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Abstract. The two myosin heads with a single surface 
subunit on thick filaments from chelicerate arthropod 
muscle may originate from the same, or from axially 
sequential molecules, as suggested by three- 
dimensional reconstructions. The resolution attained in 
the reconstructions, however, does not permit one to 
distinguish unequivocally between these two possible 
arrangements. We examined the effect of 0.6 M KCI on 
relaxed thick filaments separated from Limulus muscle 
and filaments in which nearest myosin heads were 
cross-linked by the bifunctional agent, 3,3'-dithio- 

bis[3'(2')-O- [6-propionylamino)hexanoyl] adenosine 
5'-triphosphate (bis22ATP), in the presence of vanadate 
(V0. In high salt, surface myosin dissolved from both 
native, relaxed filaments and those exposed to 1-2 mM 
dithiothreitol after cross-linking, but was retained on 
filaments with cross-linked heads. Since bis22ATP must 
form intermolecular bonds between myosin heads 
within each subunit to prevent myosin solubilization in 
high salt, we conclude that each of these heads 
originates from a different myosin molecule, as was 
previously predicted by the reconstructions. 

T IaaEE-dimensional reconstructions of images of re- 
laxed Limulus, scorpion, and tarantula thick filaments 
reveal the four-stranded, helical array of subunits 

(crossbridges) on their surfaces (Stewart et al., 1981, 1985; 
Crowther et al., 1985), and also suggest that the two myosin 
heads within a subunit are antiparallel in orientation and 
arise from axially sequential myosin molecules (Stewart et 
al., 1985; Crowther et al., 1985) (Fig. 1). This arrangement 
differs from common models of thick filament structure, in 
which each crossbridge is composed of both heads of the 
same myosin monomer, oriented in parallel (Harford and 
Squire, 1986). The resolution attained by the reconstruc- 
tions, however, is insufficient to permit unambiguous deter- 
mination of the arrangement of individual myosin heads 
within the surface subunits of relaxed filaments. 

To decide whether the myosin heads within each subunit 
originate from the same or from different myosin molecules, 
we used the bifunctional agent, 3,3tdithiobis[3'(2')-O-[6-(pro - 
pionylamino)hexanoyl]adenosine 5'-triphosphate(bis22ATP), a 
courtesy of Dr. Ralph Yount, Washington State University, 
Pullman, WA), which has a 2.8 nm, disulfide bond-contain- 
ing region linking the ribose oxygens of two '~1 nm ATP 
molecules (Munson et al., 1985), to cross-link nearest- 
neighbor myosin heads on filaments isolated from Limulus 
telson muscle. Excess vanadate ion (Vi) was added to 
bis22ATP to form a bound nucleotide inhibitor, bis~2ATP.V~, 
and to maximize cross-linking (Munson et al., 1985). We ex- 
amined the effect of 0.6 M KCI on the structure of untreated 
(relaxed) and treated (heads cross-linked) filaments. If both 

1. Abbreviations used in this paper: bis22ATE 3,3'-dithiobis[3'(2')-O-[6- 
(propionylamino)hexanoyl]adenosine 5ttriphosphate; IAA, iodoacetic acid; 
11, layer line(s); V,, vanadate ion. 

heads within each subunit originate from the same myosin 
molecule (Fig. 1 B), the cross-linker should form intramo- 
lecular bonds between them. High salt, then, should dissolve 
the surface myosin, leaving only paramyosin cores, as occurs 
with untreated filaments (Levine et al., 1982). If each of the 
two heads arises from a different myosin molecule (Fig. 1 A), 
bis22ATP'V~ may form intermolecular bonds between them. 
In this case, high salt might release the surface myosin as 
long, helical strands, or, with extensively cross-linked sur- 
faces, the filaments might remain intact. 

Materials and Methods  

Filament Preparation 

Thick filaments were separated from bundles of Limulus telson muscle in 
relaxing solution: 0.1 M KCI, 2.5 mM MgCI2, 1 mM EGTA, 2 mM ATE 
0.4 mM NAN3. 7 mM phosphate buffer (or 10 mM imidazole buffer), pH 
6.8, as previously described (Kensler and Levine, 1982a, b). Filament sus- 
pensions were placed on carbon films (either very thin carbon, 5-7 nm 
thick, over holes in a formvar supporting film, or medium carbon, 10-15 
nm thick, unsupported by formvar) on electron microscope grids. Excess 
fluid was drawn off and the filaments adsorbed to the carbon were rinsed 
with relaxing solution. Some grids were negatively stained with 1% aqueous 
uranyl acetate and others were unidirectionally shadowed with platinum- 
carbon (Kensler and Levine, 1982a, b) without additional incubation in other 
solutions. These were immediately examined in the electron microscope to 
ensure that the filaments retained well-ordered, "relaxed" surface arrays of 
myosin. 

Incubation of  Filament Samples on 
Experimental and Control Media 

We performed all incubations by inverting the grids onto which the filaments 
were adsorbed onto the surfaces of drops of the different solutions. For incu- 
bations of longer than 5 min, we transferred the grids to new drops of solu- 
tion at 5-rain intervals. Some sample grids were rinsed with the last solution 
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Figure L Computer models of three-dimensional reconstructions of 
Limulus thick filaments produced by Fourier-Bessel inversion 
(Stewart et al., 1985). Equatorial data were preserved in the left im- 
age but omitted from the right one. The filaments are tilted toward 
the viewer and the bare zone is toward the bottom of the figure. The 
bilobed appearance of the surface subunits that comprise the helical 
array of crossbridges is seen on both models. The drawn myosin 
heads at A illustrate the orientation of myosin heads if  each head 
within a subunit originates from a different, axially sequential, my- 
osin molecule. The orientation of the myosin heads drawn at B is 
that to be expected if each head within a subunit originates from 
the same myosin molecule. (This illustration was provided by Dr. 
M. Stewart, MRC Laboratory, Cambridge, UK.) 

on which they had been incubated (except those incubated last on bis22ATP 
or bis22ATP.V0 and either negatively stained or unidirectionally shadowed 
with platinum-carbon for examination in the electron microscope. We per- 
formed all incubations (including that just in relaxing solution) both in the 
presence and the absence of a 10-fold molar excess of freshly prepared io- 
doacetic acid (IAA) over myosin in the preparation. We also examined the 
appearance of untreated filaments in relaxing solution to which excess vana- 
date ion (Vi) had been added, again, in the presence and absence of IAA. 

Experimental Incubations 

Step I. 15 min on rigor buffer: 0.1 M KCI, 2.5 mM MgC12, 0.4 mM 
NAN3, 10 mM imidazole buffer, pH 6.8. This incubation removes bound 
ATP from the myosin heads of the thick filaments and is necessary since 

Figure 2. Electron micrographs of (a/-4)  negatively stained and (b) 
unidirectionally shadowed filaments and (c) an optical transform 
obtained from a negatively stained specimen. Bare zones are toward 
the bottom of each filament. Filaments in a/  and a2 were rinsed 

with relaxing solution without IAA before staining. Filaments in a3 
and a4 were rinsed with relaxing solution containing a 10-fold mo- 
lar excess of IAA over myosin before staining. 1 mM sodium vana- 
date was present in the relaxing solution used to rinse filaments in 
a2 and a4, but not those in a / and  a3. Neither IAA or vanadate was 
present in the relaxing solution used to rinse the filament seen in 
b. The transform in c was obtained from a filament treated with 
relaxing solution containing vanadate but not IAA. All relaxed fila- 
ments, with or without IAA or vanadate, show the typical ordered 
array of myosin subunits on their surfaces (a and b), clearly visible 
as bumps along helical paths in b, and produce the expected (Kens- 
ler and Levine. 1982a) transform (c). (a) Filaments 1, 3, and 4, 
x164,000. Bar, 0.2 p.m. (a) Filaments in 2 and (b), x121,000. Bar, 
0.2 Ixm. 
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Figure 3. (a) Electron micrographs of negatively stained thick fila- 
ments that were incubated for 15 min on rigor buffer and (b) optical 
transform obtained from one such filament. Bare zones are toward 
the bottom of each filament. Note the loss of helical order from the 
surface of the filaments and the outward position of the myosin 
heads that bind to actins on neighboring thin filaments in the two 
left-hand micrographs. (a) ×186,000. Bar, 0.2 Ftm. There is little 

bis22ATP has a lower affinity for myosin than does MgATP (Munson et al., 
1985). 

Step 2. 2-5 min on bis22ATP/rigor buffer (above) plus 1 mM bis22ATP. 
This incubation saturates the myosin heads with the cross-linker before 
stabilization of the cross-links in the succeeding step. 

Step 3. 15 min on bisz2ATP.Vi/rigor buffer (above plus 1 mM bis22ATP 
and 2 mM sodium vanadate. This incubation stabilizes the cross-links be- 
tween nearest-neighbor myosin heads. 

Step 4. 15 rain on 0.6 M KC1. This incubation tests for the solubility of 
the myosin when nearest-neighbor heads are cross-linked. 

Control Incubations 
Control 1: No Cross-links Formed. 15-rain incubation of relaxed thick 
filaments, never exposed to any of the steps in the experimental procedure, 
on 0.6 M KCI. This incubation tests the solubility of myosin on untreated, 
relaxed thick filaments. 

Control 2: Cross-links Severed. 
STEP I. 15-min incubation of filaments with cross-linked heads on rigor 

buffer plus 2 mM dithiothreitol (DTT), a sulfhydryl reagent that reduces the 
disulfide bond within the cross-linker. 

STEP 2. 15-rain incubation of filaments with cross-linked heads, subse- 
quently exposed to rigor buffer containing 2 mM DTT, on 0.6 M KC1. This 
incubation tests the solubility of the myosin on filaments that have had cross- 
links between nearest-neighbor myosin heads severed. 

Electron Microscopy 
Electron microscopy of all negatively stained and unidirectionally shadowed 
specimens was performed in a JEOL 100CX electron microscope at an ac- 
celerating voltage of 80 kV, with an anticontamination device operating. 
Micrographs of filaments were obtained at initial magnifications of 19,000, 
36,000, and 48,000, on Kodak EM film. 

Image Analysis 
Where sufficient order was apparent on the images of thick filaments, we 
obtained optical transforms from them, as previously described (Kensler 
and Levine, 1982a). 

Results 

Samples of Limulus thick filaments prepared in relaxing 
solution and either negatively stained or unidirectionally 
shadowed (Kensler and Levine, 1982a, b) retained well- 
ordered surface arrays of crossbridges (Fig. 2, a and b) and 
produced optical transforms typically associated with the re- 
laxed state (Fig. 2 c). As was the case for all experimental 
and control samples examined, the filaments appeared the 
same whether or not a 10-fold molar excess of IAA over myo- 
sin was present in the incubation or rinsing solutions (com- 
pare filaments in Fig. 2 a: filaments 1 and 2, no IAA; fila- 
ments 3 and 4, with IAA). Addition of excess sodium 
vanadate to the relaxing solution had no effect on the surface 
array of myosin on relaxed thick filaments (Fig. 2 a: fila- 
ments 1 and 3, no vanadate; filaments 2 and 4, with 
vanadate). 

After 15 min on rigor buffer to remove bound ATP (ex- 
perimental step 1), filaments became disordered (Fig. 3), as 
previously reported (Levine et al., 1986). Myosin heads ex- 
tended away from the surface of rigor filaments and bound 
to thin filaments if the latter were in proximity to the thick 

indication of helical order in the transform in b. A strong meridio- 
nal reflection is seen on the third U and a weak one on the sixth 11. 
There may be some reflections associated with the first 11 present, 
but the fourth 11 is absent. 
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Figure 4. (a) Electron micrographs of thick filaments that were first 
incubated for 15 min in rigor buffer, then for 5 min on bis22ATP 
without vanadate, before negative staining and (b) an optical trans- 
form obtained from one such filament. Bare zones are toward the 
bottom of each filament. Note the evidence of a 43.8-nm repeat peri- 
odicity, especially in the right-hand filament in a. This is supported 
by the return of reflections on the first and fourth 11, seen in the 

(Fig. 3 a) and little order remained in the optical transform 
(only the third and sixth meridional reflections and a hint of 
the first layer line [11]; see Fig. 3 b). This appearance indi- 
cated the removal of MgATP (most likely MgADP.Pi) from 
the ATP-binding site on the myosin heads. 

The myosin heads moved back to a position close to the 
filaments' shafts after 5 min on bis22ATP (experimental step 
2), indicating binding of the cross-linker to myosin (Fig. 4, 
a and b). In some instances the relaxed pattern reappeared, 
showing a return to helical order (Fig. 4 b). After 15 min of 
additional incubation on bis22ATP plus excess Vi to stabilize 
the cross-links (experimental step 3), the myosin heads re- 
mained close to the filaments' shafts. There was essentially 
no change from the appearance of the filaments in bis22ATP 
without vanadate (Fig. 4). 15 min of additional incubation 
on rigor buffer (without DTT) did not affect filament struc- 
ture further, indicating that the cross-linker was not removed 
by incubation in ATP-free solution (rigor buffer). When 1-2 
mM DTT was added to the rigor buffer, however, myosin 
heads extended away from the filaments' shafts in the "rigor" 
position (Fig. 5). This result indicated that the disulfide bond 
linking the two halves of the cross-linker had been severed 
by the reducing agent, DTT, allowing the outward movement 
of myosin heads to occur in rigor buffer, as previously ob- 
served on filaments with non-cross-linked heads (compare 
with Fig. 3). 

Although filaments still appeared intact after 15 min on 0.6 
M KCI subsequent to cross-linking with bis22ATP.V~, dis- 
tortion of the cross-bridge lattice was frequently seen (Fig. 
6). This is shown clearly in the shadowed specimen, Fig. 6 
b, which displays a bumpy surface, indicative of the retention 
of myosin, but lacks the helical order seen in the untreated, 
relaxed filament (Fig. 2 b). Many filaments, nevertheless, 
did retain a fair degree of helical order, which is illustrated 
by several of the negatively stained filaments in Fig. 6 (a and 
d), and further, by the presence of some of the layer lines as- 
sociated with the helical order of relaxed filaments in the op- 
tical transforms (Fig. 6, c and e). Thus, the cross-linked sur- 
face myosin molecules were not removed from the filaments' 
surfaces even after a lengthy exposure to high salt. In control 
experiments, however, similar exposure to high salt caused 
removal of surface myosin from relaxed filaments not in- 
cubated with cross-linker (control experiment 1) (Fig. 7, a 
and b), as well as from those incubated on rigor buffer con- 
taining 2 mM DTT, after cross-linking (control experiment 
2) (Fig. 8). In both cases, only smooth pararnyosin cores re- 
mained; occasionally a few, widely spaced myosin molecules 
"dangled" from them (Fig. 8). It should be noted that after 
such a long exposure to high salt, even the paramyosin cores 
of control filaments started to disaggregate: variability in the 
diameters of the cores is illustrated in Figs. 7 and 8. 

A total of eight filament preparations were subjected to the 
experimental and control incubations and all gave identical 
results. In addition, in the case of four of these preparations, 
parallel incubations were run in the presence of a 10-fold mo- 

transform in b. The appearance of filaments that have myosin heads 
cross-linked with bis22ATP and stabilized with vanadate is the 
same as that of these filaments; furthermore, incubation of fila- 
ments with cross-linked, stabilized myosin heads on rigor buffer 
does not alter their appearance. (a) x186,000. Bar, 0.2 p.m. 

The Journal of Cell Biology, Volume 107, November 1988 1742 



Figure 5. Electron micrographs of thick filaments that had myosin 
heads cross-linked and stabilized by incubation on bis22ATP-V~, 
then were incubated on rigor buffer containing 2 mM DTT for 15 
rain. Bare zones are toward the bottom of each filament. Note the 
return to the rigor appearance of the filaments: the myosin heads 
extend away from the filaments' surfaces and bind to available thin 
filaments. Order is lost. This indicates that the disulfide bond of the 
cross-linker was reduced (and severed) by DTT, allowing the effect 
of ATP depletion to become evident, x186,000. Bar, 0.2 Ixm. 

lar excess of IAA over myosin (assuming the myosin content 
of the filament preparation to be 0.15 mg/ml), in order to 
mask the sulfhydryl groups on myosin and thus prevent the 
possibility of sulfhydryl-disulfide exchange between these 
and bis22ATP. Thus, the formation of cross-links between a 
myosin head to which one-half of a cross-linker is bound and 
another site on the myosin molecule, including the reactive 
sulfhydryl group on each myosin head, was prevented. The 
results of incubations in the presence of IAA were identical 
to those in its absence (some filaments from IAA incubations 
are illustrated in Figs. 2 a (filaments 3 and 4) and 6, d and 

e, indicating that during the procedure, no spurious binding 
of cross-linker to non-ATP-binding, sulfhydryl-containing 
sites on myosin occurs. 

Discussion 

These results indicate that bis22ATP.Vi effectively cross- 
links myosin heads on Limulus thick filaments. Since the 
results of incubations in IAA-containing media were identi- 
cal to those in media without IAA, the possibility that sulf- 
hydryl-disulfide exchange occurs between the cross-linker 
and sulfhydryl groups anywhere on myosin can be elimi- 
nated. Furthermore, we are assured that at the pH (6.8) at 
which all of the incubations are performed, even the most 
reactive thiol group on myosin is essentially stable and does 
not participate in such exchange (Yount, R., personal com- 
munication). 

Whether or not excess sodium vanadate is present, the ap- 
pearance of relaxed thick filaments is the same. Thus any 
structural effect of the procedures on the surface array of my- 
osin heads is not due to the presence of Vi in the stabilized, 
cross-linked structure. 

Since the surface subunits return to occupy positions close 
to the filaments' shafts, and may even display an array simi- 
lar, if not identical to the relaxed pattern, in bis22ATP, after 
the disordering effects of ATP depletion, the cross-links most 
likely occur between heads within each subunit: heads that 
are closest to each other in the relaxed state (Stewart et al., 
1985). We suggest that during the incubation on bis22ATP, 
before the addition of vanadate, one cross-linker may bind 
to each of the ATP-binding sites available (one per myosin 
head). Since we have previously shown that reincubation of 
rigor Limulus thick filaments in relaxing solution produces 
a return to the relaxed crossbridge array (Levine et al., 
1986), a similar effect may occur in the present situation. 

Retention of all of the myosin heads on filaments treated 
with cross-linker, even after 15 min on 0.6 M KCI, implies 
that the linkages formed between the myosin heads are inter- 
molecular in nature. Sets of such linkages, following the heli- 
cal paths of the surface strands of myosin, may be responsi- 
ble for stabilizing filament structure and producing the 
resistance of myosin to solubilization at high ionic strength. 
Incubation of filaments with cross-linked myosin heads in 
rigor buffer containing the sulfhydryl reagent, DTT, breaks 
the disulfide bond of bis22ATP and, as seen in Fig. 8, myo- 
sin dissolves off of the filaments in high salt, just as it does 
when untreated, relaxed filaments are exposed to 0.6 M 
KC1. This further supports the notion that the cross-linked 
heads originate from different myosin molecules. 

The distortion of the helical crossbridge array that is fre- 
quently seen on filaments first treated with bis22ATP.Vi and 
then exposed to high salt may be due to one or more of sev- 
eral factors. First, one must consider the constraint that the 
cross-linker itself imposes on the geometry of the two myo- 
sin heads within each subunit. As seen in Fig. 9 b, the drawn 
triangle shows the distances between axially sequential ori- 
gins of myosin heads and defines the distance spanned by 
heads originating from such different sites in comprising one 
surface subunit. The axial displacement of the sites of origin 
of heads between successive crossbridge levels on Limulus 
thick filaments is 14.5 nm (side a in Fig. 9 b). The rotational 
distance, around the filament shaft, between crossbridge ori- 
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Figure 6. Electron micrographs of filaments that had myosin heads cross-linked and stabilized with bis22ATP.%, then were incubated for 
15 min on 0.6 M KC1 before either (a and d) negative staining or (b), unidirectional shadowing with platinum-carbon, and (c and e) optical 
transforms obtained from such filaments. Bare zones are toward the bottom of each filament. Filaments in a and b (and the one from which 
the optical transform, c, was obtained) lacked IAA in the incubation media. Filaments in d, and the one from which the optical transform, 
e, was obtained had IAA included in all the incubation media. Note the retention of myosin all along the filament surfaces. There is great 
variability in the appearance of the surface crossbridge army: order is present in some images but lacking in others, which is especially 
apparent on the image of the shadowed filament; myosin is present, but the array is clearly distorted. Optical transforms obtained from 
such filaments show the presence of 11 associated with the relaxed state, but there is a lot of background and the patterns are not exceptionally 
good. (a and d) x175,000. Bar, 0.2 I.tm. (b) x130,000. Bar, 0.2 lam. 
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Figure 7. Electron micrographs of filaments that were isolated and 
rinsed with relaxing solution then incubated for 15 min on 0.6 M 
KC1, before (a) negative staining or (b) unidirectional shadowing 
with platinum-carbon. Note the smooth appearance of these cores. 
There is variability in their diameters, a common observation, most 
likely related to the release of paramyosin into solution after such 
a long incubation in high salt. (a) x169,000. Bar, 0.2 ~tm. (b) 
x120,000. Bar, 0.2 ~tm. 

gins on successive levels for these filaments with threefold 
screw symmetry and fourfold rotational symmetry (Stewart 
et al., 1981; Kensler and Levine, 1982a) is 1/12 the circum- 
ference of the filament shaft (diameter 23 nm at the bare 
zone: Kensler and Levine, 1982a; circumference 72.3 nm), 
or 6.02 nm (side b in Fig. 9 b). Thus, two myosin heads, each 
~16  nm long (Stewart et al., 1985), originating from mole- 
cules at axially sequential crossbridge levels, can overlap 
completely in the length available (hypotenuse of right trian- 
gle 15.7 nm; side c in Fig. 9 b). This estimate takes into con- 
sideration the natural curvature of the heads (Stewart et al., 
1985; Crowther et al., 1985; Winkelmann et al., 1985). Re- 
cently, Tokunaga et al. (1987) have determined that the active 
site on rabbit myosin lies ~ 5  nm from the tip of the head. 
Assuming a similar situation on Limulus myosin, the ATP- 
binding sites of  two completely overlapped, antiparallel 

Figure 8. Electron micrographs of filaments that had myosin heads 
cross-linked with bis22ATP.V~, then were incubated for 15 min on 
rigor buffer containing 2 mM DTT, and finally were incubated for 
15 min on 0.6 M KCI, before negative staining. Note again the loss 
of surface myosin, indicating that, after the disulfide bond within 
the cross-linker was reduced and severed in DTT, the myosins were 
no longer bound to each other along their helical paths and dis- 
solved in high salt. Some of the few remaining myosin molecules 
are indicated by arrows. ×186,000. Bar, 0.2 lam. 

heads, spanning 16 nm are '~6 nm apart. For the 4.8-nm- 
long bis22ATP to bridge the distance between the two active 
sites, one or both of the heads may bend, thus disturbing the 
relaxed crossbridge pattern. It is possible that there may be 
as much as a 0.6-nm discrepancy in the position of the ac- 
tive site determined by Tokunaga et al. (1987). In this case, 
bending of the heads on binding both functional ends of 
bis~2ATP would not be necessary, and the observed distor- 
tion might arise from other causes (such as the effect of high 
salt on filament cores; see below). 

The model illustrated in Fig. 9 c agrees with our earlier 
findings on native, relaxed Limulus thick filaments (Stewart 
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Figure 9. Diagrammatic rep- 
resentation of the subunits on 
the surface of l_z'mulus thick 
filaments, redrawn from a com- 
puted circumferential section 
(equatorial data omitted) at a 
radius of 14.5 nm. A quarter 
turn of three of the four myo- 
sin helices is shown. The bare 
zone is toward the bottom of 
the figure. (a) The density dis- 
tribution within the subunits is 
indicated by different levels of 
shading. (b) The drawn trian- 
gle demonstrates the distances 
between axially sequential 
origins of myosin heads and 
defines the distance spanned 
by heads originating from 
such different sites in com- 
prising a single surface sub- 

unit. The axial displacement of the sites of origin of heads between successive crowns is 14.5 nm (side a). The rotational distance around 
the filament shaft between crossbridge origins on successive levels is 6.02 nm (side b). The hypotenuse of the right triangle, or the shortest 
distance that can be traversed between crossbridge levels by the two antiparallel heads within each subunit is 15.7 nm (side c). This length 
is well within most estimates for the length of a myosin head, and is, in fact, very close to the length of that from Limulus myosin (16 
nm in Stewart et al., 1985). (c) A possible structure for the antiparallel arrangement of myosin heads within subunits in one-quarter of 
one helical strand along the filament surface. Each head spans the distance between axially sequential crossbridge origins. The greatest 
mass of each head lies distal to its origin. The overlapping heads (shaded) point toward the bare zone. The active sites on both heads (dots) 
in each subunit are within range for cross-linking with bis22ATP. 

et al., 1985) in that: (a) the greatest mass of each head lies 
distal to its origin; (b) the overlapping (outer) heads (shaded) 
point toward the bare zone; (c) the density due to the mass 
of the interior (underlying) head appears first at a low radius 
and a position distal to the bare zone, within each subunit; 
and (d) the density due to the mass of the exterior (overlapping) 
head appears at a higher radius and a position proximal to 
the bare zone. Also, the active sites (dots) on both heads are 
within range for cross-linking by bis22ATP, with minimal 
distortion. 

A second factor to consider is whether or not the cross- 
linked heads are in the "true" relaxed conformation. Vana- 
date inhibits myosin ATPase activity by stabilizing the myo- 
sin-nucleotide complex either immediately before or just 
after P~ release (Goodno, 1979; Wells and Bagshaw, 1984). 
Cross-linked filaments may exhibit a myosin-nucleotide in- 
termediate state different from that associated with relaxa- 
tion. A third consideration is that the results of structural 
analyses of both arthropod (Stewart et al., 1981; 1985; Crow- 
ther et al., 1985; Kensler and Levine, 1982) and vertebrate 
(Kensler and Stewart, 1983; 1986; Stewart and Kensler, 
1986) thick filaments differ from those of spectroscopic 
(Thomas, 1987) studies, regarding the ordered appearance 
of relaxed myosin heads. Spin-label studies describe rigor as 
the only ordered state of myosin on thick filaments in glyceri- 
nated rabbit (Thomas and Cooke, 1980) and insect flight 
(Thomas et al., 1983) muscle (these are the only muscles 
that have been found amenable to analysis by electron spin 
resonance, thus far). Possibly, the highly ordered relaxed cross- 
bridge conformation described by structural analyses is but 
one, albeit the lowest-energy, state of myosin-MgADP.P~ on 
thick filaments. Independent movement of individual heads 

within a subunit (as suggested by electron spin resonance) 
may bring their active sites close enough to bind the two 
functional ends of a single bis22ATP; V~ then stabilizes them 
in a position that produces a less ordered surface array than 
present on naturally relaxed thick filaments. Finally, we 
would like to point out that the distortion of the crossbridge 
lattice on the surfaces of filaments with cross-linked myosin 
is often seen to be greater after exposure to high salt than 
with cross-linker alone or cross-linker plus vanadate. Since 
the solubility properties of myosin are associated with the 
light meromyosin portion of the molecule, the greater disor- 
der displayed by filaments incubated on 0.6 M KCI after hav- 
ing had their myosin heads cross-linked may result from 
some degree of light meromyosin unpacking from the illa- 
ments' shafts, as the myosin responds to the high-salt environ- 
ment by attempting to disaggregate, rather than from binding 
the cross-linker. Nevertheless, the fact that the myosin re- 
mains on the filaments' surfaces, even after 15 min on 0.6 M 
KCI, indicates the retention of the cross-link between the 
heads and strongly supports the separate origin of the two 
myosin heads within each surface subunit on Limulus thick 
filaments. 

Our results may have a bearing on the nature of cooperativ- 
ity among myosins within a single thick filament and on the 
involvement of individual myosin heads in the crossbridge 
cycle. The basis for intermolecular thick filament coopera- 
tivity, as seen, for example, during calcium activation of 
scallop myosin (Chantler et al., 1981) or fibers (Simmons 
and Szent-Gyorgyi, 1984), may reside in head-head interac- 
tions among the myosins comprising each helical strand 
along the filament. Thus, calcium binding to relatively few 
myosins within a filament may cause all molecules within a 
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helical strand to switch on in a cooperative manner. A similar 
mechanism could be envisioned for filaments where activity 
is controlled or affected by myosin light-chain phosphoryla- 
tion, such as those of Limulus (Sellers, 1981), tarantula 
(Craig et al., 1987), or vertebrate smooth (Watanabe, 1985) 
muscles, if this type of cooperativity is found in these tissues. 

The antiparallel arrangement of the two heads within a 
subunit, if also the case for thick filaments of vertebrate mus- 
cle, complicates interpretations of crossbridge movement 
during the contractile cycle. Future work will need to deter- 
mine whether a functional crossbridge consists of the two 
heads of different origin and orientation, or if each head re- 
joins its intramolecular partner during contractile activity, 
or, if each head, starting from a different position, goes 
through the crossbridge cycle independently. Any of these 
possibilities can be responsible for the loss of helical order 
and the increased intensity of the 14.3 nm -~ meridional 
reflection, seen during active contraction (Huxley and Kress, 
1985). Finally, the disorder observed in spectroscopic analy- 
ses of relaxed crossbridges may be explained, in part, by the 
rotation of oppositely oriented myosin heads around their 
necks, while maintaining their azimuthal and axial positions. 
Studies of the effect of 0.6 M KCI on vertebrate and scallop 
striated muscle thick filaments that have had their myosin 
heads cross-linked with bis~2ATP-Vi are underway; the 
results of these should resolve some of the questions we have 
raised. 
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