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Abstract. To study tubulin polymerization and 
microtubule sliding during spindle elongation in vitro, 
we developed a method of uncoupling the two 
processes. When isolated diatom spindles were in- 
cubated with biotinylated tubulin (biot-tb) without 
ATP, biot-tb was incorporated into two regions flank- 
ing the zone of microtubule overlap, but the spindles 
did not elongate. After biot-tb was removed, spindle 
elongation was initiated by addition of ATP. The in- 
corporated biot-tb was found in the midzone between 
the original half-spindles. The extent and rate of elon- 
gation were increased by preincubation in biot-tb. 
Serial section reconstruction of spindles elongating in 
tubulin and ATP showed that the average length of half- 
spindle microtubules increased due to growth of 
microtubules from the ends of native microtubules. 
The characteristic packing pattern between antiparallel 

microtubules was retained even in the "new" overlap 
region. Our results suggest that the forces required for 
spindle elongation are generated by enzymes in the 
overlap zone that mediate the-sliding apart of an- 
tiparallel microtubules, and that tubulin polymerization 
does not contribute to force generation. Changes in 
the extent of microtubule overlap during spindle elon- 
gation were affected by tubulin and ATP concentration in 
the incubation medium. Spindles continued to elongate 
even after the overlap zone was composed entirely of 
newly polymerized microtubules, suggesting that the 
enzyme responsible for microtubule translocation ei- 
ther is bound to a matrix in the spindle midzone, or 
else can move on one microtubule toward the spindle 
midzone and push another microtubule of opposite 
polarity toward the pole. 

T 
HE mitotic spindle, a bipolar structure composed main- 
ly of microtubules, is an apparatus for precisely dis- 
tributing chromosomes to the two daughter cells. At 

anaphase, the two sets of chromatids are moved apart by two 
distinct processes on the spindle: chromosome-to-pole move- 
ment (anaphase A) and spindle elongation (anaphase B). 
Based on light and electron microscopy of spindles in vivo 
and biochemical studies of microtubules in vitro, several 
models have been proposed for the mechanism of spindle 
elongation. One model suggests that tubulin polymerization 
generates the force required for spindle elongation (Inou6 
and Sato, 1967; Brinkley and Cartwright, Jr., 1971; Pickett- 
Heaps et al., 1986). Addition of tubulin subunits to microtu- 
bules along their wall (Inou6 and Sato, 1967) or to the minus 
ends of microtubules (the ends located at the spindle poles; 
Pickett-Heaps et al., 1986) would extend the microtubule 
length to push the spindle poles apart. A second model sug- 
gests that the force responsible for spindle elongation is pro- 
duced by mechanochemical enzymes mediating the sliding 
apart of interdigitating sets of microtubules from the oppo- 
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site half-spindles (Mclntosh et al., 1969; McDonald et al., 
1977, 1979; Margolis et al., 1978; Tippit et al., 1984; Mcln- 
tosh et al., 1985; Saxton and Mclntosh, 1987). In this 
model, tubulin polymerization would occur on the plus ends 
of microtubules, hence, on the ends located in the microtu- 
bule overlap zone (Margolis et al., 1978; Saxton and Mcln- 
tosh, 1987), and be an auxiliary process that limits the rate 
or extent of spindle elongation (Nicklas, 1971). In addition 
to these models, some workers have proposed that forces 
generated outside the spindle pull the half-spindles apart 
(Aist and Berns, 1981; Heath, 1980; Kronebusch and Borisy, 
1982). 

When compared to more conventional spindles, diatom 
spindles have several unique features, which make them ad- 
vantageous for studying spindle elongation. In the diatom, 
the apparatus responsible for spindle elongation, the central 
spindle, is comprised of two sets of microtubule bundles that 
interdigitate in the middle of spindle, whereas the compo- 
nents responsible for chromosome-to-pole movement are at 
the periphery (Pickett-Heaps and Tippit, 1978; McDonald et 
al., 1977, 1979). Since the interdigitated microtubules of the 
central spindle are fairly uniform in length, the zone of mi- 
crotubule overlap is distinct and visible with phase-contrast 
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and polarized light microscopy (Pickett-Heaps et al., 1980; 
Cande and McDonald, 1985). 

To study the mechanism of spindle elongation, we have de- 
veloped an in vitro system in which spindles isolated from 
a diatom, Stephanopyxis turris, are capable of undergoing 
anaphase spindle elongation. With addition of ATE the two 
half-spindles of the central spindle slide apart with a con- 
comitant decrease in the zone of microtubule overlap (Cande 
and McDonald, 1985, 1986). When spindles were incubated 
in neurotubulin and ATE they elongated several times more 
than the length of the overlap zone, and the extent and rate 
of elongation were dependent on tubulin concentration (Ma- 
suda and Cande, 1987). Using biotinylated tubulin (biot- 
tb) I to visualize the sites of tubulin incorporation, we found 
that new tubulin was first incorporated into two regions 
flanking the microtubule overlap zone. When elongation was 
more than the length of the overlap zone, biot-th was then 
found as a single band in the spindle midzone. These results 
suggest that tubulin is incorporated onto the ends of microtu- 
bules in the overlap zone, and then slide through the midzone 
during spindle elongation. 

To study the relationship of tubulin polymerization to 
microtubule sliding during spindle elongation in vitro, we 
developed a method of uncoupling these two processes. We 
show here that (a) tubulin polymerization does not generate 
the force for spindle elongation, whereas mechanochemical 
enzymes (the spindle motor) produces the force that slides 
the half-spindles apart; (b) tubulin polymerization increases 
the extent and rate of elongation; and (c) the tubulin poly- 
merization, which contributes to spindle elongation, occurs 
onto the ends of microtubules in the overlap zone. For iso- 
lated spindles to behave in this fashion we deduce that the 
motor for microtubule sliding must remain stationary in the 
spindle midzone relative to the moving microtubules. 

Materials and Methods 

Preparation of Tubulin and Its Biotinylation 
Beef brain tubulin was isolated from twice-cycled microtubule protein by 
ion exchange chromatography on DEAE-Sephadex, and biofinylated as de- 
scribed previously (Masuda and Cande, 1987). Unmodified tobulin and 
biot-tb were frozen in liquid nitrogen and stored in small aliquots at -80°C. 
A molecular mass of 110 kD was used for calculation of tubulin concen- 
tration. 

Cell Culture and Synchronization 
Stephanopyxis turris (stock no. L1272) was obtained from the Culture Col- 
lection of Marine Phytoplankton (Bigelow Laboratory for Ocean Services, 
West Boothbay, ME). Cells were grown in F/2 medium (Guillard, 1975) in 
suspension culture on a 6.5:17.5-h light/dark schedule at 18°C. 3 h before 
harvest, cells were drugged with 2 x 10 -s M nocodazole, and 20 rain be- 
fore harvest, cells were collected on 60-p,m mesh Nitex filters and washed 
extensively to remove the drug (Cande and McDonald, 1986; Wordeman 
et al., 1986). 

Spindle Isolation 
Spindles were isolated as described by Masuda and Cande (1987) with a 
slight modification. 20 rain after drug reversal, cells were harvested and 
rinsed with isotonic buffer (4.35 mM Tris, pH 8.0, 487 mM NaCI, 26.1 mM 
KC1, and 0.87 mM EGTA). Then, cells were suspended on ice in medium 
A (50 raM Pipes, pH 7.0, 10 mM MgSO4, 10 mM EGTA, 40 mM sodium 
I~-glycerolahosphate, 1 mM dithiothreitol [DTT], 0.5 mM phenylmethylsul- 

1. Abbreviation used in this paper: biot-tb, biotinylated tubulin. 

fonyl fluoride [PMSF], and proteolytic inhibitors [10 mg/liter soybean tryp- 
sin inhibitor, 10 mg/liter L-l-tosylamide-2-phenylethyl chloromethyl ketone, 
10 mg/liter benzyl arginyl methyl ester, 10 rag/liter p-tosyl-L-arginine methyl 
ester, 1 mg/liter leupeptin, 1 rag/liter pepstatin A]) containing 50 p.M 
ATP~,S, 100 p.M rac-6-hydroxy-2,5,7,8-tetramethyl-chromane-2-carboxylic 
acid (Trolox; Fluka Chemical Corp., Ronkonkoma, NY), 0.2% Brij 58, 
1 p.g/ml 4,6-diamidine-2-phenylindole dihydrochloride (DAPI), and 30% 
glycerol. The cells were homogenized on ice with a Kontes Dounce homog- 
enizer, B pestle (Dounce, made by Kontes Glass Co., Vineland, N J). The 
homogenate was filtered through 60-ltm mesh and then 20-p.m mesh Nitex 
filters. The filtrate from the homogenate was centrifuged onto coverslips 
through a 60% sucrose cushion containing medium A, 50 p.M ATPyS, and 
30 p.M Trolox for 15 min at 4°C at 2,000 g. The coverslips were placed 
in medium A containing 30% glycerol, 50 p.M ATPyS, and 30 p.M Trolox 
and stored on ice until use. 

Spindle Reactivation 
After washed briefly in PMEG solution (75 mM Pipes, 2.5 mM MgSO4, 
5 mM EGTA, 40 mM sodium ~-glycerophosphate, 1 mM DTT, and proteo- 
lytic inhibitors, pH 6.8) containing 20 p.M taxol, and 30 p.M Trolox, spin- 
dles on coverslips were reactivated at room temperature in PMEG solution 
containing 1 mM ATE 0.1 mM GTP, 20 ~M taxol, and 30 p.M Trolox in 
the presence or absence of tubulin by putting 40 p.l of the solutions directly 
onto coverslips. For the studies where tubulin polymerization was uncou- 
pled from spindle elongation, spindles were washed in PMEG solution con- 
taining 0.1 mM ATP),S, 20 [.tM taxol, and 30 p.M Trolox (solution B), and 
then incubated in 40 p.I of biotinylated tubulin or unmodified tubulin and 
0.1 mM GTP in solution B for 1-4 rain at room temperature. The spindles 
were then washed in solution B for 30 s, and reactivated as described above. 
Spindle reactivation was terminated by placing the coverslip in PMEG solu- 
tion containing 3.7 % paraformaldehyde and 0.1% glutaraldehyde. After in- 
cubation in the solution for 15 rain, coverslips were treated with 1 mg/ml 
sodium borohydride in PBS-methanol (1:1) solution for 5 min, 3 times in 
succession, and then processed for immunofluorescence microscopy. For 
electron microscopy, spindle reactivation was terminated by placing the cov- 
erslip in PMEG solution containing 1% glutaraldehyde. 

Indirect Immunofluorescence 
The mAbs against plant tubulin, specifically anti-mung bean tubulin (Mi- 
zuno et al., 1985) and anti-pear tobulin (Hogan, 1987), were kindly 
provided by Dr. Susan Wick and Dr. Brian Gunning, and Dr. Christopher 
Hogan, respectively. Biotinylated microtubules in spindles were visualized 
by incubation with rabbit anti-biotin (diluted to l:100; Enzo Biochem Inc., 
New York, NY) for 30 min, and with fluorescein-conjugated sheep anti- 
rabbit IgG (1:80) for 30 min. Native microtubules of diatom spindles were 
visualized by incubation with mouse anti-plant tubulin (undiluted) for l h, 
followed by rhodamine-conjugated goat anti-mouse IgG (1:50) for 1 h. In 
some experiments, anti-plant tubulin was concentrated 4x  using Centricon 
Microconcentrators (Amicon Corp., Danvers, MA) to obtain better staining. 
To visualize all microtubules in a spindle, the preparations were incubated 
with rabbit anti-sea urchin ot-tubulin (l:100; Polysciences Inc., Warrington, 
PA) for 30 min and with sheep anti-rabbit IgG (1:80) for 30 min. 

Measurement of Spindle and Overlap Zone Length, and 
Calculation of Extent of Tubulin Incorporation 
Spindles were reactivated in unmodified tubulin and ATP for 0--4 rain as 
described above. The spindle reactivation and tubulin incorporation were 
terminated by washing the spindles on coverslips in PMEG solution contain- 
ing 20 p.M taxol, 15 U/ml hexokinase, 5 mM glucose, and 30 I~M Trolox. 
Then, the spindles were incubated in 40 Ixl of PMEG solution containing 
5 ttM biot-tb, 20 ~M taxol, and 30 ~tM Trolox for 30 s. The spindles were 
fixed in formaldehyde and glutaraldehyde, reduced in sodium borohydride, 
and processed for immunofluorescence with anti-biotin and anti-plant 
tubulin, all as described above. Spindle and overlap zone lengths were mea- 
sured from immunofluoreseance images on a TV monitor using Zeiss Pho- 
toscope Ill and a DAGE-MTI low-light level TV camera. The average extent 
of tubulin polymerization onto the ends of the native microtubules in the 
overlap zone (see Fig. 10) was calculated using the average spindle length 
and the average overlap zone length as follows: extent of tubulin polymeriza- 
tion (T) = new half spindle length (NH) - original half spindle length 
(OH), where NH = (new spindle length + new overlap zone length)/2 and 
OH = (initial spindle length + initial overlap zone length)/2. 
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Electron Microscopy and Serial Section Analysis 

Spindles fixed in 1% glutaraldehyde in PMEG solution for 1 h were 
postfixed in 0.4% OsO4 and 0.8% K3Fe(CN)6 in 0.I M cacodylate buffer 
(pH 7.2), and then processed for electron microscopy and cross sectioned 
as described previously (Cande and McDonald, 1986), Sections were 
viewed and photographed at 20,000× magnification on a JEOL 100S elec- 
tron microscope. Microtubules in the cross sections were tracked as de- 
scribed by McDonald et al. (1977). 

Results 

Uncoupling of Tubulin Polymerization from 
Spindle Elongation 
We uncoupled tubulin polymerization from spindle elonga- 
tion by relying on the different nucleotide requirements for 
each process. Previously we found that spindle elongation 
was specifically dependent on ATE but tubulin was incorpo- 
rated into spindles at room temperature in the absence of 
ATP (Masuda and Cande, 1987). Since spindles incubated 
at room temperature are functionally labile, we searched for 
conditions that preserved function. Addition of ATPyS (an 
ATP analogue) and Trolox (a radical scavenger) to the 
homogenization and incubation media increased retention of 
function during incubation at room temperature (Wordeman 
and Cande, 1987; Baskin and Cande, 1988). 

Spindles were first incubated in 20 pM neuronal biot-tb 
and 20 pM taxol in the absence of ATP for 4 min. Biot-tb 
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Figure 2. Length histograms of spindles preincubated in tubulin and 
then reactivated in ATP as shown in Fig. 1. (A) Without tubulin and 
ATP addition; (B) 4 min after addition of 20 pM biot-tb and 20 gM 
taxol; (C) 0.5 min, (D) I rain, and (E) 2 min after addition of 1 mM 
ATP and 20 pM taxol. In B-E, spindles with immunofluorescence 
image, as shown in Fig. 1, a and b, c and d, and e and f, are indicated 
by ESsL ~ ,  and l ,  respectively. Fraction (%) and average 
length (p.m, or % of the initial spindle length) of spindles of each 
type are shown at the right side of the histogram. 

Figure 1. Immunofluorescence micrographs of spindles preincu- 
bated in neuronal tubulin and then reactivated in ATE The spindles 
were double-stained with anti-biotin (a, c, and e) and with anti- 
plant tubulin (b, d, and f) .  Isolated spindles were first incubated 
in 20 pM biot-tb and 20/aM taxol for 4 rain (a and b). After biot-tb 
was removed, the spindles were incubated in 1 mM ATP and 20 IxM 
taxol for I min (c and d) or 2 rain (e and f )  at room temperature. 
Bar, 10 pm. 

was incorporated into two regions flanking the original over- 
lap zone and around the poles (Fig. l, a and b). Tubulin poly- 
merization around the poles increased the apparent spindle 
length by 5-10% (data not shown). To measure spindle 
length without taking into account the astral-like tubulin in- 
corporation around the poles, spindles were stained with 
anti-plant tubulin, which binds with high-affinity to diatom 
microtubules, but not well to neuronal tubulin (Mizuno et 
al., 1985; Hogan, 1987). The half-spindles did not move 
apart in biot-tb without ATP (Fig. 2, A and B). The length 
of the new overlap zone, which now includes the two regions 
of newly incorporated tubulin, was ~40% of the spindle 
length. After incubation for 4 min, free microtubules and 
dimers of biot-th were removed by dilution, and the incorpo- 
rated tubulin was stabilized by washing the spindles in a solu- 
tion containing 20 gM taxol. When the spindles were then 
incubated in 1 mM ATP and 20 pM taxol, most of the spin- 
dles elongated to almost double the length of the original 
zone of microtubule overlap within 1 min (Fig. 1, c and d, 
and Fig. 2). 

At 30 s after addition of ATP, we observed two types of 
spindles by immunofluorescence. Half of the spindles had a 
pattern of staining similar to the spindle shown in Fig. 1, a 
and b; that is, they showed two regions of incorporated biot- 
tb in the middle, and elongation was limited in that they had 
not formed a gap between the original half spindles (type I). 
The rest of the spindles had a pattern of staining similar to 
the spindle shown in Fig. 1, c and d; that is, they showed one 
broad band of incorporated biot-tb in the middle and had 
formed a gap between the original half spindles (type II). 
Type I and II spindles had an average length of 9.4 (111% of 
the original spindle length) and 10.4 pm (122%), respec- 
tively (Fig. 2 C). At 1 min after ATP addition, we observed 
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Figure 3. Dependence of the 
extent and rate of spindle elon- 
gation on tubulin concentra- 
tion and preincubation time. 
Spindles were preincubated in 
20 ~tM taxol and (e) 20 ~tM 
tubulin for 4 min, (1) 5 ~tM 
tubulin for 4 min, or (I) 20 
~tM tubulin for 1 min. After 
tubulin was removed, the spin- 
dles were incubated in i mM 
ATP and 20 IxM taxol. (<3) 
Spindles without preincuba- 

tion in tubulin were incubated in 1 mM ATP and 20 laM taxol. 
Lengths of more than 40 spindles were measured and averaged for 
each point. 

three types of spindles. Type I spindles were decreased in 
number. Type II spindles were a similar percentage of the to- 
tal spindle population as those at 30 s after ATP addition and 
had increased in average length to 11.7 lam (138%; Fig. 2 D). 
However, nearly one-half of the spindles had a new pattern 
of staining as shown in Fig. 1, e and f (type III). These 
showed two closely associated bands of incorporated biot-tb 
in the gap between the original half-spindles, and were 11.8 
~tm (139%) in length (Fig. 2 D). At 2 min after the addition, 
80% of the spindles were type III and their average length 
was 11.9 I~m (140%; Fig. 2 E). 

Preincubation of spindles in tubulin increased not only the 
extent but also the rate of elongation (Fig. 3). These changes 
were dependent on the tubulin concentration, and on prein- 
cubation time, showing that the extent of tubulin incorpora- 
tion affects the rate of elongation. Without preincubation in 
tubulin, spindles elongated at 0.8-1.0 ~tm/min, whereas with 
preincubation in 20 lxM tubulin and 20 lxM taxol for 4 min, 
the rate of elongation increased to 3.2-3.6 ~tm/min (closed 
circle, Fig. 3). This is one of the fastest rates we have ob- 
served in vitro, and is faster than the initial rate of elongation 
of spindles incubated in 20 I~M tubulin, taxol, and ATP with- 
out any preincubation (1.2-1.6 ~tm/min; see Fig. 10; and 
Masuda and Cande, 1987). 

Cross-sectional Structure of  Elongating Spindle 

To determine whether tubulin is polymerized onto the ends 
of native microtubules in the overlap zone, elongating spin- 
dles were cross sectioned for electron microscopy. Spindles 
were incubated for 1.5 min in the presence of 20 p.M tubulin, 
20 lxM taxol, and 1 mM ATP, or in the absence of tubulin 
and ATE and then duplicate samples were processed for 
electron microscopy and for immunofluorescence micros- 
copy. Average spindle lengths determined by immunofluo- 
rescence with anti-plant tubulin were 8.0 + 0.6 Ixm for the 
control spindles incubated in the absence of tubulin and ATE 
and 11.0 + 0.8 p.m for the elongating spindles incubated in 
the presence of tubulin and ATP. 

Fig. 4, A and B show microtubule numbers from cross 
sections for an elongating spindle and a control spindle, 
respectively. In the control spindle (Fig. 4 B), the micro- 
tubule number in the middle of the spindle (~700) was ap- 
proximately twice the number in the other regions of the 
spindle (300-400). This microtubule distribution profile is 
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Figure 4. Microtubule distribution profiles of the elongating (A) and 
the control (B) spindles. (A) The spindle was incubated in 20 p,M 
tubulin, 20 IJ, M taxol, and l mM ATP for 1.5 min. (B) The spindle 
was incubated in 20 p,M taxol in the absence of tubulin and ATE 
The microtubules in the region between two arrowheads were par- 
tially reconstructed in Fig. 5. The regions labeled 6a, 6b, and 6c 
indicate the positions of the sections used for Fig. 6, a, b, and c, 
respectively. 

similar to that obtained from spindles of another diatom, Di- 
atoma vulgare, which was shown to have an interdigitating 
set of microtubules in the spindle midzone (McDonald et al., 
1977). The elongating spindle showed a similar microtubule 
distribution profile when compared to the control spindle ex- 
cept near the poles, where new microtubules nucleated from 
the pole complex increased the number of microtubules (Fig. 
4 A). 600-700 microtubules were observed near the poles, 
and decreased to ,,~400 distal to the poles, and then increased 
to ,~800 in the middle of the spindle. These results suggest 
that microtubules extending from both poles overlap in the 
middle of spindle both before and during spindle elongation, 
and that no extensive formation of free microtubules in the 
overlap zone has occurred. 

To gather further evidence concerning the sites of tubulin 
incorporation and of anti-parallel microtubule interactions, 
microtubules in the spindles were partially reconstructed in 
the regions including the overlap zone (Fig. 5, A and B). For 
the spindle elongating in tubulin, most microtubules had 
only one free end in the reconstructed region. For 340 tracked 
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Figure 5. The distribution of in- 
dividual microtubules from the 
elongating (A) and the control (B) 
spindles. Microtubules in several 
bundles of the elongating or con- 
trol spindle were tracked through 
the 66 serial sections in the region 
between the arrowheads in Fig. 4. 
Each line represents a single mi- 
crotubule. 

microtubules, we found 157 microtubules with one free right 
end, 157 with one free left end, 25 microtubule fragments 
that had both ends free, and one continuous microtubule in 
the reconstructed region. Most microtubules with one free 
end overlapped other microtubules of opposite polarity in the 
middle of the spindle. A similar result was obtained from the 
reconstruction of microtubule distribution in the control 
spindle. For 255 tracked microtubules, we found 108 micro- 
tubules with a free right end, 122 with a free left end, 11 
microtubule fragments, and 14 continuous microtubules. As 
above, most of the microtubules with opposite polarities 
overlapped in the middle of spindle. 

Measurement of the phase-contrast image of the embed- 
ded spindle before sectioning shows that the elongating spin- 
dle was 10.1 lain in length. If we assume that the length of 
the original overlap zone is 25 % of the initial spindle length 
(Cande and McDonald, 1986), microtubules of the initial 
half-spindle were calculated to be 5.0 5- 0.4 ~tm in length. 
Microtubules of each half-spindle were 6.3 ~tm in average 
length and so were ~0.9-1.7 ~trn longer than microtubules of 
the initial half-spindle. Immunofluorescence microscopy of 
elongating spindles double-stained with anti-plant tubulin 
and with anti-sea urchin ct-tubulin, which stains both diatom 
spindles and neuronal tubulin, showed that the increase in 
overall spindle length was very similar to the increase in 
pole-to-pole distance of the original half-spindles, even 
though we had usually overestimated the average spindle 
length increase because of tubulin incorporation around the 
poles (data not shown). These results show that tubulin is 

polymerized onto the ends of native microtubules in the over- 
lap zone during elongation. 

Microtubule packing and the spatial relationships of an- 
tiparallel microtubules can be observed in spindle cross sec- 
tions. Selected sections from the spindle in Fig. 4 are shown 
in Figs. 6 and 7 and are accompanied by diagrams of micro- 
tubule polarity. In the middle of the elongating spindle (Fig. 
6, a and a'), microtubules extending from both poles over- 
lapped to form closely packed bundles, similar to the bundles 
found in the middle of the control spindle (Fig. 6, c and c'). 
The packing pattern of microtubules in the bundles usually 
was hexagonal but sometimes square (see Fig. 7). As one 
starts from the middle of the overlap zone and proceeds to- 
ward one pole, microtubules from the other pole decreased, 
almost disappearing by about the position of the sections in 
Fig. 6, b and b', and then new short microtubules from the 
same pole started to appear and increased in number in the 
sections closer to that pole. No closely packed microtubule 
bundles were observed in regions other than in the overlap 
zone. We found many cross-bridges connecting antiparallel 
or parallel microtubules in the overlap zone of the elongating 
(Fig. 7) and control (data not shown) spindles. To estimate 
the extent of antiparallel interaction, we determined the 
polarity of neighboring microtubules. The number of paral- 
lel and antiparallel microtubules found within a circle 45 nm 
in radius centered on a given microtubule were scored. For 
55 microtubules analyzed (closed circle, Fig. 7) antiparallel 
neighbors were almost 2.5 times more frequent than parallel 
ones. 
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Figure 6. (a-c) Electron micrographs of cross sections from the elongating and the control spindles. The positions of the sections in the 
spindles are indicated in Fig. 4. (a'-c') Diagrams of polarity of microtubules in the sections a-c. (o) Microtubules of one free right end 
in the reconstructed regions in Fig. 5; (o) microtubules of one free left end; (o) microtubule fragments with two free ends; and (®) con- 
tinuous microtubules. Bar, 0.2 ltm. 
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Figure & Scheme for deter- 
mination by immunofluores- 
cence of the site of microtu- 
bule overlap during spindle 
elongation. Isolated spindles 
(A) were incubated in 20 ~tM 
taxol, and various concentra- 
tions of tubulin and ATP for 
0-2 min (B). Tubulin and 
ATP were removed by wash- 
ing in a solution containing 
hexokinase, glucose, and taxol 
to terminate spindle elonga- 
tion and tubulin incorpora- 

tion. The spindles were then incubated in 5 ~tM biot-tb and 20 ~tM 
taxol for 30 s to label the microtubule ends (C). The labeled micro- 
tubule ends and the original half spindles were visualized by stain- 
ing with anti-biotin and anti-plant tubulin, respectively. 

Figure 7. (a and b) Electron micrographs at higher magnification 
of cross sections through the overlap zone of elongating spindles. 
(a) A section from the spindle in Figs. 4 A and 5 A; (b) a section 
from other elongating spindle in the same preparation as a. Note 
the tendency for microtubules to be square-packed arrays. Connec- 
tions between adjacent microtubules (arrows) are clearly evident. 
(a') A diagram of polarity of microtubules and cross-bridges con- 
necting microtubules in the section a. Cross-bridges connecting 
microtubules or arms projecting from microtubules are shown as 
lines, o, o, o, and ® indicate the polarity of microtubules as 
shown in the legend of Fig. 6, a'-c'. Bar, 0.2 ~tm. 

Site of  Microtubule Overlap and Extent of  Tubulin 
Incorporation Determined by lmmunofluorescence 

We measured the length of the zone of microtubule overlap 
during spindle elongation and its position relative to the 
original half spindles, using the method illustrated in Fig. 8. 
Spindles were incubated in unmodified neuronal tubulin, 
taxol, and ATP for 0-2 min. Spindle elongation and tubulin 
incorporation was terminated by washing the spindles with 
a solution containing hexokinase, glucose, and taxol. This 
medium blocked further spindle elongation by removing all 
ATP (Masuda and Cande, 1987). Spindles were then in- 
cubated in 5 gM biot-tb for 30 s to label microtubule ends 
with biot-tb. After fixation, spindles were double-labeled 
with anti-biotin and anti-plant tubulin for immunofluores- 
cence. 

In spindles without preincubation in tubulin and ATP, biot- 
tb was incorporated into the two regions flanking the overlap 
zone and around the poles (Fig. 9 A, a and b). The center-to- 
center distance between the two regions of incorporated biot- 
tb was ",,25 % of the total spindle length on average in this 
preparation. This is similar to direct measurements of over- 
lap zone sizes made with polarization optics (Cande and 
McDonald, 1985). Fig. 9 A, c-h shows immunofluorescence 
micrographs of elongating spindles in 20 laM tubulin, 20 ~tM 
taxol, and 1 mM ATP. At 30 s after addition of tubulin and 
ATP, the length of the overlap zone had increased (Fig. 9 A, 
c and d). With further spindle elongation, the overlap zone 
length then decreased, and a gap appeared between the two 
original half-spindles. At 1.5 min after ATP addition, the 
overlap zone length of many spindles was similar to the size 
of a gap between the original half-spindles (Fig. 9 A, e and 
f ) .  At 2 min, the spindles had elongated further and the over- 
lap zone length of many spindles was shorter than the size 
of the gap between the original half-spindles, showing that 
overlap zone is composed entirely of new microtubules (Fig. 
9 A, g and h). The zone of biot-tb incorporation increased 
during spindle elongation, which is consistent with results 
from electron microscopy that showed a broadening of the 
distribution of the microtubule ends of the elongating spindle 
as compared to the control spindle (Fig. 5). These results are 
interpreted in a diagram (Fig. 9 B). Our results show that 
spindles continued to elongate even after the overlap zone is 
composed entirely of newly polymerized microtubules. 
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Figure 9. (A) Visualization of the 
sites of microtubule overlap dur- 
ing spindle elongation relative to 
the sites of the original half-spin- 
dles by immunofluorescence. Spin- 
dles were incubated in 20 txM 
taxol, 20 ktM tubulin, and 1 mM 
ATP for 0-2 min, and then pro- 
cessed as described in Fig. 8. (a, 
c, e, and g) Spindles stained with 
anti-plant tubulin; (b, d, f, and h) 
spindles stained with anti-biotin. 
a and b, spindle before addition of 
tubulin and ATP; c and d, 30 s af- 
ter the addition; e and f, 1.5 min 
after; g and h, 2 min after. Ar- 
rowheads in b, d,f, and h indicate 
the sites of the microtubule ends 
of the overlap zone. (B) Diagram 
of spindle elongation in the pres- 
ence of 20 I.tM tubulin, 20 I.tM 
taxol, and 1 mM ATP. Tais shows 
averaged images of spindles based 
on the data from Fig. 10. Newly 
polymerized microtubules onto 
the native microtubules in the 
overlap zone are shown as ( . . . .  ). 
Microtubule ends labeled by biot- 
tb are shown as (e). OZ, zone of 
microtubule overlap. Bar, 10 ~tm. 

These results suggest that the spindle motor, which produces 
the sliding between antiparallel microtubules in the overlap 
zone, remains in the middle of  the spindle during elongation 
and interacts with newly polymerized microtubules. 

Spindle and overlap zone length and tubulin incorporation 
were dependent on tubulin and ATP concentrations (Fig. 
10). Spindles elongated more slowly in 0.1 mM ATP than in 
1.0 mM ATP. The overlap zone remained broad in 0.1 mM 
ATP, whereas in 1.0 mM ATP it narrowed with elongation. 
The extent of tubulin incorporation onto the ends of  microtu- 
bules in the overlap zone in 0.1 mM ATP was similar to that 

in 1.0 mM ATP, but was greater than in the absence of ATP. 
In higher concentrations of tubulin, spindles elongated fast- 
er, tubulin polymerization was greater, and the overlap zone 
length was longer for the same time points. There was no ob- 
vious relationship between the rate of  elongation and the rate 
of tubulin incorporation. 

To determine how ATP increases the extent of tubulin po- 
lymerization onto the ends of microtubules in the overlap 
zone, we examined the effects of  other nucleotides and vana- 
date on this process. Although vanadate blocked spindle 
elongation (Masuda and Cande, 1987), it did not block the 

a 
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Figure 10. Effects of ATP and tubulin on spindle 
length (a), overlap zone length (b), and extent of 
tubulin incorporation (c). Spindles were incubated 
in 20 I.tM taxol and (e) 20 IxM tubulin and 1 mM 
ATP, (A) 5 ~tM tubulin and 1 mM ATP, (m) 20 
txM tubulin and 0.1 mM ATP, (o) 20 I.tM tubulin 
and no ATP, or (,x) 5 laM tubulin and no ATP. 
They were then processed for determination of the 
sites of the microtubule overlap as described in 
Fig. 8. Extent of tubulin incorporation was calcu- 
lated using the spindle length and the overlap zone 
length as described in Materials and Methods. n 
= 40-120 spindles per point on graph. 
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increased incorporation of tubulin onto the end of microtu- 
bules in the overlap zone. ADP (1 mM) stimulated tubulin 
incorporation onto microtubule ends, but ITP, ATP),S, and 
GTP (1 mM) did not (data not shown). These results indicate 
that spindle elongation is not required for an increase in 
tubulin incorporation onto the end of microtubules in the 
overlap zone. 

Discussion 

Mechanism of  Force Generation and Role of  
Tubulin Polymerization 

Previously we have shown that spindle elongation both in the 
presence and absence of tubulin requires ATP and is in- 
hibited by vanadate or AMPPNP (Masuda and Cande, 1987). 
This suggests that spindles elongate in the presence of tubu- 
lin by the same ATP-dependent mechanism as in its absence. 
Since tubulin incorporation into isolated spindles does not 
require ATP (Masuda and Cande, 1987), it was possible to 
uncouple tubulin incorporation from spindle elongation. 
With no ATP, biot-tb was incorporated into two regions 
flanking the microtubule overlap zone and around the poles 
(Type I; Fig. 1, a and b). Spindle elongation could be initi- 
ated by addition of ATP after free tubulin was removed. This 
resulted in changes in the pattern of incorporated biot-tb and 
gap formation between the original half-spindles (Type II; 
Fig. 1, c and d). The final extent of spindle elongation was 
similar to the length of the new overlap zone; i.e., the equiva- 
lent of the original overlap zone plus the two incorporated 
regions of biot-tb. The formation of a gap between the new 
half-spindles after elongation is complete (Type III; Fig. I, 
e and f )  is due to depolymerization of the biotinylated micro- 
tubules from the plus ends polewards. These results elimi- 
nate models, which suggest that tubulin incorporation along 
the microtubule wall (Inoue and Sato, 1967) or onto the mi- 
nus ends of microtubules (Pickett-Heaps et al., 1986) pro- 
duces the forces needed for spindle elongation. There is no 
free tubulin available during the spindle elongation induced 
by ATP. As shown by monitoring spindles on-line with polar- 
ization optics, the size of the half-spindle remains constant 
during spindle elongation (T. Baskin and W. Z. Cande, un- 
published observations). After spindle elongation has been 
completed, the original'half-spindles are separated by a large 
gap filled with biotinylated microtubules (Figs. 1 and 2). 
These results are also consistent with the changes in patterns 
of tubulin incorporation seen when spindles are elongating 
in the presence oftubulin (Masuda and Cande, 1987). Before 
spindles have elongated by the equivalent of the overlap zone, 
there are two regions of incorporated tubulin flanking the 
overlap zone. After further elongation, there is one broad 
zone of incorporated tubulin in the spindle midzone (Masuda 
and Cande, 1987). Electron microscopy of cross-sectioned 
spindles showed that there were few microtubule fragments 
in the spindles elongating in tubulin and ATP (Fig. 5), sug- 
gesting that the diatom microtubules in each half-spindle 
were extended during spindle elongation. Taking these re- 
sults together, we conclude that the force required for in vitro 
spindle elongation is produced by the mechanochemical en- 
zymes that push apart antiparallel microtubules from the op- 
posite half-spindles. Tubulin is polymerized onto the ends of 

microtubules in the overlap zone and its role during spindle 
elongation is to increase the extent of sliding. 

Our in vitro results are consistent with in vivo results re- 
cently described by Saxton and Mclntosh (1987). Using 
microinjection of fluorescein-labeled tubulin and laser mi- 
crobeam photobleaching, they found that labeled tubulin 
adds onto the plus ends of interdigitated microtubules in late 
anaphase and telophase spindles of PtKI cells, and that the 
two half-spindles move apart as discrete units. 

Several investigators have suggested that forces generated 
outside the spindle pull the spindle poles apart (Aist and 
Berns, 1981; Heath, 1980; Kronebusch and Borisy, 1982). 
However, Saxton and Mclntosh (1987) have shown in late 
anaphase-telophase of PtKI cells that some antiparallel slid- 
ing occurs after the poles have detached from the interzone 
microtubules. Leslie and Pickett-Heaps (1983), using micro- 
beam irradiation of the central spindle in the diatom Hantz- 
schia, have demonstrated that the force for spindle elonga- 
tion is apparently generated in the zone of microtubule 
overlap. For isolated diatom spindles, we have shown that 
there are no cytoplasmic structures attached to the poles to 
pull them apart (Cande and McDonald, 1985; McDonald et 
al., 1986). Therefore, the sliding apart of the interdigitated 
microtubules of each half-spindle due to mechanochemical 
interactions between them must contribute significantly to 
spindle elongation in many types of cells. However, this does 
not eliminate the possibility that external forces applied to 
the spindle poles may also contribute to anaphase B in some 
spindles. 

The rate of spindle elongation was increased by preincuba- 
tion in tubulin, and was dependent on tubulin concentration 
and on preincubation time (Fig. 3). We have previously ob- 
served that when spindles were reactivated in tubulin and 
ATP, the rate of elongation was dependent on tubulin concen- 
tration (Masuda and Cande, 1987). The rate of anaphase 
spindle elongation in vivo was 1.7 ltrn/min on average (range 
1.4-3.2 lxm/min; McDonald et al., 1986). The in vivo rate 
was less than the maximal rate of elongation we have ob- 
served in vitro with spindles preincubated in tubulin (•3.6 
Ixm/min), but was greater than the rate of elongation of spin- 
dles without preincubation in tubulin (0.8-1.0 lam/min). 
These results suggest that the concentration of polymeriza- 
tion-competent tubulin at the ends of microtubules in the 
overlap zone may determine or limit the rate of elongation 
during anaphase B in vivo. Tubulin polymerization may in- 
crease the ATPase activity and/or the number of motors in- 
volved in the sliding of half-spindles; although, at present, 
we do not have any data to evaluate these possibilities. 

In some cells, including S. turris, the size of the zone of 
microtubule overlap does not seem to change during ana- 
phase spindle elongation in vivo (Tippit et al., 1980; Mc- 
Donald et al., 1986). In other cells, the overlap zone length 
decreases with spindle elongation (McDonald et al., 1977; 
Pickett-Heaps et al., 1980; Tippit et al., 1984; Mclntosh et 
al., 1985). It was possible to manipulate the overlap zone 
length in vitro by changing the ATP and tubulin concentra- 
tions (Fig. 10). We do not know how spindle elongation is 
initiated at anaphase, but microtubule sliding and tubulin po- 
lymerization onto the ends of the interdigitated microtubules 
must be activated. After it is initiated, it may be regulated 
by the ATP concentration and/or the concentration of poly- 
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merization-competent tubulin dimer. This suggests that dif- 
ferences in overlap zone behavior in various cell types during 
anaphase B may be due to differencs in coordination of mi- 
crotubule sliding and tubulin polymerization rate rather than 
any fundamental changes in spindle mechanochemistry. 

The rate of tubulin incorporation onto the ends of microtu- 
bules in the overlap zone was increased in the presence of 
ATP (Fig. 10). This increase is not dependent on spindle 
elongation, since it occurred even in the presence of ATP and 
vanadate, which inhibits spindle elongation, and since ADP 
is also effective in increasing the rate of tubulin incorporation 
(data not shown). The effect of ATP and ADP on the extent 
of tubulin incorporation may be due to an enhancement of 
tubulin polymerization specific for the microtubule ends in 
the overlap zone. However, there are other possible interpre- 
tations consistent with our observations. 

The Nature of the Spindle Motor 
The motor responsible for the movement apart of the half- 
spindles must be located in the region of the spindle that in- 
cludes the zone of microtubule overlap. In the overlap zone, 
microtubules were not distributed at random, but preferred 
antiparallel near neighbors, as shown by McDonald et al. 
(1979). We have also observed cross-bridges connecting an- 
tiparallel microtubules (Fig. 7). However, the spindle motor 
must also interact with newly polymerized microtubules 
without remaining permanently attached to the old microtu- 
bules, since spindles can elongate after the overlap zone is 
made entirely of new microtubules. In one possible model, 
we would imagine that the motor would translocate on one 
microtubule toward the spindle midzone, while it pushes an- 
other microtubule toward the opposite pole. Alternatively, 
the motor may not directly cross-link antiparallel microtu- 
bules but would be bound to another structural component, 
a matrix, in the spindle midzone. A visible manifestation of 
this matrix may be the osmiophilic fuzz seen as an inter- 
microtubule matrix in the midzone of many different spin- 
dles (cf. McDonald et all., 1977). 

Wordeman and Cande (1987) have recently shown that 
reactivation of diatom spindle elongation is correlated with 
the phosphorylation of a 205-kD spindle-associated protein. 
The 205-kD protein can be thiophosphorylated when spin- 
dles are preincubated in ATPTS. As demonstrated using an 
antibody against thiophosphoproteins, this protein is located 
predominantly in the zone of microtubule overlap. During 
spindle elongation in ATP in the absence of tubulin, the 
staining of the midzone decreases in width and intensifies in 
brightness, in parallel with a decrease in the zone of microtu- 
bule overlap. In spindles that have been preincubated in biot- 
tb and ATPTS, the midzone label does not move out onto the 
biot-tb but remains centrally located in a broad band and 
eventually colocalizes with the biotinylated microtubules 
when they move from the periphery into the spindle midzone 
during reactivation (Wordeman, Masuda, and Cande, manu- 
script submitted for publication). These results suggest that 
the distribution of the 205-kD protein is determined by the 
overlap zone and that this protein and perhaps other proteins 
in the overlap zone remain stationary even as microtubules 
slide through it. As described in vivo, McDonald et al. 
(1977) have shown that in Diatoma vulgare, an intermicrotu- 
bule matrix in the microtubule overlap zone increases in its 

staining density as the length of the overlap zone decreases. 
We postulate that the 205-kD protein and the spindle motor 
may be a component of this intermicrotubule matrix. Further 
studies of the 205-kD protein and associated proteins will 
clarify the nature of spindle motor and the role of the mid- 
zone matrix during spindle elongation. 
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