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Abstract. von Willebrand factor (vWf) is secreted 
from endothelial cells by one of two pathways-a con- 
stitutive pathway and a regulated pathway originating 
from the Weibel-Palade bodies. The, molecular form 
of vWf from each of these pathways differs, with the 
most biologically potent molecules being released 
from Weibel-Palade bodies (Loesberg, C., M. D. 
Gonsalves, J. Zandbergen, C. Willems, W. G. Van 
Aken, H. V. Stel, J. A. Van Mourik, and P. G. 
DeGroot. 1983. Biochim. Biophys. Acta. 763:160-168; 
Sporn, L. A., V. J. Marder, and D. D. Wagner. 1987. 
Cell. 46:185-190). We investigated the polarity of the 
two secretory pathways using human umbilical vein 
endothelial cells cultured on polycarbonate membrane 
filters which allowed sampling of media from both the 
apical and basolateral compartments. After metabolic 
labeling of cells, vWf (constitutively secreted during a 
10-min period or released during a 10-min treatment 
with a secretagogue) was purified from the apical and 

basolateral chambers and subjected to gel analysis. 
Approximately equal amounts of vWf were constitu- 
tively secreted into both chambers, and therefore this 
secretory pathway appeared to be nonpolarized. On the 
contrary, an average of 90% of vWf released from 
Weibel-Palade bodies after treatment with the calcium 
ionophore A23187 or PMA appeared in the basolateral 
chamber, indicating that the regulated pathway of 
secretion is highly polarized. Thrombin, a secreta- 
gogue which promotes disruption of the endothelial 
monolayer, led to release of vWf from cells with no 
apparent polarity. The presence of microtubule-depoly- 
merizing agents nocodazol and colchicine inhibited the 
polarized release of vWf. Ammonium chloride treat- 
ment did not disrupt the polarity of the regulated 
secretory pathway, indicating that maintenance of low 
pH in intracellular compartments was not required for 
the polarized delivery of preformed Weibel-Palade 
bodies to the plasma membrane. 

T 
HE polarity of the epithelial cell has been a subject of 
many recent investigations, with regard to both the 
specific functions localized to the apical and baso- 

lateral cell surfaces as well as the cellular machinery in- 
volved in directing and maintaining the polarized phenotype 
(Matlin, 1986; Simons and Fuller, 1985). Weak bases, such 
as ammonium chloride, have been shown to interfere with 
polarized secretion of proteins and proteoglycans from epi- 
thelial cells (Caplan et al., 1987). This indicates either that 
the sorting process requires an acidic intracellular compart- 
ment or that the weak base interferes with vesicular traffic 
or correct membrane fusion. Vascular endothelial cells, ex- 
posed on the luminal surface to the bloodstream and on the 
abluminal surface to the basement membrane, are polarized 
cells with respect to their plasma membrane constituents 
(Simionescu et al., 1981; Nakache et al., 1985; Horvat et al., 
1986; Muller and Gimbrone, 1986), protein secretion (Zerwes 
and Risau, 1987), and uptake of molecules (Palade, 1960). 
The present study investigates the polarity of the regulated 

vs. the constitutive secretory pathway for von Willebrand 
factor (vWf) ~ in the endothelial cell and the effect of a weak 
base on the polarized release of presorted vWf molecules. 

vWf, synthesized by endothelial cells (Jaffe et al., 1973) 
and megakaryocytes (Nachman et al., 1977; Sporn et al., 
1985), is a large adhesive glycoprotein that functions in the 
hemostatic process (Tschopp et al., 1974; Sakariassen et al., 
1979; Hovig and Stormorken, 1974; Turitto et al., 1984). 
vWf undergoes extensive posttranslational modification 
which includes dimerization and initial glycosylation in the 
endoplasmic reticulum, carbohydrate processing, sulfation, 
multimerization of dimers, and prosequence cleavage in 
Golgi and post-Golgi compartments (Handin and Wagner, 
1988). The largest disulfide-bonded multimers of vWf pro- 
duced by endothelial cells have molecular weights estimated 
to be 10-20 million (Zimmerman et al., 1983) and bind the 
most avidly to the platelets (Zimmerman et al., 1983) as well 

1. Abbreviation used in this paper: vWf, von Willebrand factor. 
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as to the extracellular matrix (Sporn et al., 1987). All multi- 
meric sizes, however, can serve as carriers for circulating 
factor VIII, the antihemophilic factor (Moake et al., 1983). 

vWf is secreted from endothelial cells via one of two path- 
ways (Loesberg et al., 1983). The regulated pathway of 
secretion originates from the Weibel-Palade bodies, the en- 
dothelial cell-specific storage vesicles for vWf (Wagner et 
al., 1982). Release of vWf from this intracellular pool occurs 
rapidly after stimulation of the cells with such agents as 
thrombin (Levine et al., 1982; Loesberg et al., 1983), the 
calcium ionophore A23187 (Loesberg et al., 1983), PMA 
(Loesberg et al., 1983), histamine (Hamilton and Sims, 
1987), and fibrin (Ribes et al., 1987). It is likely that vWf 
secreted by the constitutive secretory pathway leaves the cell 
by a bulk flow process along with other endothelial cell 
secretory proteins. Pulse-chase studies have shown that an 
average of 5 % of newly synthesized vWf is sorted into the 
Weibel-Palade bodies, while the remainder is constitutively 
secreted (Sporn et al., 1986). 

The molecular forms of vWf originating from these two 
secretory pathways differ. The regulated secretory pathway 
secretes the largest multimeric forms of the protein, com- 
posed of processed subunits; the predominantly small multi- 
meric forms, containing some pro-vWf subunits, are secreted 
constitutively (Sporn et al., 1986; Ewenstein et al., 1987). 
The intracellular movement of Weibel-Palade bodies during 
the process of regulated secretion appears to involve the 
microtubular cytoskeleton, since regulated secretion is in- 
hibited by microtubule-depolymerizing agents. Constitutive 
secretion, on the other hand, is not significantly affected by 
these agents (Sinha and Wagner, 1987). We report that in ad- 
dition to the above described differences between the path- 
ways, polarity with respect to the apical and basolateral 
plasma membrane is also different. 

Materials and Methods 

Cells and Culture Conditions 
Endothelial cells were harvested from human umbilical vein by mild proteo- 
lytic digestion as described (wagner et al., 1982; Gimbrone et al., 1974). 
Freshly isolated cells were plated on Transwell TM cell culture chambe.r in- 
serts (Costar, Cambridge, MA) which were gelatin coated by incubating for 
1 h at 37°C with a solution of 1.5% porcine gelatin (Sigma Chemical Co., 
St. Louis, MO) in PBS and rinsed with culture medium. The Transwell TM 

inserts are composed of a tissue culture-treated polycarbonate membrane 
10 #M thick, 24.5 mm in diameter, with a pore size of 3.0 #M, imbedded 
in a solid plastic support. When placed in a 6-well cluster plate (Costar) 
sampling from both the apical and basolateral chambers is allowed. For 
metabolic labeling, 4-7-d-old cells were placed in 25 #Ci/ml [35S]cysteine 
(600 Ci/mmol; Amersham Corp., Arlington Heights, IL) for 3 d; for studies 
of constitutive secretion, the cells were placed in 100 #Ci/ml for 2 h. Cul- 
ture media volumes in the two cell culture chambers were 1.5 ml (apical) 
and 2.6 ml (basolateral). 

Release of Weibel-Palade Body Contents and Drug 
Treatmen t of Cells 
To stimulate release of vWf from Weibel-Palade bodies, filter-grown cells 
were rinsed twice with Hanks balanced salt solution, and then culture 
medium containing the secretagogue was placed in the apical (1.5 ml) and 
basolateral (2.6 ml) chambers and collected after 10 min. A dilution of the 
calcium ionophore A23187 (10 #m) (Sigma Chemical Co.) was made from 
a 10-mM stock solution dissolved in DMSO. When 1 U/ml thrombin 
(lyophilized human thrombin, 3,250 U/rag; Calbiochem-Behring Corp., La 
Jolla, CA) was used as the secretagogue, samples were collected into hirudin 
(Calbiochem-Behring Corp.) to yield a final concentration of 2.5 U/ml. 

PMA, used at a concentration of 10 ng/ml, was diluted from a 0.1 mg/ml 
stock dissolved in DMSO. For studies of the inhibition of release by 
microtubule-depolymerizing agents, metabolically prelabeled filter-grown 
cells were incubated for 1 h before and during ionophore stimulation with 
1 pM colchicine, 1 pM nocodazol, or 1 pM lumicolchicine (Sigma Chemi- 
cal Co.) dissolved in culture medium. 

Antisera 
The preparation and characterization of monospecific antisera against vWf 
used for immunopurification were previously described (Wagner et al., 
1982). Antisera against vWf used for immunofluorescence staining was pur- 
chased from Calbiochem-Behring Corp. 

Immunofluorescence Staining 
Immunofluorescence staining was performed directly on filter-grown cells 
while in the intact Transwell TM device. Cells were fixed for 20 min in a so- 
lution of 3.7 % formaldehyde in PBS, then permeabilized for 15 min in 0.5 % 
Triton X-100 in PBS. Immunofluorescence staining using anti-vWf antise- 
rum was then performed as described (Wagner et al., 1982). 1 cm 2 of the 
polycarbonate membrane with the attached cell monolayer was removed 
from the insert with a scalpel blade and mounted in gelvatol under a glass 
coverslip. 

Purification of vWf 
Cells were lysed as described previously (Wagner and Marder, 1983) so that 
the final concentration of ingredients was that of the radioimmunoprecipita- 
tion assay buffer (Wagner et al., 1981) used for washing the immunoprecipi- 
tate. The cell lysate or culture medium samples were then incubated for 30 
min at room temperature with gelatin-Sepharose to remove fibronectin and 
other proteins that adhere nonspecifically. The gelatin-Sepharose was re- 
moved by centrifugation. Protein A-Sepharose CL-4B (30-mg sample) 
(Sigma Chemical Co.) was preincubated at room temperature for 30 min 
with 50 #l anti-vWf antiserum before it was added to the samples. The incu- 
bation of the samples was for 1.5 h at room temperature. After extensive 
washing, protein A-Sepharose was boiled in electrophoresis sample buffer 
(Laemmli, 1970) and the supernatant was analyzed by gel electrophoresis. 

Gel Electrophoresis 
5% SDS-polyacrylamide gels were prepared as described (Laemmli, 
1970). 2% agarose gels were prepared as described (Sporn et al., 1986). 
Densitometric scanning of autoradiographs was performed and the amount 
of vWf in the samples was quantitated by determining the area under the 
peaks. 

lodination of vWf 
vWf purified from plasma was a girl from Dr. Philip Fay, University of 
Rochester, and was iodinated as described (Wagner et al., 1987). 

Results 

To compare the polarity of the constitutive and regulated 
secretory pathways for vWf, human umbilical vein en- 
dothelial ceils were cultured on Transwell TM inserts (see 
Materials and Methods). Coverage of the growth surface and 
verification of the endothelial origin of these primary cul- 
tures were monitored by immunofluorescence staining using 
anti-vWf antiserum (Fig. 1). The endothelial cells reached 
confluence 4-7 d after plating (Fig. 1 a), and contained 
numerous Weibel-Palade bodies (Fig. 1, a and b). The multi- 
meric composition of vWf immunopurified from metaboli- 
cally labeled filter-grown endothelial cell lysates and culture 
medium (Fig. 1) was similar to that seen for endothelial cells 
cultured on conventional tissue culture plastic (Wagner and 
Marder, 1983). 

Diffusion of vWf between the apical and basolateral cham- 
bers was studied using a preparation of iodinated purified 
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Figure 1. Immunofluorescent 
staining of endothelial cells 
cultured on TranswelP M in- 
serts. Cells in a (photo- 
graphed through a 40x objec- 
tive) and b (100x objective) 
were stained using anti-vWf 
antiserum. Arrowheads point 
to Weibel-Palade bodies, c is 
a light microscopic photograph 
(100x objective), which illus- 
trates the size of the pores (ar- 
row) in relation to the size of 
the cells. Shown also is an au- 
toradiograph of a nonreduced 
2% agarose gel showing the 
multimeric pattern of vWf im- 
munopurified from cell ly- 
sates and culture medium of 
filter-grown cells. Bars, 10 #m. 

plasma vWf which contains all multimeric forms (Sporn et 
al., 1987). All studies were conducted with the endothelial 
cells on the filter. Diffusion of vWf was found to be concen- 
tration and time dependent. When tested over a 100-fold con- 
centration range (0.5-50 /~g/ml); 1-9% leakage occurred 
between chambers (apical to basolateral or basolateral to api- 
cal) during a 10-min period. Using 0.5/~g/ml iodinated vWf, 
the percent diffusion increased to ~10% in 30 min and to 
'~25% in 6 h. To minimize this diffusion, a 10-min collec- 
tion period was chosen for quantitating the partitioning of 
vWf originating from each secretory pathway between the 
apical and basolateral chambers. To determine if the diffu- 
sion properties differ for large vs. small multimers, aliquots 
from the above experiments were electrophoresed, nonre- 
duced, on 2% agarose gels. The multimeric pattern in all 
samples was indistinguishable (not shown). This rules out 
the possibility that "settling" of the large vWf multimers into 
the basolateral chamber occurs. 

Cons t i tu t i ve  Secret ion 

First, the polarity of the constitutive secretory pathway of 
vWf was studied. As a small amount of spontaneous release 
of vWf from Weibel-Palade bodies is known to occur (Ribes 
et al., 1987), the experiment was designed to minimize the 
contribution of vWf from this pool. The intracellular turn- 

over of Weibel-Palade bodies is slow (Sinha and Wagner, 
1987; Wagner et al., 1986); therefore, short labeling periods 
of 2 h, an insufficient time for significant labeling of this pool 
of vWf, were used. Previous results have shown that <5 % 
of the newly synthesized vWf enters the Weibel-Palade bod- 
ies during this time (Sporn et al., 1986). After removal of 
radiolabeled medium, cells were covered with unlabeled 
medium for 10 min. Then, vWf was immunopurified from 
both chambers and analyzed by gel electrophoresis. Fig. 2 
is a densitometric scan of a nonreduced 2% agarose gel 
showing the multimeric patterns of the constitutively secreted 
vWf. vWf secreted into both the apical and basolateral cham- 
bers had very similar multimeric compositions, indicating 
that neither pool had been significantly enriched by sponta- 
neous release of large multimers from the Weibel-Palade 
bodies. Reduced gel analysis revealed a trace amount of pro- 
vWf subunits (not shown), which is characteristic of consti- 
tutively secreted vWf (Wagner and Marder, 1984). Quantita- 
tion by densitometric scanning of the reduced gels showed 
that approximately equal amounts of vWf were secreted into 
both the apical and basolateral chambers (Table I), indicating 
that the constitutive secretory pathway was not polarized. 

gel origin 

L 

dimer tetramer large muttimem 

Figure 2. Multimeric pattern of vWf constitutively secreted into the 
apical and basolateral chambers. After metabolic labeling for 2 h, 
vWf secreted during a 10-min period without stimulation of cells 
was collected, immunopurified, and analyzed nonreduced on 2% 
agarose gels. Since only a small amount of vWf is secreted during 
this short time, densitometric scans of autoradiographs were chosen 
to illustrate the multimeric composition of the protein, vWf consti- 
tutively secreted into both chambers had similar multimeric pat- 
tern, containing all multimeric forms. 
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Table L Distribution of Secreted vWf between Apical 
and Basolateral Chambers 

Apical Basolateral SD n 

Constitutive pathway 54 46 3.6 4 
Regulated pathway 

A23187 11 89 8.9 5 
Thrombin 54 46 7.1 3 

Quantitation of metabolically labeled immunopurified vWf was performed by 
densitometric scanning of autoradiographs of reduced 5 % polyacrylamide gels. 
Percent of total secreted vWf appearing in each chamber is shown. 

Regulated Secretion 

To study the polarity of stimulated release of vWf from the 
Weibel-Palade bodies, filter-grown cells were metabolically 
labeled for 3 d with [3sS]cysteine. This assures complete 
labeling ofvWf stored in the Weibel-Palade bodies. After ex- 
tensive washing of the filters, culture medium was placed in 
the apical and basolateral chambers and collected after 10 
min to determine the amount of constitutive secretion that 
had occurred. A solution of 10 #M calcium ionophore 
A23187 in culture medium was then placed in both chambers 
and collected after 10 min. After immunopurification from 
the samples, vWf was electrophoresed (both nonreduced and 
reduced) on gels. Nonreduced gel analysis showed the re- 
lease of only the largest multimers of vWf, the majority of 
which appeared in the basolateral chamber (Fig. 3 a). Re- 
duced gel analysis (Fig. 3 b) revealed that, as is characteristic 
of releasate (Sporn et al., 1986), released vWf contained 
only mature vWf subunits. It was determined by densitomet- 
ric scanning of autoradiographs of the reduced gels that an 
average of 90% of release occurred in the basolateral direc- 
tion; the remaining 10% appeared in the apical chamber (Ta- 
ble I). When 10 ng/ml PMA was used as the secretagogue, 

similar results were obtained. On the average, eightfold 
more vWf was released in the presence of the secretagogue 
than was secreted constitutively during the collection period. 

Thrombin is a physiologic secretagogue that is formed at 
the site of a vascular injury. Besides causing release of vWf, 
thrombin has many other effects on endothelial cells (Weks- 
ler et al., 1978; Loskutoff, 1979). Exposure to thrombin ap- 
pears to disrupt the endothelial cell monolayer (Rafelson et 
al., 1973), making it permeable to dyes (Killackey et al., 
1986). In contrast to calcium ionophore and PMA stimula- 
tion, when thrombin (1 U/ml) was used as the secretagogue, 
release appeared to be nonpolarized, with approximately 
half of the released vWf found in each chamber after a 10- 
min treatment period (Table I). 

The microtubule-depolymerizing drugs nocodazol and 
colchicine are known to inhibit the stimulated release of vWf 
from Weibel-Palade bodies (Sinha and Wagner, 1987). To 
show that the polarized appearance of vWf in the basolateral 
chamber after stimulation is an inhibitable phenomenon and 
not the result of cell lysis or shedding of vWf from the ex- 
tracellular matrix, these experiments were performed in the 
presence of 1 #M colchicine or nocodazol. The presence of 
these agents inhibited the basolateral component of release 
by A23187 by ,o90% (Fig. 3). Lumicolchicine (1 /~M), an 
inactive stereoisomer of colchicine, did not cause significant 
inhibition of release (not shown). After nocodazol treatment, 
when cells were incubated for 1 h in nocodazol-free medium 
before ionophore stimulation, large multimers appeared pre- 
dominantly in the basolateral chamber, indicating that the 
effect of nocodazol was reversible (not shown). 

The Effect of  Ammonium Chloride on the 
Polarity of Release 

Ammonium chloride treatment of endothelial cells has been 
shown to inhibit multimerization of vWf dimers and thereby 
cause an alteration in the multimeric composition of vWf 
secreted by the cells (Wagner et al., 1986). A change in the 
multimeric composition was observed after a 1-h treatment 

Figure 3. Multimeric and subunit composition of vWf released by 
the calcium ionophore A23187 (10 #M) into the apical (A) and 
basolateral (B) chambers. Ceils were metabolically labeled for 3 d 
before ionophore treatment, and immunopurified vWf was analyzed 
both nonreduced on 2 % agarose gels (a) and reduced on 5 % poly- 
acrylamide gels (b), autoradiographs of which are shown. The high 
mol wt (HMW) multimers of vWf (a) composed only of mature vWf 
subunits (b) appeared predominantly in the basolateral chamber. 
Pretreatment of cultures with colchicine for 1 h blocked the appear- 
ance of vWf in the basolateral chamber after ionophore treatment. 

10 rain 
preincubation 

+ NH4CI 

10 min 
A23187- release 

+ NH4CI 

basolateral apical 

r! 

A_ 
Figure 4. Polarity of vWf release from Weibel-Palade bodies in the 
presence of ammonium chloride. After metabolic labeling for 3 d, 
endothelial cells were incubated with 25 mM ammonium chloride 
for 1 h. Cells were then preincubated for 10 min in the absence of 
ionophore, followed by 10-min ionophore stimulation, vWf was 
then immunopurified from samples collected from the apical and 
basolateral chambers. Ammonium chloride was present during all 
incubations. Shown are densitometric scans of autoradiographs of 
reduced 5 % polyacrylamide gels. The presence of the weak base 
did not alter the polarity of Weibel-Palade body release. 
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period, indicating that this was sufficient time for ammonium 
chloride to affect the pH of intracellular acidic compart- 
ments. A 1-h treatment with ammonium chloride did not 
cause a noticeable change in the number of Weibel-Paiade 
bodies in the cells as seen by immunofluorescence staining 
with anti-vWf antiserum (not shown). Therefore, a 1-h treat- 
ment period was chosen to study the effect of ammonium 
chloride on the polarity of release of preexisting Weibel- 
Palade bodies. After metabolic labeling of filter-grown cells 
for 3 d, radioactive amino acid-containing medium was re- 
moved and the cells were incubated for 1 h in medium con- 
taining 25 mM ammonium chloride. Medium containing 
both 25 mM ammonium chloride and 10 tzM A23187 was 
then placed in both the apical and basolateral chambers. Af- 
ter 10 min, the media were collected and vWf was immuno- 
purified and analyzed by gel electrophoresis followed by den- 
sitometric scanning. In the two experiments performed, one 
of which is shown (Fig. 4), 80 and 100% release of vWf oc- 
curred in the basolateral direction, indicating that the pres- 
ence of ammonium chloride did not alter the polarity of the 
release process. 

Discussion 

When endothelial cells cultured on polycarbonate membrane 
filters were stimulated with calcium ionophore A23187 (Ta- 
ble I) or PMA (not shown), release of vWf from the 
Weibel-Palade bodies was highly polarized, in that it oc- 
curred largely in the basolateral direction. The constitutive 
pathway of secretion of vWf, however, was not polarized, as 
approximately equal amounts of vWf were secreted into the 
apical and basolateral chambers (Table I). Previous work has 
shown that the two pathways of vWf secretion differ with re- 
gard to the molecular forms of the protein originating from 
them (Sporn et al., 1986), and these results show that the two 
pathways also differ with regard to polarity. When thrombin 
was used as a secretagogue for cells grown on filters, approx- 
imately equal amounts of vWf were found in the apical and 
basolateral chambers. Although thrombin-induced release 
may be nonpolarized, it is more likely that thrombin has 
other effects on endothelial cells that cause the apparent al- 
teration in polarity. For example, the documented rapid "con- 
traction" of endothelial cells and the resulting disruption of 
the endothelial cell monolayer by thrombin as well as hista- 
mine (Rafelson et al., 1973; Laposata et ai., 1983) could al- 
low a rapid escape of vWf from under the cells. 

Although diffusion of vWf between chambers was kept to 
a minimum by keeping treatment times down to 10 min, the 
small amount (10%) of vWf in the apical chamber after re- 
lease with the calcium ionophore or PMA could have re- 
suited from such a process. Alternatively, a small amount 
of release could have occurred directly into the apical com- 
partment. Electron micrographs of unstimulated endothelial 
cells of rabbit lung show Weibel-Palade body fusion with the 
apical plasma membrane (McNiff and Gil, 1983); however, 
such spontaneous release may not exhibit the same polarity 
as stimulated release. It is also possible that the transen- 
dothelial transport system (Simionescu, 1981) may carry 
some of the basolaterally released vWf to the apical surface. 
When cells are grown on solid supports vWf appears rapidly, 
free in solution, in the culture medium (Loesberg et al., 
1983; Sporn et al., 1986). In contrast, for cells grown on 

filters, a large basolateral reservoir exists which may effec- 
tively dilute the protein before it is transported across the 
endothelium to the apical chamber. The increase in plasma 
levels of vWf induced by treatment of patients with the vaso- 
pressin analogue 1-deamino-8-I~-arginine vasopressin is be- 
lieved to follow release of vWf from Weibel-Palade body 
stores (Handin and Wagner, 1988). If release occurs pre- 
dominantly in the basolateral direction in the vessel wall, as 
it does under our experimental conditions the origin of this 
increased plasma concentration may reflect only a small per- 
cent of the total released vWf or the existence of transen- 
dothelial transport. 

It is not known what cellular machinery is responsible for 
polarized secretion. It has been shown for other cell types 
that special membrane domains exist with which certain 
vesicle types fuse (Kelly, 1985). Possibly, the Weibel-Palade 
bodies fuse preferentiaUy with membrane domains found on 
the basolateral cell surface, whereas constitutive vesicles 
containing vWf fuse with the plasma membrane at random. 

The cellular cytoskeleton may be involved in directing the 
polarized delivery of Weibel-Palade bodies to the cell sur- 
face. Although constitutive vWf secretion is not affected, the 
microtubule-depolymerizing agents colchine and nocodazol 
were shown, in a previous study, to inhibit stimulated release 
of Weibel-Palade body contents (Sinha and Wagner, 1987) 
and, in the present study, to nearly completely inhibit polar- 
ized release. Depolymerization of microtubules has also 
been shown to inhibit protein secretion in other systems (An- 
toine et al., 1980; Hail, 1984; Howell and Tyhurst, 1982; 
Redman et al., 1981). The situation that exists for membrane 
protein transport, however, appears to be different. The rate 
and extent of VSV G protein surface expression in virus- 
infected fibroblasts is not altered due to microtubular disrup- 
tion (Rogalski et al., 1984), and conflicting reports of the 
effect of these agents on the polarity of viral protein transport 
exist. Rogalski et al. (1984) suggested that the polarity of 
VSV G protein surface expression is altered because of 
microtubular disruption. Rindler et al. (1987) observed no 
alteration in polarity of VSV G protein surface expression 
with microtubular disruption, but did observe altered polar- 
ity of influenza hemagglutinin surface expression. Salas et 
al. (1986) have reported no effect on polarity of VSV and 
influenza virus budding and little effect on the surface distri- 
bution of their envelop proteins when microtubules are al- 
tered. Microtubules may provide "tracks" for movement of 
vesicles (Schnapp et al., 1985) involved in regulated protein 
secretion, but may not be involved in transport of vesicles 
carrying plasma membrane glycoproteins. 

To understand the nature of the receptor-sorting signal in- 
teraction, recent studies of Caplan et al. (1987) have used the 
weak base ammonium chloride which raises the pH of intra- 
cellular acidic compartments (Maxfield, 1982; Dean et al., 
1984; Poole and Ohkuma, 1981). Since ammonium chloride 
disrupted polarized delivery of basement membrane compo- 
nents to the MDCK cell surface, the authors hypothesized 
that a weak base disrupts receptor-sorting signal interactions 
which may be dependent on acidic pH. The possibility that 
ammonium chloride exerts its effect by disrupting vesicular 
traffic rather than receptor-signal interaction, however, re- 
mained to be ruled out. In our experiments, the protein sort- 
ing (i.e., deposition of vWf in the Weibel-Palade bodies) 
occurred before treatment of the cells with ammonium chlo- 
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fide. In this case, ammonium chloride had no measurable 
effect on the polarized release from the Weibel-Palade bod- 
ies, making randomization of vesicular traffic by the weak 
base unlikely. We have shown previously that ammonium 
chloride does interfere with the targeting of vWf into the 
Weibel-Palade bodies (Wagner et al., 1986). It is likely that 
the information directing the polarity of secretion is a com- 
ponent of the secretory vesicle membrane, and that changes 
in intracellular pH do not affect the vesicle transport process. 

A platelet-derived growth factor-like chemotactic factor 
which induces chemotaxis and cell migration in fibroblasts 
and smooth muscle cells was shown also to be secreted pre- 
dominantly in the basolateral direction by cultured bovine 
aortic endothelial cells (Zerwes and Risau, 1987). Demon- 
stration that this factor is abluminally released supports the 
hypothesis that it functions to recruit vascular wall cells dur- 
ing morphogenesis or disease. From the result we obtained 
on the stimulated release of vWf from endothelial cells, we 
can also speculate on the role of released vWf in the vessel 
wall. Our results suggest that stimulation of endothelial cells 
with secretagogues that do not cause cell retraction results 
in basolateral release of vWf. Other physiologic secreta- 
gogues that are known to disrupt the integrity of the en- 
dothelial cell monolayer, such as thrombin (Rafelson et al., 
1973) and fibrin (Kadish et al., 1979), would cause either 
the immediate appearance of some of the large multimers in 
surrounding blood or the exposure of newly incorporated 
basement membrane vWf to the blood where it could con- 
tribute to the formation of a platelet plug. This pool of highly 
adhesive released vWf could also function to better reattach 
the injured endothelium to the vessel wall by binding the 
transmembrane vWf receptor to the vitronectin receptor 
(Charo et al., 1987; Cheresh, 1987) which is present in the 
adhesion plaques of endothelial cells (Dejana et al., 1988). 
Released vWf may also aid in the migration of endothelial 
cells into the wounded area, just as the addition of fibronectin 
to normal and transformed cells has been shown to stimulate 
the migration of fibroblasts (All and Hynes, 1978). Other 
evidence which supports the notion that vWf functions in 
events other than platelet adhesion is the fact that endothelial 
cells that line lymphatic vessels (which do not normally 
come in contact with platelets) were reported to synthesize 
vWf and to contain Weibel-Palade bodies (Tabuchi and 
Yamamoto, 1974). 

In contrast to the regulated secretion of vWf, constitutive 
secretion was not polarized. This pool of predominantly 
small multimers may provide a continuous supply of vWf to 
the basement membrane where it could be covalently cross- 
linked to other basement membrane constituents (Bocken- 
stedt et al., 1986). In addition, these small multimers se- 
creted constitutively into the bloodstream are suitable to 
serve as protective carrier molecules for factor VIII, the anti- 
hemophilic factor. 
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