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Abstract. The molecular basis of microtubule dy- 
namic instability is controversial, but is thought to be 
related to a "GTP cap" A key prediction of the GTP 
cap model is that the proposed labile GDP-tubulin 
core will rapidly dissociate if the GTP-tubulin cap is 
lost. We have tested this prediction by using a UV 
microbeam to cut the ends from elongating microtu- 
bules. Phosphocellulose-purified tubulin was assem- 
bled onto the plus and minus ends of sea urchin fla- 
gellar axoneme fragments at 21-22°C. The assembly 
dynamics of individual microtubules were recorded in 
real time using video microscopy. When the tip of an 
elongating plus end microtubule was cut off, the sev- 
ered plus end microtubule always rapidly shortened 
back to the axoneme at the normal plus end rate. 

However, when the distal tip of an elongating minus 
end microtubule was cut off, no rapid shortening oc- 
curred. Instead, the severed minus end resumed elon- 
gation at the normal minus end rate. Our results show 
that some form of "stabilizing cap; possibly a GTP 
cap, governs the transition (catastrophe) from elonga- 
tion to rapid shortening at the plus end. At the minus 
end, a simple GTP cap is not sufficient to explain the 
observed behavior unless UV induces immediate re- 
capping of minus, but not plus, ends. Another possi- 
bility is that a second step, perhaps a structural trans- 
formation, is required in addition to GTP cap loss for 
rapid shortening to occur. This transformation would 
be favored at plus, but not minus ends, to account for 
the asymmetric behavior of the ends. 

M 
ICROTUBULES assembled from purified tubulin in 
vitro exhibit dynamic instability (21, 34, 45). After 
nucleation, individual microtubules alternate be- 

tween an elongation phase and a rapid shortening phase 
(except those that shorten to completion). The transition 
(catastrophe) from elongation to rapid shortening and the 
transition (rescue) from rapid shortening to elongation are 
abrupt, stochastic, and infrequent in comparison to the rates 
of tubulin association and dissociation. Microtubules are 
polarized polymers and, in vitro, both the fast-growing plus 
ends and the slow-growing minus ends exhibit dynamic in- 
stability (21, 45). Several different experimental approaches 
have shown that the majority of plus end microtubules in vivo 
also exhibit dynamic instability (9-11, 37, 39, 41, 42). 

A "GTP cap" model has been proposed to explain dynamic 
instability (19, 20, 34). It has been well established that GTP- 
tubulin adds to the end of an elongating microtubule, and that 
the bound GTP is subsequently hydrolyzed to GDP (4, 5, 7, 
13, 30, 36). The GTP cap model postulates that this hydroly- 
sis produces a labile "core" of GDP-tubulin subunits "capped" 
at the elongating end by newly added GTP-tubulin (the "GTP 
cap") (5, 6, 34). According to the model, catastrophe is the 
loss of the GTP cap, and rapid shortening follows due to the 
high rate of GDP-tubulin dissociation. Rescue is thought to 
occur when a rapidly shortening end becomes recapped with 
GTP-tubulin, a process which is infrequent in comparison 

to the rate of GDP-tubulin dissociation. Although the mecha- 
nism and location of GTP hydrolysis within a microtubule 
is controversial and unresolved (2, 4, 5, 7, 8, 12, 34, 36, 40, 
45), there is substantial support for the GTP cap hypothesis: 
(a) the bulk of polymer is GDP-tubulin (17, 29, 30, 36, 46, 
47); (b) elongation and rapid shortening are distinctly differ- 
ent phases (6, 21, 34, 45); (c) GDP-tubulin subunits do not 
support elongation in buffers which permit dynamic instabil- 
ity (3); (d) rapid shortening occurs within seconds at both 
ends when GTP-tubulin association is prevented by dilution 
(Voter, W. A, and H. P. Erickson, manuscript in preparation; 
Walker, R. A., and E. D. Salmon, unpublished observa- 
tions); (e) addition of a GTPase system to microtubules at 
steady-state results in polymer disassembly (3); ( f )  for both 
ends, dissociation during the rapid shortening phase typi- 
caUy occurs at a constant rate as expected for a homogeneous 
core of GDP-tubulin subunits (21, 45); (g) for both ends, 
there is a substantial dissociation rate during the elongation 
phase without any apparent phase transition (45); and (h) the 
critical concentration for elongation is similar at the two 
ends, suggesting that there is reversible dissociation (of GTP- 
tubulin subunits) at both ends (45). 

The GTP cap model makes a simple prediction about the 
behavior of severed microtubule ends (Fig. 1): cutting the 
elongating end from a microtubule will produce severed plus 
and minus ends with exposed GDP-tubulin subunits. If the 
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Figure L Predicted behavior of severed microtubule ends based on 
the GTP cap model. Schematic drawing of tubulin subunits in a 
microtubule growing from one end of an axoneme fragment (solid 
area). According to the GTP cap model (% 19, 20, 34), the incorpo- 
ration of GTP-tubulin (T) subunits at the elongating end of the 
microtubule stabilizes a labile core of GDP-tubulin (D) (the result 
of hydrolysis following subunit addition) (a). When the microtubule 
core is cut by UV irradiation (b), two severed ends are created, one 
plus, the other minus. The GTP cap model predicts that both sev- 
ered ends will rapidly shorten (c) because they are no longer stabi- 
lized by GTP-tubulin. 
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GTP cap model is correct, these severed ends should begin 
rapid shortening immediately after cutting. 

To test the GTP cap prediction illustrated in Fig. 1, we have 
used a UV microbeam to sever individual, elongating mi- 
crotubules. A UV source and the necessary UV-transmitting 
optics were incorporated into a custom-designed light micro- 
scope (Fig. 2). Purified tubulin was assembled onto the plus 
and minus ends of  sea urchin flagellar axoneme fragments 
using the methods of Walker et al. (45). The behavior of  sev- 
ered ends was observed and recorded in real time using 
video-enhanced differential interference contrast (DIC) mi- 
croscopy and digital image processing. Contrary to the pre- 
diction of  the GTP cap model, the plus and minus ends be- 
have quite differently. 

Materials and Methods 

Tubulin and Axoneme Preparation 

Porcine brain tubulin was purified by tv~ cycles of assembly and disassem- 
bly in a buffer of 100 mM Pipes, 2 mM EGTA, 1 mM MgSO4, 0.5 mM 
GTP, pH 6.9 (PM buffer) and the resulting pellets were overlaid with a 
buffer of 100 mM 2[N-morpholinolethanesulfonic acid (MES), 1 mM EGTA, 
0.5 mM MgSO4, 3.4 M glycerol, pH 6.6. The tubulin was resuspended and 
passed over phosphocellulose and further purified by a cycle of assembly 
in 1 M Na+-glutamate as described previously (44). The tubulin was then 
resuspended immediately in PM buffer and frozen in small aliquots. Based 
on the SDS-PAGE methods described in Walker et al. (45), microtubule- 
associated proteins constituted ~,0.6 % of the purified tubulin preparation. 
Flagellar axoneme fragments were prepared from Lytechinus pictu~ accord- 
ing to the method of Bell et al. (1). Axonemes were osmotically demembran- 
ated and mechanically separated from sperm heads by homogenization in 
a solution of 20% sucrose in distilled water with a hand-held glass homog- 
enizer. Axonemes were resuspended and washed in isolation buffer com- 
posed of 0.1 mM NaCl, 4 m_M MgSO4, 1 mM EDTA, 7 mM/~-mercapto- 
ethanol, and 10 mM Hepes (pH 7.0). Dynein outer arms were removed by 
incubation in isolation buffer adjusted to 0.6 M NaC1 for 30 rain at 4°C. 

Figure 2. Schematic diagram of the UV microbeam apparatus. A 
200-W mercury arc lamp served as the UV source. The microbeam 
was directed onto the specimen plane from the condenser side by 
a mirror inserted at the field diaphragm plane. A 100x/0.85 NA 
Zeiss Ultrafluar (Thornwood, NY) was used as the condenser. A 
2-/~m-wide image of the UV mirror was projected onto the speci- 
men. The Wollaston DIC prism transmitted sufficient UV ("~20%) 
to sever microtubules with a 3-s exposure. Shutters controlled the 
UV irradiation. Design details for the differential interference con- 
trast optics, video recording, and digital image processing are de- 
scribed in the text. 

Residual sperm heads were removed by sedimentation of the axonemes 
through an 80% sucrose cushion (16,000 g, 10 rain). Axonemes were stored 
at -20°C in a 1:1 solution of isolation buffer/glycerol. Axonemes were 
washed and resuspended in PM before use. 

Microscopy and the UV Microbeam 

Preparations were viewed by DIC microscopy, using a custom-built, in- 
verted polarization microscope (22, 24, 25). The image of the UV source, 
an HBO 200-W mercury arc lamp, was projected onto a 0.2 x 0.7 mm mir- 
ror inserted in the field diaphragm plane of the microscope after the visible 
illuminating beam had passed the polarizing prism (Fig. 2). A Zeiss UI- 
trafluar 100x/0.85 NA glycerin immersion objective (Thornwood, NY) 
served as the condenser and was equipped with a Wollaston prism from a 
Zeiss 63×/1.4 NA objective lens. This combination provided a reasonable 
match to the Nomarski type prism made for Nikon Plan Apo objectives. The 
Ultrafluar projected a 2-#m-wide image of the illuminated mirror (the UV 
slit) onto the specimen plane, superimposed on the visible light DIC image 
of the specimen. The mirror could be slid in and out of the light path. With 
the mirror in the light path, the image of the UV source was first focused 
onto the specimen through UV blocking and neutral density filters. The 
filters were removed to expose the microtubule to the UV microbeam. A 
Nikon Plan APO 100x/1.35 NA oil immersion objective projected the speci- 
men image through a Nikon Nomarski DIC prism and analyzing prism to 
either the oculars or a video camera. 
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Image contrast was enhanced by video and digital processing. Video en- 
hancement was provided by a newvicon video camera with high gain and 
offset (model 65, Dage-MTI Inc., Michigan City, IN), followed by digital 
enhancement provided by an Image-FAT processor (Universal Imaging 
Corp., Media, PA). An exponential average of two frames with background 
mottle subtraction was used on-line to reduce electronic and optical noise 
in the image. Processed images were recorded on 3/4 inch U-matic tape 
(Sony model VO-5800H videocassette recorder) and optical disk (Pana- 
sonic model TQ-2021FBC optical memory disk recorder). 

UV Irradiation Experiments 
Purified tubulin and axonemes were mixed and then diluted with cold PM 
to final concentrations of 16 #M and 2.7 × 107 ml -l, respectively. Prepara- 
tions contained 1 mM GTP. The tubulin-axoneme preparation was held at 
4°C until needed. 

A 5-#1 sample of the preparation was added to a biologically clean (32) 
22-ram 2 quartz coverslip (thickness No. 1.5) mounted on a stainless steel 
holder, then covered with a biologically clean 22-ram 2 glass coverslip 
(thickness No. 1.5) and sealed with valap (l:l:l mixture of beeswax, lanolin, 
and petrolatum) to prevent drying and to prevent flow within the chamber. 
The typical separation between inner chamber surfaces was 10-20 #m. The 
double coverslip chamber was inverted and glycerol and oil contacted to the 
UItrafluar and Plan Apo lenses, respectively. 

Microtubules were assembled at 21-22°C. The axoneme fragments ad- 
hered to the clean chamber surfaces but the microtubules elongating off of 
these fragments generally remained in solution. Microtubules that did ad- 
here to the coverslip surface could not be severed by UV irradiation. 

Microtubules were typically irradiated 15-40 min after initiation of as- 
sembly. Microtubules irradiated at longer times behaved identically (in terms 

of response to cutting) to microtubules irradiated soon after initiation of as- 
sembly. 

Exposures of 2-3 s of unfiltered UV irradiation faithfully severed elon- 
gating microtubules. Based on previous studies (31, 48), irradiation in the 
260-300 nm range severs microtubules in vivo. 

Data Analysis 
Microtubule elongation and plus end rapid shortening rates were measured 
from 3/4 inch U-matic videotape recordings played on a Sony VO-5800H. 
We used a computer-based analysis system to follow microtubule length 
changes in real time (45). Minus end shortening rates were difficult to mea- 
sure in real time because of the brief duration of rapid shortening episodes. 
Minus end shortening rates were therefore calculated as (change in length)/ 
(time of rapid shortening) for each episode. 

Plus and minus ends were identified based on rate of elongation (45). 
Rates in the text are given as mean + SEM. 

Results 

Experiments were performed at 21-22°C to prevent thermal 
damage to the microscope optics. At the tubulin concentra- 
tion (16/~M) used in this study, a spontaneous catastrophe 
occurred at elongating plus ends about once every 4 min of 
elongation. Rescue was infrequent for plus end microtu- 
bules, and rapid shortening usually proceeded to the axo- 
neme seed. At the minus end, a spontaneous catastrophe oc- 
curred about once every 15 rain of elongation. Shortening 

Figure 3. A severed plus end rapidly shortens immediately after UV cutting. The distal tip of an elongating plus end microtubule was cut 
offby 3 s UV irradiation. (A) Field before irradiation, Ax is plus end of axoneme fragment; (B) mirror in place just  before UV irradiation; 
(C) 4 s after irradiation. An image of the irradiation beam persists on the camera tube. Arrowhead indicates the position of the severed 
plus end; (D-F) the severed plus end continues rapid shortening until it disappears. Tune in minutes/seconds/0.01 seconds is given at the 
bottom right of each video frame. Bar, 5 #m. 
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minus end microtubules usually underwent rescue, and the 
average length lost during a shortening phase was 3.2/~m 
(based on average time of shortening and the mean rate of 
shortening). 

Microtubule Irradiation 

Each UV irradiation of an individual microtubule created 
two severed ends: one plus, the other minus. In practice, we 
were able to measure the resultant length changes of only the 
microtubules that remained tethered to the axoneme frag- 
ment. The other severed end, now one end of a free microtu- 
bule, was impossible to observe because the nascent free 
microtubule rapidly moved out of the plane of focus. There- 
fore, the behavior of severed plus end microtubules was ob- 
served by cutting microtubules which elongated off of the 
plus end of an axoneme fragment, whereas the behavior of 
severed minus end microtubules was observed by cutting 
microtubules which elongated off of an axoneme fragmenfs 
minus end. 

All plus end microtubules severed by the UV microbeam 
immediately began rapid shortening (n = 16) (Figs. 3 and 
5 a). The onset of rapid shortening was independent of the 
position of the cut zone relative to either the axoneme seed 
or the microtubule end. The minimum distance that we were 
able to remove from an elongating plus end microtubule was 
0.8 #m. The rate of rapid shortening of a severed plus end 
microtubule (20.9 + 1.5 #m/min [n = 15]) was not sig- 
nificantly different from the rapid shortening rate of a plus 
end microtubule that had experienced a spontaneous catas- 
trophe (22.2 + 1.7/zm/min In = 8]) (independent t-test). 

In contrast to the plus end, severed minus end microtu- 
bules never rapidly shortened (n --- 29). Severed minus ends 
always remained within 0.2 #m (our limit of resolution) of 
the cut zone (Figs. 4 and 5, b and c) and then resumed elonga- 
tion (Fig. 5, b and c). The stability of a severed minus end 
was independent of the amount of polymer removed from the 
elongatingend as shown in Fig. 5 b. In this example, an elon- 
gating minus end microtubule was cut at successive times at 
distances progressively closer to the axoneme, but the se- 
vered minus ends never rapidly shortened. 

The tubulin lattice at severed minus ends did not appear 
significantly altered because severed minus ends always im- 
mediately began elongation at rates (0.40 + 0.03/zm/min In 
= 28]) typical of normal minus end elongation (0.41 + 0.04 
#m/min In = 14]) (independent t-test). Further, after reelon- 
gation, the region ofa microtubule at the original cut site was 
no more stable than elsewhere along the microtubule. As 
shown in Fig. 5 c, severed minus end microtubules were ob- 
served to elongate until a spontaneous catastrophe occurred, 
then to rapidly shorten without interruption through the 
previous cut site. These observations demonstrate that UV 
irradiation did not prevent rapid shortening of minus ends by 
irreversibly cross-linking the microtubule lattice. 

Discussion 

According to the GTP cap model, a microtubule contains 
GDP-tubulin all along its length, except for a short region of 
GTP-tubulin at the elongating end(s) (Fig. 1). Cutting a mi- 
crotubule at any site along its length (away from the GTP- 
tubulin cap) will produce severed ends with terminal GDP- 
tubulin subunits which will immediately dissociate. We have 

Figure 4. A severed minus end does not rapidly shorten after UV 
cutting. The distal tip of an elongating minus end microtubule was 
cut offby 3 s UV irradiation. Tune is given in seconds on each video 
frame with the time of UV irradiation set to zero time. At 4 s, the 
image of the cutting zone (the UV irradiation area) persists on the 
video camera tube. The axoneme was slightly reoriented before ex- 
posure to the LIV microbeam. The arrows indicate the microtubule 
end. Bar = 1 ~m. 
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Figure 5. Behavior of severed plus and minus ends after UV cutting. 
Changes in microtubule length are plotted as a function of time. 
Length was measured from the end of the axoneme to the distal end 
of the attached microtubule. Arrowheads indicate width and loca- 
tion of the UV microbeam, and tips of the arrowheads indicate 
when the 3-s irradiation began. The portion of the microtubule dis- 
tal to the cut zone always rapidly diffused out of view. (a) A plus 
end microtubule is irradiated and the severed end immediately 
starts to rapidly shorten. (b) A minus end microtubule was cut to 
successively shorter lengths but never rapidly shortened. (c) Micro- 
tubules experienced spontaneous catastrophes under the conditions 
used in this study. In this example, a severed minus end elongated 
for 2.3 #m, then underwent a spontaneous catastrophe and rapidly 
shortened for 4.4 #m. Note that the microtubule elongated from and 
shortened through the original cut site. 

shown that severed plus end microtubules, as predicted by 
the GTP cap model, immediately begin to disassemble (sum- 
marized in Fig. 6, a-c). Rapid shortening was extensive and 
occurred at a constant rate both independent of the length of 
the microtubule and typical of spontaneous rapid shortening. 
Our results clearly demonstrate that a short region (<0.8/Lm 
or 1,300 subunits) at the plus end of an elongating microtu- 
bule can stabilize the entire polymer. 

UV 

a (-) - J ~ONEaE ~ (*) 

UV 

\ 

Figure 6. Summary of UV cutting experiments. Severed plus end 
microtubules (a), rapidly shortened (b), and frequently disappeared 
(c). Later, new plus end microtubules reelongated off of the axo- 
neme fragment (d). In contrast, severed minus end microtubules 
(b), did not rapidly shorten, but immediately resumed elongation 
at a rate typical of minus end growth (c and d). 

In contrast to the labile nature of severed plus ends, the sta- 
bility of severed minus ends was not predicted by the GTP 
cap model. No shortening of severed minus end microtu- 
bules was detected; rather, these microtubules behaved as if 
capped by GTP-tubulin and immediately resumed elongation 
at rates typical of unsevered minus end microtubules (sum- 
marized in Fig. 6, b-d).  Because the bulk of a microtubule 
is GDP-tubulin (17, 29, 30, 36, 46, 47), and because severed 
plus end microtubules initially appear to have terminal GDP- 
tubulin subunits (based on the behavior of severed plus ends), 
severed minus end microtubules must also initially have ter- 
minal GDP-tubulin subunits. How did severed minus end mi- 
crotubules quickly regain a GTP cap? Our results show that 
UV irradiation did not irreversibly stabilize the microtubule 
lattice at the severed end. Further, the stability of severed mi- 
nus ends was clearly not due to the "normal" mechanism of 
rescue (presumably addition of GTP-tubulin to GDP-tubulin 
ends), because the average extent of minus end rapid shorten- 
ing after a spontaneous catastrophe was 3.2 #m, whereas the 
maximum extent of shortening for each severed minus end 
was 0.2 #m (our limit of resolution). Alternatively, the lattice 
structure of plus and minus end microtubules assembled onto 
an axoneme seed may be different. However, this does not 
seem likely because preliminary observations of UV severed 
microtubules self-assembled in the absence of axoneme 
seeds also show an asymmetric behavior: one end rapidly 
shortens while the other end is stable (Walker, R. A., and 
E. D. Salmon, manuscript in preparation). 

There are two different explanations, based on the GTP 
cap model, for the difference in stability of severed plus and 
minus ends. The first assumes that formation of a severed 
end immediately produces a GDP-tubulin end capable of 
rapid shortening. That is, a severed end is initially an end in 
the rapid shortening phase. This is the basic prediction of the 
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current GTP cap models. If both plus and minus severed 
ends are initially in the rapid shortening phase, then the ex- 
tremely rapid rescue of severed minus ends must be pro- 
duced by a UV-activated mechanism not available at plus 
ends. According to this hypothesis, UV irradiation somehow 
promotes rapid reformation of a GTP-tubulin cap at minus, 
but not plus, severed ends. One possibility is that the ex- 
changeable site for GTP on the tubulin dimer is exposed at 
the minus end but not the plus end. UV irradiation could rap- 
idly displace the GDP from the exchangeable site, allowing 
free GTP to bind and stabilize the polymer before significant 
rapid shortening occurs. Because the exchangeable site is lo- 
cated on the/~ subunit of the tubulin dimer (18, 27, 35), this 
mechanism predicts that the ~ subunit is oriented towards the 
minus end of a microtubule and the ct subunit is oriented to- 
wards the plus end. Unfortunately, the orientation of the tu- 
bulin dimer within the microtubule lattice is not yet known, 

An alternative explanation is that loss of the GTP cap is 
not sufficient for rapid shortening. A second reaction may be 
required before GDP-tubulin subunits at the end of a micro- 
tubule can dissociate. Thus, there could be an intermediate 
phase between elongation and rapid shortening. According 
to this model, catastrophe is a two-step process. The first 
step, the transition from the elongation phase to the inter- 
mediate phase, depends on the presence or absence of a GTP 
cap. The second step, the transition from the intermediate 
phase to rapid shortening, may involve a structural transfor- 
mation at the end of the polymer lattice (28) which, once ini- 
tiated, produces rapid dissociation of GDP-tubulin subunits 
as the transformation propagates rearward along the micro- 
tubule lattice. Cutting an elongating microtubule can be 
viewed as creating severed ends in the intermediate phase. 
The behavior of a severed end will reflect the probabilities 
of transition from this intermediate phase to either elonga- 
tion or rapid shortening. At the plus end, conversion from 
the intermediate phase to the rapid shortening phase is highly 
favored, since a severed plus end microtubule immediately 
begins rapid shortening. However, at the minus end, conver- 
sion from the intermediate phase to the elongation phase is 
favored, since a severed minus end microtubule immediately 
resumes elongation. 

The dynamics of microtubule assembly has been studied 
in living cells using UV microbeam irradiation to sever 
microtubules (14, 16, 23, 31, 43, 48). It is worth reconsider- 
ing the results from these studies with respect to our in vitro 
findings. We have demonstrated here, for microtubules as- 
sembled from pure brain tubulin, that severed minus ends 
immediately start to elongate while severed plus ends rapidly 
shorten. A similar behavior can be seen in reports of the 
effect of UV microbeam irradiation on microtubules in the 
cytoplasmic microtubule complex in mammalian tissue cul- 
ture ceils (43), the central spindle microtubules of diatoms 
(31), the chromosomal fibers in the mitotic endosperm of 
Haemanthus (23), and the chromosomal fibers in the first 
meiotic spermatocytes of the grasshopper, Trimeratropis 
maritima (16). In all these examples, the minus ends of sev- 
ered microtubules appeared stable while the plus ends 
rapidly shortened to various extents. The results of UV mi- 
crobeam irradiation of chromosomal fibers in first meiotic 
spermatocytes by Forer and co-workers appears to be more 
complex (14, 48). Recent electron microscopy studies (48) 
of areas of reduced birefringence (ARBs) produced by UV 

irradiation of chromosomal fibers indicate that the poleward 
movement of ARBs may be the consequence of the difference 
in assembly dynamics of severed plus and minus ends rather 
than poleward flow of spindle fiber material as originally 
proposed (14) (later interpreted as treadmilling of tubulin 
subunits [26, 33]; see Forer [15] and Wilson and Forer [48] 
for discussion). However, this interesting question remains 
unresolved. 

Overall, the above analysis indicates that because minus 
ends are relatively stable, microtubule dynamics in living 
cells is likely to be governed by the dynamics of their plus 
ends. 

We thank Brenda Bourns for her careful preparation of the purified tubulin 
used in this study and for her assistance in the preparation of this paper. 
Vicki Petrie and Susan Whitfield assisted with figure preparation. Drs. Tim 
O'Brien, Bruce Telzer, and Leah Haimo provided many helpful comments. 
Finally, we are grateful to Lynne Cassimeris and Nancy Pryer for discus- 
sions about melted microtubule ends, and to Bob Knudson for assistance 
in the design and construction of the microbeam apparatus. 

This work was supported by National Institutes of Health (NIH) grant 
GM 24364 and National Science Foundation (NSF) grant DCB-8616621 
to E. D. Salmon and NIH grant R37 GN31617-06 and NSF grant DCB- 
8518672 to S. Inou6. 

Received for publication 15 August 1988 and in revised form 2 November 
1988. 

S efererlce$ 

1. Bell, C. W., C. Fraser, W. S. Sale, W.-J. Y. Tang, and I. R. Gibbons. 
1982. Preparation and purification of dynein. Methods Cell Biol. 24: 
373-397. 

2. Caplow, M., and R. Reid. 1985. Directed elongation model for microtubule 
GTP hydrolysis. Proc. Natl. Acod. Sci. USA. 82:3267-3276. 

3. Caplow, M., and J. Shanks. 1987. GTP requirement for in vitro and in vivo 
microtubule assembly and stability. In The Cytoskeleton in Cell Differen- 
tiation and Development. R. B. Maccioni and J. Arechaga, editors. IRL 
Press, Oxford, UK. 63-73. 

4. Caplow, M., J. Shanks, and B. D. Brylawski. 1985. Concerning the loca- 
tion of the GTP hydrolysis site on microtubules. Can. J. Biochem. Cell 
Biol. 63:422--429. 

5. Carlier, M.-F., and D. Pantaloni. 1981. Kinetic analysis of guanosine 5'-tri- 
phosphate hydrolysis associated with tubulin polymerization. Biochemis- 
try. 20:1918-1924. 

6. Carlier, M.-F., T. L. Hill, and Y.-D. Chen. 1984. Interference of GTP hy- 
drolysis in the mechanism of microtubule assembly: an experimental 
study. Proc. Natl. Acod. Sci. USA. 81:771-775. 

7. Carlier, M.-F., D. Didry, and D. Pantaloni. 1987. Microtubule elongation 
and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in 
microtubole dynamics. Biochemistry. 26:4428--4437. 

8. Carlier, M.-F., D. Didry, R. Melki, M. Chabre, and D. Pantaloni. 1988. 
Stabilization of microtubules by inorganic phosphate and its structural an- 
alogues, the fluoride complexes of aluminum and beryllium. Biochemis- 
try. 27:3555-3559. 

9. Cassimeris, L. U., P. Wadsworth, and E. D. Salmon. 1986. Dynamics of 
microtubule depolymerization in monocytes. J. Cell Biol. 102:2023- 
2032. 

10. Cassimeris, L. U., R. A. Walker, N. K. Pryer, and E. D. Salmon. 1987. Dy- 
namic instability of microtubules. Bioessays. 7:149-154. 

11. Cassimeris, L., N. K. Pryer, and E. D. Salmon. 1988. Real-time observa- 
tions of microtubule dynamic instability in living cells. J. Cell Biol. 
107:2223- 2231. 

12. Chen, Y., and T. L. Hill. 1985. Monte Carlo study of the GTP cap in a five- 
start helix model of a microtubule. Proc. Natl. Acad. Sci. USA. 82: 
1131-1135. 

13. David-Pfeuty, T., H. P. Erickson, and D. Pantaloni. 1977. Guanosinetriphos- 
phatase activity of tubulin associated with microtubule assembly. Proc. 
Natl, Acad. Sci. USA. 74:5372-5376. 

14. Forer, A. 1965. Local reduction of spindle fiber birefringence in living 
Nephrotoma surturalis (Leow) spermatocytes induced by ultraviolet mi- 
crobeam irradiation. J. Cell Biol. 25:95-117. 

15. Forer, A. 1985. Does actin produce the force that moves a chromosome to 
the pole during anaphase? Can. J. Biochem. Cell Biol. 63:585-598. 

16. Gordon, G. G. 1980. The control of mitotic motility as influenced by 
ultraviolet microbeam irradiation of kinetochore fibers. Ph.D. disserta- 
tion, University of Pennsylvania. 

The Journal of Cell Biology, Volume 108, 1989 936 



17. Hamel, E., J. K. Eatra, A. B. Huang, and C. M. Lin. 1986. Effects of pH 
on tubulin-nucleotide interactions. Arch. Biochem. Biophys. 245:316- 
330. 

18. Hesse, .I., H. Maruta, and G. Isenberg. 1985. Monoclonal antibodies local- 
ize the exchangeable GTP-binding site in/~- and not a-tubulins. FEBS 
(Fed. Fur. Biochem. Soc.) Left. 179:91-95. 

19. Hill, T. L. 1984. Introductory analysis of the GTP-cap phase-change kinetics 
at the end ofa  microtubule. Proc. Natl. Acad. Sci. USA. 81:6728-6732. 

20. Hill, T. L., and Y.-D. Chen. 1984. Phase changes at the end ofa microtubule 
with a GTP cap. Proc. Natl. Acad. Sci. USA. 81:5772-5776. 

21. Horio, T., and H. Hotani. 1986. Visualization of the dynamic instability 
of individual microtubules by dark-field microscopy. Nature (Lond.). 
321:605-607. 

22. Inou6, S. 1961. Polarizing microscope: design for maximum sensitivity. In 
Encyclopedia of Microscopy. G. L. Clarke, editor. Reinhold Publishing 
Corp., New York. 480-485. 

23. Inou6, S. 1964. Organization and function of the mitotic spindle. In Primi- 
tive Motile Systems in Cell Biology. R. Allen and N. Kamiya, editors. 
Academic Press, New York, 549-598. 

24. Inou6, S. 1981. Video image processing greatly enhances contrast, quality, 
and speed in polarization-based microscopy. J. Cell Biol. 89:346-356. 

25. Inou6, S. 1986. Video Microscopy. Plenum Publishing Corp., New York. 
495. 

26. Inou6, S., and H. Ritter. 1975. Dynamics of mitotic spindle organization 
and function. In Molecules and Cell Movement. S. Inou6 and R. Stephens, 
editors. Raven Press, New York. 3-29. 

27. Kirchner, K., and E.-M. Mandelkow. 1985. Tubulin domains responsible 
for assembly of dimers and protofilaments. EMBO (Eur. Mol. Biol. Or- 
gan.) J. 4:2397-2402. 

28. Kirschner, M. W., and T. Mitchison. 1986. Microtubule dynamics. Nature 
(Lond.). 324:621. 

29. Kobayashi, T. 1974. Nucleotides bound to brain tubulin and reconstituted 
microtubules. J. Biochem. (Tokyo). 76:201-204. 

30. Kobayashi, T. 1975. Dephosphorylation of tubulin-bound guanosine tri- 
phosphate during microtubule assembly. J. Biochem. (Tokyo). 77:1193- 
1197. 

31. Leslie, R. J., and J. D. Pickett-Heaps. 1984. Spindle microtubule dynamics 
following ultraviolet-microbeam irradiations of mitotic diatoms. Cell. 
36:717-727. 

32. Lutz, D. A., and S. Inou6. 1986. Techniques for observing living gametes 
and embryos. Methods Cell Biol. 27:89-110. 

33. Margolis, R. L., L. Wilson, and B. I. Kiefer. 1978. Mitotic mechanism 
based on intrinsic microtubule behavior. Nature (Lond.). 272:450-452. 

34. Mitchison, T., and M. Kirschner. 1984. Dynamic instability ofmicrotubnle 
growth. Nature (Lond. ). 232:237-242. 

35. Nath, J. P., G. F. Eagle, and R. H. Himes. 1985. Direct photoaltinity label- 
ing of tubulin and guanosine 5'-triphosphate. Biochemistry. 24:1555- 
1560. 

36. O'Brien, E. T., W. A. Voter, and H. P. Erickson. 1987. GTP hydrolysis 
during microtubule assembly. Biochemistry. 26:4148--4156. 

37. Salmon, E. D., and P. Wadsworth. 1986. Fluorescence studies of tubulin 
and micrombule dynamics in living cells. In Applications of Fluorescence 
in the Biomedical Sciences. D. L. Taylor, A. S. Waggoner, R. F. Mur- 
phy, F. Lanni, R. R. Birge, editors. Alan R. Liss, Inc., New York. 377- 
403. 

38. Sammak, P. J., and G. G. Borisy. 1988. Direct observation of microtubule 
dynamics in living cells. Nature (Lond.). 332:724-726. 

39. Sammak, P. J., G. J. Gorbsky, and G. G. Borisy. 1987. Microtubule dy- 
namics in vivo: a test of mechanisms of turnover. J. Cell Biol. 
104:395-405. 

40. Schilstra, M. J., S. R. Martin, and P. M. Bayley. 1987. On the relationship 
between nucleotide hydrolysis and microtubule assembly: studies with a 
OTP-regenerating system. Biochem. Biophys. Res. Commun. 147:588-595. 

41. Schulze, E., and M. Kirschner. 1986. Microtubule dynamics in interphase 
cells. J. Cell Biol. 102:1020-1031. 

42. Schulze, E., and M. Kirschner. 1988. New features of microtubule be- 
havior observed in vivo. Nature (Lond.). 334:356-359. 

43. Tao, W., R. J. Walter, and M. W. Berns. 1987. Laser-transected microtu- 
bules exhibit individuality of regrowth, however most free new ends of 
the microtubules are stable. J. Cell Biol. 107:1025-1035. 

44. Voter, W. A., and H. P. Ericksun. 1984. The kinetics of microtubule as- 
sembly. J. Biol. Chem. 259:10430-10438. 

45. Walker, R. A., E. T. O'Brien, N. K. Pryer, M. Soboeirn, W. A. Voter, 
H. P. Erickson, and E. D. Salmon. 1988. Dynamic instability of in- 
dividual microtubules analyzed by video light microscopy: rate constants 
and transition frequencies. J. Cell BioL 107:1437-1448. 

46. Weisenbe:g, R. C., G. G. Borisy, and E. W. Taylor. 1968. The colchicine- 
binding protein of mammalian brain and its relation to microtubules. Bio- 
chemistry. 7:4466-4479. 

47. Weisenberg, R. C., W. J. DeeD', and P. J. Dickinson. 1976. Tubulin 
nucleotide interactions during the polymerization and depolymerization 
of microtubules. Biochemistry. 15:4248-4254. 

48. Wilson, P. J., and A. Forer. 1988. Ultraviolet microbeam irradiation of 
chromosomal spindle fibers produces an area of reduced birefringence 
and shears the microtubules, allowing study of the dynamic behavior of 
new free ends in vivo. J. Cell Sci. 91:455-468. 

Walker et al. Dynamics of  Severed Microtubules 937 


