coverslip per 106). 

The mass of total RNA per coverslip increases ~14-fold be- 
tween 18 and 76 h after plating. Table II incorporates data 
describing the relative amounts of specific actin mRNAs per 
lag total RNA with the saturation values for in situ hybridiza- 
tion at 76 h (from Fig. 1). A conversion factor was obtained 
from these independent measurements that could be used to 
estimate the maximal in situ hybridization signal at satura- 
tion for cells fixed at the 18- and 38-h time points. 

The number of probe molecules hybridized (i.e., the num- 
ber of accessible mRNA molecules) per differentiated cell 
was calculated by determining the number of nuclei per cov- 
erslip and the fraction of cells labeled by the three different 
actin mRNA probes. ~Actin mRNA was expressed in un- 
fused myoblasts and fibroblasts such that 220-250 molecules 
were accessible, on average, per cell (Table II). Fibroblasts 
became distinguishable by 38 h and contained the majority 
of grains (Fig. 2 B). By 76 h, the amount of 13-actin gene 
probe hybridized increased to >1,000 copies per fibroblast. 
a-Cardiac actin mRNA averaged ~300 molecules hybrid- 
ized per differentiated myoblast but increased to 800 mole- 
cules hybridized per nucleus in myotubes. On the other 

hand, levels of a-skeletal actin mRNA were not significant 
until 76 h when >700 copies of probe hybridized per myotube 
nucleus. In situ hybridization efficiency was estimated at 
~10% of the a-striated actin mRNA molecules (15,000 cop- 
ies) previously detected per 75-h myotube nucleus (30). 

a-Cardiac Actin mRNA Accumulates in 
Postmitotic Myoblasts 
Previously, Hayward and Schwartz (17) and Bains et al. (2) 
have shown high level expression of a-cardiac actin in 
prefusion-replicating myoblasts. As shown here (Fig. 2 and 
Table II), a-cardiac actin mRNA appeared asynchronously 
in myogenic cultures until virtually all prefusion myoblasts 
express a-cardiac actin mRNA before fusion. However, 
these studies did not demonstrate that any cell synthesizing 
a-cardiac actin mRNA was replicative or postmitotic. To de- 
termine whether myoblasts that express a-cardiac actin 
mRNA have withdrawn from the cell cycle, prefusion myo- 
genic cultures were pulsed for 30 min with [methyl, 1', 2'- 
3H]thymidine and processed for hybridization with ~25I- 

Table II. Quantitation of ln Situ Hybridization to Actin mRNAs 

Actin 
mRNA Time in Dot Probe Labeled Probe 
probe culture blot binding* hybridized cellsll hybridized** 

cpm/l~g total molecules/lO 6 per molecules~differentiated 
h RNA coverslip % cell 

1~ 18 399 7.0§ >/99.0 217 
13 38 455 17.9§ >/99.0 251 
I~ 76 319 76.0~ 27.8 1,010 

¢t-Ca 18 137 2.3§ 16.8 425 
¢t-Ca 38 288 10.9§ 66.8 228 
or-Ca 76 695 160.05 72.2 818 

a-Sk 18 7 0.2§ <1.0  ND 
a-Sk 38 10 0.5§ ~<1.0~ ND 
ct-Sk 76 501 142.05 72.2 726 

* Determined by hybridization of actin gene probes to dot blots of total RNA. 
~t Saturation value obtained from Fig. 1. This value was used to calculate a conversion factor between the signal obtained from RNA dot blots and that obtained 
by in situ hybridization: (dot blot cpm/106 molecules hybridized) = [(dot blot cpm/Ixg RNA) × (Ixg RNA/coverslip) + (106 molecules hybridized/coverslip)] for 
the 76-h myotube culture. For this particular hybridization, the conversion values (units as listed) were 11.6, 12.0, and 9.8 for the 13-, tl-cardiac, and a-skeletal 
actin probes, respectively. Thus, the efficiency of hybridization for all three probes at saturation appears to be equivalent. 
§ Calculated from [(dot blot cpm/I.tg total RNA) × (p.g total RNA/coverslip) + (dot blot cpm/106 molecules hybridized)]. 
II Determined from cultures hybridized with t2Sl-labeled actin gene probes and extent of fusion. Values represent percent of total nuclei correlated with labeling. 
See text for details. 
¶ Some a-skeletal mRNA labeling was detected in groups of three or more precociously fused myogenic cells at this time point and was  excluded from the 
analysis.  
**[(molecules hybridized/coverslip) + (nuclei/coverslip) + (fraction of cells labeled)]. 
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Figure 3. Labeling of myogenic culture with [3H]thymidine and actin mRNA probes. Primary muscle cultures (30 h after plating) exposed 
to 4 IxCi/ml [3H]thymidine for 30 min before fixation (A-F). Cells were hybridized in situ with ~25I-labeled 3' noncoding probes to I]-actin 
(A and B) and a-cardiac actin (C and D). Probe concentration was 0.1 lag/ml and exposure was for 7 d. Dark field illumination is shown 
in B, D, and E 

laoeled probes. Autoradiographs in Fig. 3 show the dual 
labeling of myogenic cultures. Replicating cells were iden- 
tiffed by incorporated [3H]thymidine localized as clustered 
grains over nuclei with no apparent grains over the cellular 
cytoplasm. Under darkfield illumination (Fig. 3, E and F)  
labeled nuclei were displayed as halo-like images with dark 
epicenters, l]-Actin mRNA revealed by hybridization to 1251- 
labeled probes was clearly expressed in most cells regardless 
of the proliferative state (Fig. 3, A and B). Fig. 3, C and D, 
indicates that those cells that were still dividing (and whose 
nuclei thus incorporated [3H]thymidine) did not appear to 

express a-cardiac actin mRNA in their cytoplasm. In con- 
trast, cells that did express a-cardiac actin mRNA exhibited 
a highly elongated morphology. Thus, cells that express 
a-cardiac actin mRNA appear to have withdrawn from the 
cell cycle and entered the postmitotic state. 

Fusion Blockade in Calcium-deficient Medium 

To determine if a-skeletal actin mRNA expression, which 
was temporally correlated with fusion, was also fusion de- 
pendent, a nontoxic method was sought to prevent fusion. A 
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Figure 4. In situ hybridization of actin gene probes to myoblasts 
grown in LCM. (A) Phase-contrast micrograph of myoblasts main- 
mined in LCM starting at 24 h and continuing to 72 h. Myoblasts 
were hybridized to I~-cardiac (B), a-cardiac (C), a-skeletal (D), 
and reverse a-cardiac (E) actin mRNA probes as in Fig. 2. The 
arrow in C points to a rounded cell expressing a-cardiac actin 
mRNA. Bars: (A) 100 p.m; (B) 20 gm. 

procedure was adopted in which myoblasts were seeded in 
normal plating medium containing 1.8 mM Ca 2+ and fed at 
24 h with an LCM (110-150 I~M Ca2÷). Primary myoblast 
cultures maintained in LCM from 24 to 72 h after plating 
grew to confluency but did not fuse, as shown in Fig. 4 A. 
These myoblasts exhibited a strikingly elongated morphol- 
ogy and tended to align longitudinally with each other. Upon 
feeding with medium containing 1.8 mM Ca 2÷, these myo- 
blasts rapidly fused to form myotubes within 6-12 h. The 
results of in situ hybridization of the 125I-labeled actin 
mRNA probes are summarized in Fig. 4, B-E. Both [~- and 
a-cardiac actin mRNAs were expressed in myoblasts that 
had not yet fused (Fig. 4, B and C). a-Skeletal actin mRNA 
was expressed at only very low levels, slightly above the 
background hybridization of the control probe (Fig. 4, D 
and E). 

The levels of actin mRNA expression were quantitated on 
a total RNA basis by hybridization with specific 3' untrans- 
lated region actin probes to RNA dot blots. For this experi- 
ment, cells were maintained in LCM until 72 h after plating 
and then fed with either fresh LCM or normal medium. 
RNA was extracted at the time of the medium change and 
at 6, 12, and 24 h later (Fig. 5). a-Skeletal actin mRNA was 
expressed at low levels (<1% of the level in 3-wk breast mus- 
cle) in the cultures maintained in LCM but increased three- 
fold by 12 h in cultures allowed to fuse in normal medium. 
In contrast, a-cardiac and I~-actin mRNAs were expressed 
initially at high levels and exhibited a modest increase by 12 h 
of 60 and 30%, respectively, over expression in cells main- 
mined in LCM. By 24 h, the relative increase in expression 
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Figure 5. Expression of actin 
mRNAs in Ca2÷-deficient and 
Ca2+-restored muscle cultures. 
a-Skeletal (A), a-cardiac (B), 
and I~-actin (C) mRNA probes 
were hybridized to dot blots 
of total RNA from myoblasts 
maintained in LCM until 72 h 
after plating and then fed with 
either fresh LCM (o) or nor- 
mal media (e). RNA was iso- 
lated at 0, 6, 12, and 24 h after 
the medium change. The ex- 
pression of ct-skeletal, u-car- 
diac, and ~-actin mRNAs per 
p.g total RNA in 3-4-wk 
breast muscle, heart, and 
gizzard RNA standards was 
8,100, 1,150 and 1,360 cpm, 
respectively. 

had declined to 20 and 10%, respectively. To rule out dif- 
ferential processing of nascent RNA as a result of growth in 
LCM, Northern blots demonstrated that the actin mRNAs 
isolated from these cultures were the same size as those from 
muscle cultures grown in 1.8 mM Ca 2÷ and that each actin 
mRNA was represented by a single band (data not shown). 
Thus, the a-skeletal actin gene is regulated distinctly from 
the et-cardiac and [3-actin genes and appears to be fusion 
dependent. 

Effect of  MetaUoendoprotease lnhibitors on Fusion 
and Actin Gene Expression 

Couch and Strittmatter (9) demonstrated that MEPr inhibi- 
tors can block the Ca2÷-dependent fusion of rat primary 
myoblasts. These synthetic substrates can competitively in- 
hibit MEPr's and block fusion in a reversible manner when 
added to the culture medium in the millimolar range. When 
the MEPr inhibitor Cbz-Ser-Leu-amide was added to un- 
fused chicken myoblast cultures at 1.5 mM and examined 24 h 
later, fusion was prevented and accumulation of a-skeletal 
and a-cardiac mRNA was abolished (Fig. 6, A, C, and E). 

The Journal of Cell Biology, Volume 106, 1988 2082 



Figure 6. Effect of dipeptide 
metalloendoprotease inhibi- 
tors on fusion and a-striated 
actin gene expression. Myo- 
blasts grown in LCM until 52 h 
were treated for 24 h in HCM 
with 1.5 mM Cbz-Ser-Leu- 
amide (,4, C, and E) or 1.5 
mM Cbz-Gly-Gly-amide (B, 
D, and F). Phase micrographs 
in A and B indicate culture 
morphology after 24-h treat- 
ment. 12SI-labeled actin gene 
probes to a-cardiac actin (C 
and D) and a-skeletal actin (E 
and F) were hybridized in situ 
as in Fig. 2. The final concen- 
tration of dipeptide solvent (di- 
methylformamide) was 0.75 %. 
Bars: (A) 100 I.tm; (B) 20 I.tm. 

In contrast, cultures treated with 1.5 mM of the control di- 
peptide, Cbz-Gly-Gly-amide, formed normal myotubes and 
expressed both actin mRNAs (Fig. 6, B, D, and F) .  

The concentration dependence of the dipeptide amides on 
actin gene expression was examined in myoblasts maintained 
in LCM and then fed with medium containing 1.8 mM Ca 2+ 
plus various concentrations of inhibitor. Fig. 7 summarizes 
the dot blot data for samples of total RNA from treated cul- 
tures that were hybridized with actin 3' untranslated region 
probes. Accumulation of a-skeletal and a-cardiac but not 
l~-actin mRNAs was inhibited after a 24-h exposure to the 
dipeptide Cbz-Ser-Leu-amide (Fig. 7, open symbols). The 
extent of inhibition was dosage dependent with a-skeletal ac- 
tin mRNA accumulation being twice as sensitive to inhibitor 
(50% inhibition at 0.28 mM dipeptide) as was that of a-car- 
diac actin mRNA (50% inhibition at 0.57 mM dipeptide). 
None of the actin mRNA levels were affected significantly 
by treatment with the control dipeptide Cbz-Gly-Gly-amide 
(Fig. 7, closed symbols). This experiment indicates that an in- 
hibitor which prevents fusion in the presence of Ca ~+ has 
similar inhibitory effects upon biochemical differentiation. 

Actin Gene Expression in Cultures o f  
Early Embryonic Muscle 

Finally, we sought to determine if the asynchronous appear- 
ance of a-striated actin mRNAs was part of a developmental 
program established in early embryonic myogenic cells. This 
question was addressed by dissecting somites and limb buds 
from 3-4-d embryos and growing dissociated cells in cul- 

ture. Short myotubes formed from dissociated limb buds that 
expressed a-skeletal and a-cardiac mRNA after 2 d in cul- 
ture (data not shown). Some cultures were maintained in 
LCM after 18 h so that elongated myoblasts would be clearly 
distinguished from the abundant nonmuscle cell types pres- 
ent. Fig. 8 shows the hybridization of actin gene probes to 
somite-derived cells after 60 h in culture. ~actin mRNA was 
present in all cells, while a-cardiac actin mRNA was ex- 
pressed only in myoblasts (Fig. 8, A and B). Binding of the 
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Ser-Leu-amide (open symbols) or 0.75 or 1.33 mM Cbz-Gly-Gly- 
amide (closed symbols) with the final concentration of dimethyl- 
formamide solvent at 0.75% in all cases. Total RNA was isolated 
and hybridized with probes for a-skeletal (rl), a-cardiac (o), I~- 
(zx) actin mRNAs. Binding of probes to dot blots (cprn/~tg total 
RNA) was normalized to the solvent control (100% activity [cpm/ 
Ixg total RNA] = 92, 568 and 294 for a-skeletal, a-cardiac, and 
13-actin probes, respectively). 
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Figure 8. Expression of specific actin genes in 3-d embryonic somite cultures. Cells were dissociated from 3-d chick embryo somites and 
plated following the same procedure used for myoblast cultures (Materials and Methods). At 18 h, cultures were fed with LCM and spindle- 
shaped myoblasts became distinguishable from nonmyogenic cells. Cells were fixed at 60 h and hybridized with probes as in Fig. 2. D 
represents hybridization to the control reverse-orientation a-cardiac actin probe. 

a-skeletal actin mRNA probe could not be detected above 
background levels (Fig. 8, C and D). Thus, myoblasts de- 
rived from embryonic muscle as early as day 3 accumulate 
actin mRNAs in parallel to that of cultures derived from day 
11 embryonic myoblasts. 

Discuss ion  

We localized actin mRNAs at the cellular level during the 
developmental transition from proliferating myoblasts to 
postmitotic, multinucleated myotubes. Within hours after 
plating, dissociated myoblasts began to accumulate high lev- 
els of a-cardiac actin mRNA. In contrast, a-skeletal actin 
mRNA was observed to accumulate only in multinucleated 
myotubes and not in isolated myoblasts or fusion-arrested 
myoblasts. Uniform labeling of myotubes with either a-car- 
diac or a-skeletal actin probes implies coexpression of these 
genes within the same multinucleated fibers. Northern blots 
of  total cellular RNA in earlier studies could not discern 
whether I~-actin mRNA was expressed in fused myotubes or 
in nonfused myoblasts and contaminating fibroblasts. Our 
analysis shows that the 13-actin transcripts are present in both 
myoblasts and fibroblasts but become reduced in content in 
fusing myoblasts and appear to be absent in well-differen- 
tiated myotubes. Thus, in the same myogenic cells, stage- 
dependent induction of the two a-striated actin mRNA spe- 

cies occurs concomitantly with deinduction of the I~-actin 
gene. 

The temporal correlation between a-skeletal actin mRNA 
expression and the onset of fusion encouraged us to examine 
the extent to which a-skeletal actin mRNA expression is fu- 
sion dependent. Myoblasts maintained in LCM accumulated 
only low levels of a-skeletal actin mRNA but expressed both 
a-cardiac and 13-actin mRNAs at high levels. When 1.8 mM 
Ca 2÷ was added back to these cultures to allow fusion, the 
level of a-skeletal actin mRNA increased within 12 h to a 
level 50% of its maximum observed in vitro. Thus, growth 
in LCM appeared to separate the appearance of a-skeletal 
actin transcripts from the induction of a-cardiac actin 
mRNA. However, this phenomenon could result from the in- 
hibition of a Ca2+-dependent process that is distinct from 
fusion (11). To determine if this were the case, experiments 
were conducted using MEPr inhibitors to block fusion in the 
presence of Ca 2÷. 

The MEPr inhibitor, Cbz-Ser-Leu-NH2, prevented fusion 
and also inhibited accumulation of both a-skeletal and a-car- 
diac but not 13-actin mRNAs. Baldwin and Kayalar (3) 
showed that Cbz-Ser-Leu-NH2 prevented induction of 
muscle-specific creatine kinase activity in L6 myoblasts. 
They postulated that an MEPr may function in initiation of 
myoblast terminal differentiation. Such a proposal leaves 
open the question of where such a protease might act. One 
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possibility is that it acts at the myoblast surface in a direct 
step necessary for membrane fusion. In this case, triggering 
of muscle-specific gene expression would be secondary to 
the fusion process. This seems unlikely, since myotubes 
treated with MEPr inhibitors failed to maintain their accu- 
mulated a-skeletal and a-cardiac actin mRNAs (data not 
shown). Perhaps more likely, an MEPr might be necessary 
for myoblast entry into a differentiative pathway that includes 
fusion as a later step. The idea that fusion may be secondary 
to such a differentiative pathway is supported by experiments 
with other fusion inhibitors such as transforming growth fac- 
tor 13, which block biochemical differentiation even in non- 
fusing cells (12, 21). Purification and analysis of the muscle 
MEPr and its substrate are essential for a clearer understand- 
ing of its role in muscle differentiation. 

This study has also contributed to the identification of a 
committed myogenic phenotype. Konigsberg (19) recognized 
morphological differences between myoblasts and fibroblasts 
and showed that virtually all bipolar cells in low-density cul- 
tures yielded purely myogenic clones, while flattened unipo- 
lar cells gave rise to fibroblastic clones. Bipolar-shaped cells 
in prefusion cultures were noted in a previous report to con- 
tain actin filaments oriented along their longitudinal axis 
(26). In contrast, fibroblastic cells contain multidirectional 
arrays of actin filaments which span the interior of the cell 
in broad, parallel sheets. Although we cannot directly iden- 
tify the pleuripotent precursor cell (1, 28) that initiates the 
myogenic pathway, we have demonstrated that labeling with 
the a-cardiac actin probe is restricted to the bipolar cell type. 
Also, bipolar cells derived from dissociated embryonic 3-d 
somites appeared to have already established a pattern of 
a-cardiac actin mRNA expression equivalent to that of later 
myoblast lineages present in embryonic 11-12-d pectoral tis- 
sue with respect to the expression of the a-cardiac actin 
gene. 

Autoradiographs of embryonic 11-12-d pectoral myoblasts 
revealed that a-cardiac actin mRNA labeling increased asyn- 
chronously in prefusion myoblasts. By the time of fusion, al- 
most all the bipolar cells had accumulated a-cardiac mRNA 
(Table II). This asynchrony reflects a cell cycle-dependent 
sensitivity to myoblast terminal differentiation in which myo- 
blasts stop proliferating and begin to express muscle-specific 
genes at a particular point in the cell cycle. For example, 
Clegg et al. (8) determined that deprivation of fibroblast 
growth factor during the G~ phase of the cell cycle initiates 
terminal differentiation of MM14 mouse myoblasts. Since 
virtually all mononucleated bipolar cells in culture eventu- 
ally express a-cardiac actin mRNA before fusion, we sug- 
gest that the bipolar cell represents the phenotype of a com- 
mitted but not necessarily terminally differentiated myogenic 
cell type. 

The recent observations of Blau et al. and Hardeman et al. 
(5, 16) provide evidence that a-striated actin genes are regu- 
lated by a diffusable cytoplasmic transacting factor(s). The 
transfection of actin genes into myogenic and nonmyogenic 
cells has provided strong supporting evidence for transacting 
factors which stimulate the transcription of the a-striated ac- 
tin genes (14, 24, 27). We observed expression of the a-car- 
diac and a-skeletal actin genes in a distinct, sequential man- 
ner during muscle development. These a-striated actin 
isoform genes share common evolutionary origins (32), ge- 
nomic organization (6, 7, 13, 14), and regulatory sequences 

within the promoter regions (6, 7) yet their expression can 
be differentially manipulated in myogenic cultures. Recent 
nuclear transcription runoff experiments have indicated that 
both a-cardiac and a-skeletal actin genes are regulated pri- 
marily at the transcriptional level for tissue- and stage- 
specific expression (French, B., L. J. Hayward, and R. J. 
Schwartz, manuscript in preparation). Thus, certain muscle- 
specific gene inductive factors that influence the transcrip- 
tion of the a-skeletal actin gene may be synthesized as part 
of a postfusion-dependent differentiative pathway. The se- 
quential accumulation of a-cardiac followedby a-skeletal 
actin mRNA during myogenesis in culture indicates that 
differential regulation of these genes is sensitive to additional 
signals or factors that arise during myogenesis. 
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