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Abstract. In higher vertebrates the cytoskeleton of 
glial cells, notably astrocytes, is characterized (a) by 
masses of intermediate filaments (IFs) that contain the 
hallmark protein of glial differentiation, the glial fila- 
ment protein (GFP); and (b) by the absence of 
cytokeratin IFs and IF-anchoring membrane domains 
of the desmosome type. Here we report that in certain 
amphibian species (Xenopus laevis, Rana ridibunda, 
and Pleurodeles waltlii) the astrocytes of the optic 
nerve contain a completely different type of cytoskele- 
ton. In immunofluorescence microscopy using antibod- 
ies specific for different IF and desmosomal proteins, 
the astrocytes of this nerve are positive for cytokera- 
tins and desmoplakins; by electron microscopy these 
reactions could be correlated to IF bundles and des- 
mosomes. By gel electrophoresis of cytoskeletal pro- 
teins, combined with immunoblotting, we demonstrate 
the cytokeratinous nature of the major IF proteins of 
these astroglial cells, comprising at least three major 

cytokeratins. In this tissue we have not detected a ma- 
jor IF protein that could correspond to GFP. In con- 
trast, cytokeratin IFs and desmosomes have not been 
detected in the glial cells of brain and spinal cord or 
in certain peripheral nerves, such as the sciatic nerve. 
These results provide an example of the formation of a 
cytokeratin cytoskeleton in the context of a nonepithe- 
lial differentiation program. They further show that 
glial differentiation and functions, commonly cor- 
related with the formation of GFP filaments, are not 
necessarily dependent on GFP but can also be 
achieved with structures typical of epithelial differen- 
tiation; i.e., cytokeratin IFs and desmosomes. We dis- 
cuss the cytoskeletal differences of glial cells in differ- 
ent kinds of nerves in the same animal, with special 
emphasis on the optic nerve of lower vertebrates as a 
widely studied model system of glial development and 
nerve regeneration. 

C 
ELL architecture is largely based on cytoplasmic 
structures, collectively referred to as "the cytoskele- 
ton," which include the microfilaments, the microtu- 

bules, the intermediate-sized filaments (IFs), ~ as well as 
localized densities such as the membrane-associated plaques 
of desmosomes, hemidesmosomes, adherent junctions, and 
focal adhesions. Biochemical and immunological analyses 
have shown that many cytoskeletal elements are formed by 
proteins of multigene families whose members are differen- 
tially expressed, a certain pattern being characteristic of a 
given differentiation pathway. These different expression pat- 
terns of cell type-specific cytoskeletal proteins have led to 
the idea that the organization of a given type of cell and tissue 
is architecturally and functionally correlated with, and per- 
haps dependent on, a specific ensemble of cytoskeletal com- 
ponents. Among the different kinds of filament proteins, the 
IF protein family is particularly well known for its complex- 
ity and for the differential synthesis of IF proteins in cell 

1. Abbreviations used in this paper: GFP, glial filament protein; IF, inter- 
mediate-sized filament. 

type-specific patterns (for reviews see 32, 55, 62, 74, 78). 
Epithelial organization is typically associated with the ex- 
pression of cytokeratin IF proteins and the formation of 
desmosomes; mesenchymally derived cells usually express 
vimentin IFs and lack desmosomes; muscle cells contain 
desmin IFs with-as in myocardium-or without-as in other 
muscles-desmosomal junctions (for exceptions see 10, 29, 
45, 81). The two major cell differentiation pathways in the 
nervous system of avian and mammalian species have been 
shown to be characterized by the synthesis of two special 
kinds of IFs: neurofilaments are the hallmark of neuronal 
differentiation; whereas glial differentiation is typically as- 
sociated in astrocytes but also in certain ependymal and 
Schwann cells by the synthesis of large amounts of a specific IF 
protein, the glial fibrillary protein (GFP; 5, 8, 17-20, 24, 25, 
42, 48, 69, 75, 76, 83). 

Numerous studies of embryogenesis of the avian and mam- 
malian nervous system and of in vitro differentiation of neu- 
ral cells have shown that differentiating glial and neuronal 
cells are characterized by the absence of cytokeratin IFs and 
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the appearance of neurofilaments (in neurons) and of GFP 
(in certain glial elements, often in combination with vimen- 
tin) (7, 1%20, 23, 49, 64, 68, 69, 75, 79). A portion of the 
nervous system particularly intensely studied with respect to 
glial development is the optic nerve where the same princi- 
ples have been found (for reviews see 40, 58). These observa- 
tions of a gila-specific expression of GFP have led to the view 
that glial filaments are important for the development and 
cell type-specific functions of astroeytes. Here we show that 
the astroglial cytoskeleton of the optic nerve of various am- 
phibian species consists primarily of cytokeratin IFs and that 
the ceils of this tissue are interconnected by true desmo- 
somes. 

Material and Methods 

Animals and ltssue Preparations 
African clawed toads (Xenopus laevis) were obtained from the South Afri- 
can Snake Farm (Fish Hock, South Africa); frogs (Rana ridibunda), cap- 
tured in Turkey and on the Balkan Peninsula, were from Fivaz SA (Vallorbe, 
Switzerland); and newts (Pleurodeles waltlii) were from the Station d'accli- 
mation et d'tlevage (Bouillt-St. Paul, France). After decapitation, halves 
of enucleated posterior eye cups containing the optic nerve were frozen by 
immersion in melting isopentane (,,o -130oc) or were fixed for electron mi- 
croscopy. For comparison, whole tadpoles of X./aev/s (stage 42) were fro- 
zen for immunocytochemistry. For both immunocytochemistry and bio- 
chemical analyses of cytoskeletal proteins, various tissues (brain, spinal 
cord, and sciatic and optic nerves) were snap-frozen and stored at -70°C. 
For comparison, X. laevis kidney epithelial cells of line A6 were grown as 
described (XLKE cells; cf. 31, 39) often after labeling overnight with 
[35S]-methionine (150 #Ci/6-ml culture dish; added in minimal essential 
medium containing one fifth of the normal methionine concentration). 

Electron Microscopy 

Pieces of eye tissue, including samples containing the optic nerve, were 
fixed as described (cf. 63) or in the presence of 0.2% tannic acid as de- 
scribed previously for retinae (71). Samples were washed, postfixed, de- 
hydrated, embedded, and processed for ultrathin section electron micros- 
copy as described (63, 71). 

Ant ibod ies  

The following primary antibodies were used: (a) murine monoclonal anti- 
body lu-5 which reacts with a broad range of cytokeratins (29, 41; 
Boehringer Mannheim GmBH, Mannheim, FRG). (b) Murine monoclonal 
antibody Kspan 1-8.136 (from Progen Biotechnics, Heidelberg, FRG) 
which reacts with most basic type II cytokeratins of mammals as well as 
of amphibia (for Xenopus cytokeratins see specifically Figs. 10 and 6 of 
references 28 and 41, respectively). This antibody reacts with all Xenopus 
epithelia examined and with certain other tissues known to contain cyto- 
keratin 1/8 (41). (c) Guinea pig antibodies raised against purified bovine 
cytokeratins 8 and 18 (cf. 30, 74; Progen Biotechnics); these antibodies re- 
act with the same tissues as the murine antibody Kspan 1-8.136. (d) Murine 
monoclonal antibody VIM 3B4 specifically reacting with vimentin from 
amphibia, birds and mammals (39; Progen Biotechnics). (e) Guinea pig an- 

tisera against bovine vimentin (cf. 30, 31). (f) Murine monoclonal antibod- 
ies against desmoplakins I and II (DP 1&2-2.19) alone or in mixture with 
DP 1&2-2.15 (14), (g) Guinea pig antibodies against purified bovine 
neurofilament polypeptides (cf. 2, 33, 74). (h) Murine monoclonal antibod- 
ies against GFP were antibodies GF12.24 (2; Progen Bio~chnics) and anti- 
body G-A-5 (21; Boehringer Mannheim GmBH). (i) A rabbit antiserum 
against GFP (from Dakopatts, Hamburg, FRG). Secondary antibodies were 
goat immunoglobulins against mouse and guinea pig immunoglobulins and 
were coupled to Texas red or FITC (Dianova, Hamburg, FRG). 

Immunofluorescence and Immunoelectron Microscopy 
Cryostat sections of nerve-containing tissues and eye cups were prepared 
and reacted with antibodies as described (63). For immunoelectron micros- 
copy, the preembedding procedure for cryostat sections (cf. 15, 44) was ap- 
plied. Secondary antibodies were coupled to colloidal gold particles (Jans- 
sen Pharmaceutica, Beerse, Belgium). 

Gel Electrophoresis of Cytoskeletal Proteins and 
lmmunoblotting 

Defined tissue regions were dissected using a binocular microscope, snap- 
frozen, and then extracted with detergent and high-salt buffer ("cytoskeletal 
proteins;" cf. 1). The cytoskeletai proteins of cultured Xenopus A6 cells have 
been described (28, 36, 39). SDS-PAGE and two-dimensional gel elec- 
trophoresis, transfer to nitrocellulose paper, staining with Fonceau S, and 
immunoblotting were as described, using for the latter either 125I-labeled 
secondary antibodies or protein A (1, 28, 63). Alternatively, cytokeratins 
were identified by their specific binding of 125I-labeled polypeptides of the 
complementary cytokeratin subfamily after blotting (for example see 28). 

Results 

lmmunofluorescence Localization of Desmoplakins 
and Cytokeratins 
As in higher vertebrates the nervous tissues of amphibian 
brain and spinal cord contain neurofilaments in neurons and 
GFP in glial elements, and the same holds for the diverse 
types of peripheral nerves (e.g., 3, 20, 38, 66, 67). In addi- 
tion, we have recently shown (3) that in some amphibia the 
perineurial cells of the sheaths of peripheral nerves, as well 
as the arachnoidal cells of the meninges, are interconnected 
by desmosomes (Fig. 1 a) and contain cytokeratin IFs (Fig. 
1 b), an occurrence that has also been reported for some 
mammals but not for others (3, 61). Moreover, in the numer- 
ous amphibian peripheral nerves examined as well as in the 
brain and the spinal cord, the astrocytes were negative for 
both desmosomal proteins and cytokeratins (Fig. 1, a and b), 
with the surprising example of the optic nerve. 

In the optic nerves of all amphibian species examined 
>80% of glial cells were astrocytes (77). Immunofluores- 
cence microscopy on cryostat sections through these optic 
nerves revealed, in all three species examined, the presence 
of both desmoplakins and cytokeratins (examples ofX. laevis 

Figure 1. Immunofluorescence microscopy of frozen sections through sciatic (a and b) and optic (c-e) nerves of X. laevis (a-c) and R. 
ridibunda (d and e). (a, c, and d) Stained for desmosomes with monoclonal antibody to desmoplakins: DP 1&2-2.19 alone (a and c) or 
in a mixture with DP 1&2-2.15 (d). (b and e) Stained for cytokeratins with monoclonal antibody K,pan 1.-8.136 (b) or guinea pig antibod- 
ies (e). In the sciatic nerve (a and b), the reactions of both desmoplakins (a) and cytokeratins (b) are restricted to the perineurial cell layers 
(brackets) and are absent from the nerve interior (asterisks). In addition, the endothelial layer of a nerve-associated blood vessel is positive 
for cytokeratins (b). In the optic nerve (c and d), desmosomes are abundant in the perineural cell layers of the arachnoid (brackets) but 
also occur throughout the entire interior of the nerve (central portion in c and below the arachnoidal cell layers in d). Note the higher 
frequency of desmosomes in the perineural meninges and the subjacent region corresponding to the gila limitans. Reaction for cytokeratins 
in the optic nerve head (e) is often particularly strong in the arachnoidal cells (upper bracket) and in the glial elements of the nerve interior. 
Here a relatively weak reaction is seen in the adjacent retinal pigment epithelium (lower right brackeO. Bars: (a-c and e) 50 #m; (d) 25 #m. 
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Figure 2. Immunofluorescence microscopy of subsequent frozen sections ("step sections ~) through the optic nerve head of X. laevis using 
monoclonal antibodies to desmoplakins (DP 1&2-2.19; [a] epifluorescence; [b] phase contrast optics) and cytokeratins (K,pan b8.136; 
[c] epifluorescence; [d] phase contrast). Note intense labeling with both antibodies in the perineural meningeal sheath and in the glial 
structures of the nerve interior. Arrows denote the ends of the subarachnoidal space; i.e. the transition region into the retina. Note melanin- 
rich tissue elements. Bars, 50 gin. 

and R. ridibunda are shown in Fig. 1, c-e). With antibodies 
to desmoplakins a punctate pattern reflecting the distribution 
of desmosomes was found throughout the interior of the optic 
nerve (Figs. 1 c and 2 a) and was conspicuously concentrated 
in the epithelioid cell layers of the arachnoid and in the un- 
derlying glia limitans layer of astrocyte endfeet (Fig. 1, c and 
d). Similarly, intense staining for cytokeratins was observed 
not only in the meningeal cells but also in the glial elements 
of the nerve interior (Figs. 1 e, 2 c, and 3, a and d). Similar 
immunostaining patterns were obtained with various anti- 
bodies known to cross react with amphibian cytokeratins: 
i.e., monoclonal antibodies Kspan 1-8.136 (Fig. 2 c) and lu- 
5 (Fig. 3 d) and the guinea pig antibodies against mammalian 

cytokeratins 8 and 18 (Figs. 1 e and 3 a). Frequently, the 
cytokeratin reaction in the optic nerve was even stronger than 
that in the adjacent retinal pigment epithelium (e.g., Fig. 1 
e; for a detailed study of retinal pigment epithelium in vari- 
ous species see 63). 

When the distribution of cytokeratin-containing cells in 
the optic nerve was examined by double-label immunofluo- 
rescence microscopy using antibodies against various IF 
proteins, some of the glial elements within the optic nerve 
stained with both cytokeratin and vimentin antibodies, where- 
as other regions were positive only for cytokeratins (Fig. 3, 
a and b). The specificity of the vimentin immunostaining 
could be seen from the reaction with other vimentin-con- 
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Figure 3. Immunofluorescence microscopy of frozen sections through the optic nerve ofX. laevis after reaction with antibodies to cytokera- 
tins (a and d), vimentin (b and c), and neurofilament protein NF-L (e). (a and b) Double-label staining of the optic nerve head comparing 
the distribution of cytokeratins (a, guinea pig antibodies) with vimentin (b; murine antibody VIM 3134). Note that the perineural meninges 
and certain cell tracts of the nerve interior are stained with both antibodies. (c) Specificity of vimentin staining (VIM 3B4) within the 
optic nerve (NO) is shown by comparison with the staining of the surrounding interstitial tissue (IT) as well as the erythrocytes, the en- 
dothelium, and the smooth muscle wall (brackeO of a blood vessel (BV). (d and e) Double-label staining of an oblique section through 
the optic nerve for cytokeratins (d; antibody lu-5) and neurofilament protein NF-L (e; guinea pig antibodies). Note that the two patterns 
are not superimposable. The perineural meningeal cell layer (brackets) is not stained by neurofilament antibodies (e). Arrows point to some 
cells with prominent neurofilament contents. Bars, 50 #m. 
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Figure 4. Electron micrographs of sections through the interior of the optic nerve of the frog, R. ridibunda, showing glial filaments and 
desmosomes. (a) Survey picture showing the abundance of IFs in axonal processes of neurons (N), including myelinated ones, and of glial 
elements (G), which are exclusively astrocytes in this region. The arrow denotes a desmosome to which IF bundles attach. (b) Higher 
magnification picture showing an extended junction with typical desmosomal organization; i.e., two membranes and the central midline 
structure (parallel bars), the two cytoplasmic plaques (brackets), and attached IF bundles (i.e., tonofibrils; T). (c) Cross section of a small 
desmosome showing the two plaques (brackets) and the numerous IFs that are associated with the plaques, mostly abutting at a low angle. 
Bars: (a) 0.5/zm; (b and c) 0.25 t~m. 

taining cells, such as the fibroblasts of the perineural con- 
nective tissue, the endothelium, the smooth muscle cells of 
the vascular walls, and even the erythrocytes (Fig. 3 c; see 
also 39). Double-label comparison of the cytokeratin anti- 
body reaction with that of neurofilament protein antibodies 
(Fig. 3, d and e) shows that the cells containing cytokeratins 
were different from those positive for neurofilaments; i.e., 
the optic nerve axons. 

Also unexpectedly, monoclonal GFP antibodies, which 
strongly reacted with some ependymal structures and certain 
other glial cells of amphibian brain, spinal cord, and various 
peripheral nerves (not shown; cf. 20, 38), were practically 
negative on the optic nerve interior. The unspecified com- 
mercial rabbit GFP antiserum showed some diffuse staining 
of the optic nerve; however, this was difficult to assess be- 
cause the antiserum also reacted with proteins other than 
GFP (2). 

Electron Microscopy 
In ultrathin sections through Rana and Xenopus optic nerves, 
we noted abundant IFs in the glial cell processes surrounding 
both myelinated and nonmyelinated axons (Fig. 4 a). These 
IFs were often parallel, forming loosely woven fleeces (Fig. 
4, a-c) rather than the tightly packed bundles that are typical 
of cytokeratin filaments in diverse epithelial cells. In some 
astrocytic processes, these IFs were the only major cytoplas- 
mic structures seen (Fig. 4, a and c). Adjacent glial cells 
were connected by numerous desmosomes of various sizes, 
which revealed characteristic structural elements such as the 
midline, the pair of plaques, and the laterally attached bun- 
dles of IFs (Fig. 4, b and c). Occasionally, we noticed in- 
tracytoplasmic vesicles that were associated with plaque 
structures and IFs (Fig. 5 b) and probably represented en- 
docytosed desmosomal elements, as they have been de- 
scribed in other tissues (44). 

The Journal of Cell Biology, Volume 109, 1989 710 



Figure 5. Immunoelectmn microscopy of sections showing the astrocyte processes in the interior of the optic nerve of X. laevis after reaction 
with cytokeratin antibodies and secondary antibodies coupled to colloidal gold particles. (a) Survey picture showing a desmosome between 
two astrocytes (bracket) and the myelin sheath-covered axon of a neuronal element (N). Note that the gold particles are exclusively as- 
sociated with the IF bundles of the astrocytes. (b) Higher magnification of peripheral regions of two adjacent astrocytes connected by a 
desmosome (bracket) showing immunogold decoration of IF bundles. V, intracytoplasmic vesicle with desmosomal plaques, probably origi- 
nated by endocytosis. Bars: (a) 0.5 #m; (b) 0.2 #m. 

Electron microscopic immunolocalization of cytokeratins 
showed a specific reaction of immunogold particles with IFs 
of astroglial cells only, whereas the neuronal cells, including 
the neurofilaments, were devoid of any label (Fig. 5 a). Im- 
munogold decoration was associated with most of the glial 
cell IFs (Fig. 5 b), although we could not exclude the possi- 
bility that a minor subfraction of the IFs was negative and 
perhaps not of the cytokeratin type. Remarkably, the im- 
munogold particles were excluded from the desmosomal 
plaques proper (Fig. 5 b), perhaps reflecting the limited ac- 
cessibility of the antigenic structures within these dense 
webs. 

Identification of  Cytokeratins by Gel Electrophoresis 
and Immunoblotting 

To identify the proteins reactive with cytokeratin antibodies, 
we applied gel electrophoresis with immunoblotting. Mono- 
clonal antibody Kspan 1-8.136, which recognizes a number 
of basic (type II) cytokeratins in various species, reacted in 
immunoblots of SDS-PAGE-separated cytoskeletal proteins 
from optic and sciatic nerves of R. ridibunda with a compo- 
nent of *56,000 Mr (Fig. 6 b), probably the amphibian 

equivalent to human cytokeratin 8 (35). However, this kind 
of analysis did not allow definitive identification of the in- 
dividual cytokeratin polypeptides. Therefore, to further re- 
solve the cytokeratins present in the optic nerve, we sepa- 
rated the cytoskeletal proteins from microdissected optic 
nerve tissue of Rana (Fig. 7, a-d) and Xenopus (Fig. 7, e and 
f )  by two-dimensional gel electrophoresis and examined 
them by immunoblot reactions with different cytokeratin an- 
tibodies. The predominant component of the basic (type II) 
cytokeratin subfamily was the largest immunoreactive poly- 
peptide with an •56,000 Mr and appeared as a series of 
isoelectric variants, probably differently phosphorylated 
forms (Fig. 7, b-d and f ) .  As judged from its electropho- 
retic mobility and immunoreactivity, this polypeptide cor- 
responded to the "56k/5.8-6.0 protein" described by Quitschke 
et al. (67) in cytoskeletons of the optic nerve of Rana cates- 
beiana and seemed identical, or closely related, to the well- 
characterized cytokeratin 8/1 of X. laevis (35, 36). Three 
other major polypeptides reactive with cytokeratin antibod- 
ies were noted in the optic nerve cytoskeletons of both spe- 
cies (one with an *55,000 Mr and two with ,'o50,000 Mr in 
Xenopus [Fig. 7, e and f ] ;  and 52,000, 49,500, and 49,000 
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Figure 6. Identification of amphibian basic (type II) cytokeratin(s) 
related to human cytokeratin 8 among the cytoskeletal proteins of 
microdissected amphibian nerves by SDS-PAGE and immunoblot- 
ting. (a) Coomassie blue staining of SDS-PAGE-separated cytoskel- 
etal polypeptides from cultured kidney epithelial cells of X. laevis 
of line A6 (lane 2) in comparison with those of microdissected optic 
(lane 3) and sciatic (lane 4) nerves of R. ridibunda and reference 
proteins (lane 1 shows from top to bottom: myosin heavy chain, 
B-galactosidase, phosphorylase A, BSA, ovalbumin, carbonic an- 
hydrase). (b) Autoradiography of an immunoblot of a parallel SDS- 
PAGE (with a much lower protein loading in lane 2' compared with 
a, lane 2) obtained after reaction with monoclonal cytokeratin anti- 
body K~pan 1-8.136. The reactive bands in b correspond to a com- 
ponent of ,~56,000 Mr (indicated by dots in a). 

Mr in Rana [Fig. 7, a and c]). Similar proteins, although 
not identified as IF components, can also be seen in optic 
nerve tissue preparations of R. catesbeiana (67). 

When the cytoskeletal proteins of sciatic nerves (Fig. 7 g) 
and spinal cord interior (not shown) were examined in the 
same way, none of the major cytoskeletal polypeptides 
identified by Coomassie blue or Ponceau S staining was reac- 
tive with the cytokeratin antibodies (data not shown). Con- 
versely, none of the major cytokeratins identified in the optic 
nerve was identical with one of the three very minor 
cytokeratin-reactive polypeptide spots of the sciatic nerve 
cytoskeleton (Fig. 7 g, arrowheads). From the known distri- 
bution of immunocytochemical reactivity of the sciatic nerve 
(cf. Fig. 1 b) and the immunoblot-reactive components de- 
tected in the optic nerve cytoskeletons after prolonged ex- 
posure (not shown), we suggest that these minor cytokeratins 
are located in the perineurium of this nerve (3) and that the 
optic nerve astroglial and the perineurial cytokeratin poly- 
peptide complements may be different. Use of the various 
GFP antibodies (see Materials and Methods) has not iden- 
tiffed any of the stainable cytoskeletal polypeptides of the op- 
tic nerve as being GFP (not shown). 

The cytoskeletal proteins of the optic nerve of Xenopus 
were also directly compared with those of a well known cul- 
tured epithelial cell line from the same species. When [35S]- 
methionine-labeled cytoskeletal proteins of kidney epithelial 
A6 cells (for identifications of cytokeratins and vimentin in 
this line see 28, 36, 39) were coelectrophoresed with optic 
nerve cytoskeletal proteins, two of the cytokeratins in either 
sample (Fig. 7, h and i, open circles), in addition to the minor 

component vimentin, comigrated, whereas two polypeptides, 
probably cytokeratins, were specific either for the optic 
nerve or the A6 cells. 

Discussion 

Astrocyte differentiation is commonly believed to be as- 
sociated with (a) the formation of abundant IFs containing 
GFP as the predominant protein, sometimes together with 
some vimentin; and (b) the absence of epithelium-type 
cytoskeletal elements (i.e., cytokeratin IFs or desmosomal 
junctions). In view of the concept that GFP is a typical and 
major component of the glial differentiation program (8, 20, 
23, 25, 37, 42, 69, 75, 83), the results of the present study 
are unexpected since they show that the IF cytoskeleton and 
the intercellular connections of a certain type of glial cells-  
i.e., the astrocytes of the optic nerve in amphibia-are differ- 
ent from the cytoskeletal elements of many other nerves in 
the same species as well as from those of the astrocytes of 
the optic nerves of higher vertebrates. 

True desmosomes have not been identified in glial and 
neuronal cells of higher vertebrates, notably mammals (e.g., 
65; structures interpreted as desmosomes in reference 46 are 
probably erroneously classified), nor do these cells react 
with antibodies to desmosome-specific marker proteins. The 
situation is obviously different in lower vertebrates. Our im- 
munolocalization of desmosomal marker proteins supports 
and biochemically substantiates earlier suggestions, based 
on electron microscopy, that certain plaque-bearing junc- 
tions between astrocytes of amphibian optic nerves represent 
true desmosomes (e.g., 9, 53, 77), although here, as in most 
tissues, desmosomes cannot be unequivocally distinguished 
from other kinds of plaque-bearing adherent junctions by 
morphological criteria alone (cf. 32). In addition, immuno- 
staining, with antibodies against plakoglobin (cf. 15) has 
shown an even more extensive distribution of reactive spots 
(data not shown), indicating that other-i .e. ,  nondesmo- 
somal plaque-bearing junctions-are also involved in con- 
nections of astroglial cells. 

The identification of the nature of the connections between 
astrocytes is important in relation to the demonstrated me- 
chanical and electrical coupling of these cells, their special 
conductance properties, and the positive effects that the 
astrocyte-surface system exerts on growth and differentiation 
of certain subtypes of glial and neuronal cells. It is particu- 
larly relevant for our understanding of how neurite-astroglial 
adhesion and the supracellular architectural order character- 
istic of the optic nerve are established and maintained (9, 16, 
23, 27, 46, 49, 58, 70). Moreover, interactions between a spe- 
cial subtype of astrocytes and the surfaces of certain Schwann 
cells appear to help form the nodes of Ranvier (58, 82). With 
this in mind, however, our finding that in these amphibia des- 
mosomes occur only in the optic nerve astroglia, and not in 
glial elements of other neurological structures, is as puzzling 
as the apparent absence of desmosomes from all mammalian 
glial and neuronal elements, including optic nerves. More- 
over, the first identification of desmosomes in the glial sys- 
tem of some lower vertebrates should remind one that junc- 
tions with "desmosome-like" appearances have often been 
described in a wide range of invertebrate glial tissues (e.g., 
11, 12, 26, 47, 59, 72). 

Our observation that most, if not all, astrocytes of a nerve 
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contain abundant cytokeratin IFs is remarkable. While one 
of  these cytokeratins (,',,56,000 Mr) comigrates with, and is 
probably identical to, the major type II cytokeratin found in 
single-layered ("simple") epithelia, oocytes, early embryos, 
and certain smooth muscles of X. laevis and appears to be 
the amphibian homologue to human cytokeratin 8 (28, 35, 
36, 41), the other polypeptides are not yet directly compara- 
ble with any of  the characterized Xenopus cytokeratins (cf. 
28, 36, 54). 

Some of the cytokeratin-containing astroglial cells appear 
also to contain vimentin, though only in small amounts, 
since our gel electrophoretic analyses did not detect vimentin 
(cf. 39) among the major cytoskeletal proteins from optic 
nerve tissue. Unexpectedly, we did not detect significant 
GFP in the amphibian optic nerve despite the use of  antibod- 
ies that reacted with GFP in other nervous tissues of the same 
animals; nor was a GFP candidate among the major cytoskel- 
etal proteins identified in our gel electrophoretic analyses of 
optic nerve proteins. Remarkably, the literature on the occur- 
rence in fish and amphibian tissues of a protein closely re- 
lated to mammalian GFP is rather controversial: immuno- 
blot results with antibodies against mammalian GFP have 
been "very weak" or negative (20, 50, 67) or have shown 
reactions with an unusually large polypeptide ('~66,000 Mr) 
of uncertain nature (38). In addition, the published gel elec- 
trophoretic results of optic nerve proteins from various other 
amphibia also do not show a GFP candidate (e.g., 20, 67). 
Correspondingly, immunocytochemical studies have also 
shown no (60) or only "comparatively few" (20) structures 

Figure 7. Identification of IF proteins in microdissected nerve tissue 
of R. ridibunda (a-d) and X. laevis (e-g) by two-dimensional gel 
eleetrophoresis of cytoskeletal proteins (horizontal arrow, direction 
of isoelectric focusing; downward arrow, direction of SDS-PAGE) 
followed by immunoblotting. Proteins added for reference: B, BSA; 
A, skeletal muscle ot-actin. (a-d) Identification of cytokeratins in 
optic nerve tissue of R. ridibunda. (a) Ponceau S staining of pro- 
teins blotted on nitrocellulose filter. Major cytoskeletal polypep- 
tides are denoted by triple bracket, bracket, fork, and arrow. (b-d) 
Autoradiographs showing cytokeratins positively identified by im- 
munoblot with different solutions of guinea pig antibodies to cyto- 
keratins (b and c) and monoclonal antibody K,pan 1-8.136, which 
reacts only with cytokeratins of the basic (type H) subfamily (d). 
The major component of ~56,000 Mr, which appears as a series 
of isoeleetric variants, (denoted by the triple bracket on the left hand 
side) is a type II cytokeratin related to human cytokeratin 8 and 
probably corresponds to the 56,000-M~ protein described in R. ca- 
tesbeiana (see text). It is not clear whether the minor reactive com- 
ponent denoted by the left arrow (c and d) is a genuine minor 
cytokeratin polypeptide or a degradation product of the major type 

II cytokeratin. In addition, the guinea pig antibodies (c) react with 
two of the other major cytoskeletal polypeptides (denoted by the 
right arrow and the fork), which are probably acidic (type I) cyto- 
keratins. (e and f )  Identification of cytokeratins in optic nerve tissue 
of X. laevis by immunoblotting. (e) Ponceau S staining of proteins 
blotted on nitrocellulose filter. ( f )  Autoradiography showing the 
corresponding immunoblot after reaction with guinea pig cytokem- 
tin antibodies. Major cytokeratins are denoted by brackets. The up- 
permost component of ~56,000 Mr was a type II cytokeratin as 
shown by its reaction with antibody K, pan 1-8.136 (not shown). 
(g) Ponceau S staining of cytoskeletal polypeptides present in mi- 
crodissected sciatic nerve tissue of X. laevis. Note the high com- 
plexity of polypeptide composition. None of the components stained 
by the dye reacted with any of the antibodies to cytokeratins used. 
The positions of the three minor components that did react with 
cytokeratin antibodies are denoted by the arrowheads and are not 
visible by protein staining with Coomassie blue or Ponceau S. 
These are probably components of the perineurial epithelium (for 
details see Fig. 3). Note the numerous Ponceau S-stained proteins, 
most of which are probably noncytokeratinous IF proteins, which 
in this species have not yet been positively identified by two-dimen- 
sional gel electrophoresis. (h and i) Identification of cytokeratins 
among the cytoskeletal proteins of the optic nerve of X. laevis (h) 
by coelectrophoresis with l~SS]methionine-labeled cytoskeletal pro- 
teins from cultured kidney epithelial cells (line A6) of the same spe- 
cies (i; same gel electrophoretic system as in a and e). Brackets in 
h denote the same components as in e and fi, those in i denote the 
four major cytokeratins of A6 cells. Cytokeratin polypeptides de- 
noted by an open circle comigrate; those denoted by filled circles 
are exclusive to the specific cytoskeleton. V, vimentin (minor com- 
ponent in the nerve tissue shown in h); a, endogenous nonmuscle 
actin. 
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that cross react with antibodies to authentic mammalian GFP 
(see, however, 38, 57). While our results do not exclude the 
presence of minor amounts of GFP in optic nerve astrocytes, 
they obviously allow the conclusion that the large amounts 
of cytokeratins existing in these ceils exceed the cytoskeletal 
contributions of all other kinds of IE So GFP could only be 
a minor component. Interestingly, coexistence of cytokeratin 
and GFP IFs, has been demonstrated in some human myo- 
epithelial cells of salivary glands and in pleomorphic ade- 
nomas (2, 56) as well as in certain cells of ependymomas (51) 
and astrocytomas (13). 

Cytokeratins, which have also been reported immunocyto- 
chemically in astroglia of the optic nerve of a fish (52), have 
not yet been identified in astrocytes of higher vertebrates 
with the exception of a subpopulation of astrocytes in the rat 
optic nerve which contain cytokeratins 8 and/or 18, some of 
them apparently together with GFP IFs (Stumpp, S., and 
W. W. Franke, unpublished data). In the case of a relatively 
large polypeptide (,°65,000 Mr) that cross reacts with epi- 
dermal cytokeratins which has been reported to occur in 
ependymal cells and in a subclass of brain astrocytes of 
mouse and hamster (34), the cytokeratinous nature is un- 
clear. In this context, it is also worth mentioning a report (80) 
that astroglial IFs of degenerating optic nerves of mice con- 
tain two polypeptides of 45,000 and 55,000 Mr, which so far 
have not been related to one of the known IF proteins. 

Our observations allow several important conclusions. 
First, they show that the synthesis of cytokeratins and the as- 
sembly of cytokeratin IFs, although characteristically found 
in lining epithelia, is not restricted to epithelial cells. In this 
respect, the situation found in the three-dimensional as- 
troglial system of the amphibian optic nerve is similar to 
findings of cytokeratin IFs in other cells systems that do not 
border on a basal lamina and/or a luminal space, such as the 
three-dimensional mesh works of reticulum cells in the thy- 
mus and extrafollicular zones of lymph nodes (29, 32, 55, 
74). Moreover, small amounts of cytokeratins 8, 18, and 19 
(or their homologues) have been recently identified in certain 
amphibian and human smooth muscle tissues as well as in 
fetal myocardium of human and chicken (e.g., 10, 41, 45, 81). 
This shows that the expression of genes encoding certain 
cytokeratins, which in most cells are not coexpressed with 
muscle-, neuron-, or glial-type IF proteins, is not always 
regulated in a way mutually exclusive with the synthesis of 
these other kinds of IF proteins. The same arguments hold 
for the cell type-specific expression of desmosomal con- 
stituents. 

Second, the differentiation of astrocytes and the establish- 
ment of a functional astroglia does not depend on the forma- 
tion oflFs containing GFP, but might as well be effected with 
cytokeratin IFs. Hence, the formation of glial filaments may 
not be an indispensable feature of astrocyte differentiation 
and functions, at least in the optic nerve. 

Third, desmosomes can be formed in true astrocytes, at 
least in the optic nerve of lower vertebrates, where they are 
abundant and obviously contribute to the astroglial tissue 
framework, which is known for its high reorganization po- 
tential and effective neurite "guidance" particularly after 
damage to the nerve (58, 70). 

Fourth, the astrocytes of different nerves of the same ani- 
mal differ drastically in their cytoskeletal and junctional 
complements. This conclusion is also supported by ex- 

perimental results (43, 66, 67) showing that in fish, newts, 
and frogs the cytoskeletal protein composition of the optic 
nerve is profoundly different from that of the spinal cord, 
whereas only minor polypeptide differences between these 
two kinds of nervous tissues were noted in mammals. These 
authors (43, 66, 67) as well as Maggs and Scholes (50), who 
also described an optic nerve-"specific" IF protein of 56,000 
Mr, have related these proteins to vimentin and not to 
cytokeratins. The reason for these differences in the same 
cell type (i.e., the astrocyte) in different kinds of nerves is 
not clear. It is possible that the dominance of cytokeratin IFs 
and desmosomes is a special feature of the optic nerve, 
which in amphibia and fishes is known for its remarkable 
potential for remodeling (16) and regeneration, involving as- 
trocyte hypertrophy and neurite outgrowth (9, 67, 70; for 
regeneration of spinal cord elements in certain fish species 
see 4). 

During embryogenesis the formation of GFP filaments is 
a rather late addition to astrocyte differentiation, at least in 
birds (79) and mammals, in which this protein appears in 
precursor cells containing vimentin IFs (e.g., in several ro- 
dent species it is a strictly postnatal event in progenitor cells 
that have already become committed to glial differentiation 
in embryonal stages; cf. 6, 7, 17, 19, 23, 75). In contrast, the 
continual synthesis of desmosomal components and cytoker- 
atins as the predominant IF protein in astrocytes of a special 
portion of the nervous system, the amphibian and fish optic 
nerve, may represent a glial cell type that is "archaic" in evo- 
lution and "embryonic" in ontogeny (66), reflecting its neu- 
roepithelial origin. Remarkably, in Xenopus embryogenesis, 
certain simple epithelium-type cytokeratins are continually 
expressed, together with other cell type-specific IF proteins, 
in most tissues of the early embryo, the nervous system in- 
cluded (28, 38), whereas synthesis of cytokeratins in imma- 
ture astrocytes or astrocytic precursors has so far not been 
noted during development of birds and mammals (cf. 7, 17- 
20, 69, 75, 79). Recently, however, Bartlett et al. (6) have de- 
scribed the basic fibroblast growth factor-induced synthesis 
of marker proteins for neuronal and astrocytic differentia- 
tion, including GFP, in certain clones of murine neuroepi- 
thelial cells taken at embryonic day 10 and immortalized by 
transfection with the c-myc oncogene, although their report 
did not specifically examine the coexistence of GFP and 
cytokeratins in the same cells. Cytokeratins have also been 
reported to occur, occasionally and focally, in certain human 
ependymomas, astrocytomas, and ~primitive neuroectoder- 
mal tumors" (22, 51, 73). Thus, expression of cytokeratins 
may be characteristic of a certain type of astrocytes that re- 
mains in an embryonal proliferative state. 
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