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Abstract. Actin polymerization occurs in amebae of 
Dictyostelium discoideum after chemotactic stimulation 
(Hall, A. L., A. Schlein, and J. Condeelis. 1988. J. 
Cell. Biochem. 37:285-299). When cells are lysed 
with Triton X-100 during stimulation, an actin nuclea- 
tion activity is detected in lysates by measuring the 
rate of pyrene-labeled actin polymerization. This 
stimulated nucleation activity is closely correlated with 
actin polymerization observed in vivo in its kinetics, 
developmental regulation, and cytochalasin D sensitiv- 
ity. Actin polymerization is coordinate with pseudopod 
extension in synchronized populations of cells and is 
correlated with the accumulation of F actin in pseudo- 
pods. The stimulated actin nucleation activity is pres- 
ent in low-speed pellets from Triton lysates (cytoskele- 
tons) within 3 s of stimulation and is stable compared 

with the nucleation activity of whole cell lysates.Low- 
speed supernatants contain a reversible inhibitor of the 
actin nucleation activity that is itself regulated by 
chemotactic stimulation. Neither activity requires Ca 2÷ 
and both are fully expressed in 10 mM EGTA. Frac- 
tions containing the inhibitor do not sever actin ilia- 
merits but do inhibit actin polymerization that is 
seeded by fragments of purified F actin. These results 
indicate that chemotactic stimulation of Dictyostelium 
discoideum generates both an actin-nucleating activity 
and an actin-polymerization inhibitor, and suggest that 
the parallel regulation of these two activities leads to 
the transient phases of actin polymerization observed 
in vivo. The different compartmentation of these two 
activities may account for polarized pseudopod exten- 
sion in gradients of chemoattractant. 

p s~u ooPoo extension is one of the earliest morphologi- 
cal responses to stimulation with chemotactic hor- 
mones in amebae ofDictyostelium discoideum (7, 14, 

17, 20). The direction of pseudopod extension, in response 
to hormone challenge, determines the subsequent polarity of 
cytoplasmic streaming, cell locomotion, and chemotaxis (29, 
32). Therefore, understanding ameboid chemotaxis requires 
analysis of how chemotactic stimulation elicits pseudopod 
extension. 

In the less complex gametes of Thyone and Chlamydo- 
monas, surface signals elicit pseudopod extension, which is 
driven by actin polymerization. These signals elicit location- 
specific pseudopod extension by activating discrete nuclea- 
tion sites for actin polymerization. Cross-linldng of the 
newly assembled actin generates a rigid structure capable of 
pushing out the cell membrane during subsequent polymer- 
ization and osmotic swelling (11, 31). 

It has been shown previously that stimulation of amoeboid 
cells of Dictyostelium discoideum with chemoattractants re- 
suits in the rapid and reversible polymerization of actin that 
is correlated with cell shape (8, 20) and cross-linking of ilia- 
merits into the actin cytoskeleton (12, 24). The amount of F 
actin in cells increases from 35% in resting to >60% in stim- 
ulated cells (20). About half of this F actin in resting cells 

is recovered in Triton cytoskeletons, whereas more than two- 
thirds is recovered in cytoskeletons 10 s after stimulation (12). 
These results suggest that there may be nucleation and fila- 
ment cross-linking sites associated with the cell cortex of 
Dictyostelium amebae that are regulated by chemotactic hor- 
mones. 

Recent work has demonstrated that an actin nucleating ac- 
tivity is present in polymorphonuclear leukocytes that is 
regulated by chemotactic peptides (6). Using an assay here 
that is similar to that described for leukocytes we investigate 
the possibility that Dictyostelium amebae contain an actin 
nucleation activity that is regulated by the chemotactic hor- 
mone cAMP. 

Materials and Methods 

Reagents 

2~leoxy~..AMP, 8-bromo-c, AME and DMSO were obtained from Sigma 
Chemical Co., St. Louis, MO. cAMP was obtained from Bochriuger- 
Mannheim Biochemicals, Indianapolis, IN and N(l-pyrenyl) iodoacetamine 
was obtained from Molecular Probes, Inc., Eugene, OR. All other materials 
ware reagent grade. Spectr~uorimeter cuvettes were obtained from Thomas 
Scientific, Philadelphia, PA (cat. n o .  2300-240). 
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Dictyostelium discoideum strain AX-3 was grown in suspension in HL5 
medium as described elsewhere (20). Cells were harvested from growth 
medium at densities between 2 and 6 x 106/ml and starved in suspension 
at a density of 4 x 106/ml for 6-8 h in 14.8 mM NaH2PO4, 5.2 mM 
K2HPO4, pH 6.6 at 22°C with shaking at 170 rpm. Caffeine was added to 
3 mM for 25-40 min before use of the cells, conditions under which D. dis- 
coideum adenylate cyclase is inhibited and endogenous intercellular signal- 
ling is prevented (4). Unless otherwise indicated all manipulations and as- 
says were done at 22°C. 

Cells were stimulated with cAMP, one of its analogues, or with the buffer 
used to prepare the stimulus stock by adding 1 part of stock to 100 parts 
of cells while shaking continuously at 170 rpm in beakers that had five times 
the capacity of the celt suspension. Based on experiments with soluble dyes, 
90% of the final cAMP concentration was achieved within 1 s of mixing 
under these conditions (data not shown). 

Stocks of cAMP or its analogues were prepared in 14.8 mM NaH2PO4, 
5.2 mM K2HPO4, and 1 mM EGTA, pH 7.0. 

Preparation of Pyrene-labeled Actin and Fluorescence 
Measurements 
Pyrene-labeled actin was prepared by reacting rabbit muscle actin with N(I- 
pyrenyl)iodoacetamide as described by Cooper et al. (10) except that N(I- 
pymryl)iodoacetamide was dissolved in DMSO to prepare the stock. Pyrene- 
labeled and unlabeled G actin were chromatographed on Sephadex G-150 
(Pharmacia Fine Chemicals, Piscataway, NJ) before use. Both pyrene-labeled 
and unlabeled G actin were stored by dialysis against buffer A (2 mM Tris- 
C1, 0.2 mM ATP, 0.5 mM DTT, 0.2 mM CaCi2) at an approximate concen- 
tration of 20 #M and used within 3 wk as a mixture of ,,o30% pyrene-labeled 
and 70% unlabeled G actin. Except where indicated, actin was added to ly- 
sates, cytoskeletons and supernatants at 10 s after preparation to a final con- 
centration of 2-3 #M. 

Fluorescence was measured in a spectrofluorometer (MPF-3L; Perkin- 
Elmer Corp., Norwalk, CT) with an excitation wavelength of 365 nm (slit 
width 3 nm) and an emission wavelength of 407 nm (slit width 10 nm). Sam- 
ples were exposed to the exciting light only intermittently to avoid pho- 
tobleaching. Cell lysates and other cell fractions had no measurable auto- 
fluorescence at these wavelengths. 

The NBD-phallacidin binding assay was performed as detailed by Hall 
et at. (20). 

Preparation of Cell Lysates, Cytoskeletons, 
and Supernatants 
At various times after stimulation of cells with cAMP (or buffer), one part 
of the starved cell suspension was added to five parts of lysis buffer (50 mM 
KCI, 5 mM DTT, 20 mM Pipes, 1 mM ATE 10 mg/ml BSA, 1 #g/ml 
chymostatin, leupeptin, and pepstatin, 1-10 mM EGTA, 0.1-2 mM MgCI2 
and 0.5-0.9% Triton X-100). Variations in the concentrations of EGTA, 
MgCI2, or Triton X-100 did not result in significant differences in the quan- 
titative results described below except where noted (see Results). If the rate 
of actin polymerization was to be measured directly in the lysates, cells were 
lysed in a spectrofluorometer cuvette. If the lysate was to be separated into 
cytoskeletal pellet and supernatant fractions, cells were lysed in a microfuge 
tube which was immediately centrifuged at 8,600 g for 1-3 min. The super- 
natant was removed and cytoskeletons were resnspended in a volume of lysis 
buffer equal to that of the original lysate. Variations in the time of centrifuga- 
lion did not result in significant quantitative differences in recovery of activi- 
ties in either the cytoskeleton or supernatant, so 1 min was used routinely. 
The concentration of cellular protein was 0.18 mg/ml in the total lysate, 0.13 
mg/ml in supernatant, and 0.05 mg/ml in resuspanded pellets. 

Measurements of the Stability of the Actin Nucleation 
Activity in Lysates and Cytoskeletons 
Cell lysates were prepared at various times after stimulation. Lysates were 
held at 22°C for the times indicated and then a mixture of pyrene-labeled 
and -unlabeled G actin was added to 2 t~M final concentration. Values ob- 
tained by fluorescence emission for the initial rate of actin polymerization 
in lysates that were held for 10 s before addition of G actin were taken as 
100% because 10 s was the briefest interval that could be obtained reprodu- 
cibly. 

CytoskeIetal and suparnatant fractions were obtained as described above. 

The cytoskeletal pellets were resuspended either in supernatants or lysis 
buffer. The time after lysis was calculated from the time of resuspension for 
pellets, to the addition of G actin. 

Severing Assay 
An assay similar to one described by Lind et al. (22), for gelsolin, was used 
to measure the severing activity of Dictyostelium severin and supamatants. 
60 #1 of freshly prepared supernatant derived from cells mixed in lysis 
buffer containing 0.9 % Triton X-100, was incubated with 15/~M F actin con- 
raining 30-40% pyrene-labeled actin for 10 s. This mixture was diluted 
abruptly by 50-100-fold into 20 mM Tris pH 7.8, 0.2 mM ATE 0.2 mM beta- 
mercaptoethanol, 2 mM MgC12, 50 mM KCI, and 0.02% NaN3 containing 
either 1 mM EGTA or 1 mM CaCl2. The rate of depolymerization was 
measured as the initial rate of fluorescence decrease after dilution of the F 
actin mixture. 

The severing activity of severin was measured as described for the super- 
natant above except that 60 #l of purified severin solution (kind gift of Alice 
Brock and Joel Pardee, Cornell University School of Medicine) was sub- 
stituted for the supernatant. 

Capping Assay 
Supernatants were prepared as described above and either diluuxt with lysis 
buffer or not and then added to spectrofluorometer cuvettes. A mixture of 
pyrene-labeled and unlabeled actin was added to a final concentration of 2 
#M. Between 30 s and 5 min later, 1 #M unlabeled F actin was added and 
the initial rate of actin polymerization was recorded. 

Results 

Identification of Actin Nucleation Activity in Lysates 
from Stimulated Cells 
Cells were lysed with Triton X-100 after stimulation with 
cAMP or its analogues and the amount of nucleation activity 
was measured as the increase in the initial rate of polymer- 
ization of exogenously supplied actin. As shown in Fig. 1, 
the initial rate of actin polymerization was increased signifi- 
cantly in lysates that were prepared from cells after stimula- 
tion with 2'deoxy-cAMP as compared with lysates from un- 
stimulated cells. Stimulation of cells with the buffer used to 
prepare the cAMP stocks resulted in lysates that did not cause 
increases in the initial rate of actin polymerization and data 
that were indistinguishable from those obtained with lysates 
from unstimulated cells. 

It is clear for several reasons that the ability of lysates from 
stimulated cells to increase the initial rate of actin polymer- 
ization is mediated by the plasma membrane cAMP receptor. 
First, increases in initial polymerization rate in lysates fol- 
lowed a dose-response relationship (Fig. 2) similar to that 
seen for increases in F-actin content in whole cells (20) and 
chemotaxis (3), both of which are mediated by cell surface 
cAMP receptors. Next, stimulation of cells with 2'deoxy- 
cAMP, an analogue of cAMP that activates the cell surface 
cAMP receptor but neither intracellular cAMP receptors 
(30) nor cAMP-dependent protein kinase (19, 26), caused in- 
creases in the initial polymerization rate that were very simi- 
lar to changes in F actin content elicited by cAMP in vivo 
(Fig. 3). Stimulation of cells with 8-bromo-cAMp, an ana- 
logue of cAMP that interacts very weakly with the cell sur- 
face cAMP receptor but strongly with the intracellular 
cAMP receptor (30), was ineffective at eliciting increases in 
the initial rate of actin polymerization in cell lysates. Finally, 
addition of cAMP or 2'deoxy-cAMP to lysates after lysis was 
complete did not elicit increases in the initial rate of actin po- 
lymerization (data not shown). 
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Figure 1. Lysates from stimu- 
lated cells contain elevated ac- 
tin nucleation activity. The 
initial rate of actin polymer- 
ization was measured by follow- 
ing the fluorescence of pyrene- 
labeled rabbit muscle actin over 
time. Cells were stimulated 
with 5 ttM 2'deoxy-cAMP and 
lysed at the times indicated 
below. Symbols indicate 2/.tM 
G actin polymerizing in the 

presence of: (&) 0.5 #M unlabeled F actin, (O) no addition of ly- 
sate or F actin, (zx) 0 s lysate, (c3) 8 s lysate. The 0.5 #M F actin 
was used to seed polymerization to demonstrate the rate of polymer- 
ization possible in this buffer in response to a known concentration 
of F actin. 

Increases in the rate of  nucleation in lysates from stimu- 
lated cells are not due to variations in the amount of  poly- 
merizable actin because endogenous Dictyostelium actin 
contributes <4  % of the total actin in the assay cuvette. Fur- 
thermore, the final extent of polymerization is slightly greater 
in unstimulated lysates as compared with that in stimulated 
lysates, the opposite result of  that expected if stimulation in- 
creases the amount of  polymerizable actin. Finally, incuba- 
tion of exogenous G actin with lysates for various times up 
to several hours had no effect on the polymerizability of actin 
as measured by fluorescence emission. 

Increases in the initial rate of  actin polymerization in ly- 
sates from stimulated cells varied with time after stimula- 
tion, as shown in Fig. 3. The nucleation activity peaked 
at ,05 s and then decreased below prestimulation levels at 
"020 s. This was followed by a second broad peak of nuclea- 
tion activity beginning by "025 s and peaking ,065 s. Varia- 
tions in nucleation activity after stimulation were correlated 
with increases in F actin content measured in situ using the 
NBD-phallacidin binding assay (Fig. 3). Similar results were 
obtained when vegetative cells were stimulated with folic 
acid (8, 21). 

Actin polymerization occurring in cell lysates from stimu- 
lated cells was effectively inhibited by low concentrations of  
cytochalasin D (Fig. 4), suggesting that the nucleation activ- 
ity results in filaments that grow at the preferred, i.e., barbed, 
end. The amount of  inhibition of actin polymerization in cell 
lysates at the various cytochalasin D concentrations was in- 
distinguishable regardless of  the time after chemoattractant 
stimulation when the lysate was prepared (Fig. 4), indicating 
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Figure 2. Dose-response be- 
havior of actin nucleation ac- 
tivity (measured as described 
in Materials and Methods) in 
lysates prepared 8 s after 2'de- 
oxy-cAMP stimulation. Each 
point represents the average of 
two to five determinations. Rel- 
ative rate equals the initial rate 
of actin polymerization in ly- 
sates from stimulated cells di- 
vided by that in lysates from 
unstimulated cells. Error bars 
indicate SDs. 

T 
1 .6  - / 1 .6  

}' ++.+°+ +.,,++ o 
O~ 1 . 4 -  X S / e  

, , '", .k , , - .  ? 

- -~ 1 . 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . 0 0 ~  

0 . 8  0 . 8  

T 0 . 6  - - , • • , . . , . . , • . , . . , 0 . 6  

0 15  3 0  4 5  6 0  7 5  9 0  

T i m e  o f f e r  S t i m u l o t i o n  ( s )  

Figure 3. The amount of actin nucleation activity recovered in cell 
lysates varies with time after stimulation. Relative rate equals the 
initial rate of actin polymerization in lysates from stimulated cells 
divided by the average of rates in lysates from unstimulated cells 
over the same duration. The control rate does not change over the 
interval shown. Error bars are SDs representing at least three sepa- 
rate experiments. ( , )  Relative rate after stimulation with 5 /zM 
2'deoxy-cAMP; (o) relative content of F actin in situ measured by 
NBD-phallacidin binding after stimulation with 1 #M cAMP. 

that polymerization was dominated by barbed end growth at 
all of the times tested. The residual rate of  polymerization 
in the presence of cytochalasin D, which is equal to or below 
prestimulation rates (arrow in Fig. 4, inset) is probably due 
to pointed-end assembly, which is only slightly affected by 
cytochalasins at the concentrations used here (2). 

Actin Nucleation Activity Is Associated with Triton 
Cytoskeletons 

The solubility of the actin nucleation activity was investigated 
by pelleting the Triton cytoskeletons from lysates using brief, 
low g force centrifugation. The pellet fraction, which is defined 
here as the triton cytoskeleton, contains ,030% of the total 
cellular protein, and ,,o20% of the pelleted protein is actin, 
according to densitometric measurements (12). Cytoskele- 
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Figure 4. Cytochalasin D inhibits the elongation of actin filaments 
in lysates from stimulated cells. The initial rate (as defined in Fig. 
1) of actin polymerization in lysates prepared at 3 and 10 s after 
stimulation of cells with 5 x 10 -7 M 2'deoxy-cAMP is shown. 
The arrow on the y-axis indicates the initial rate of actin polymer- 
ization in unstimulated lysates. Similar results were obtained with 
lysates at 25 s after stimulation of cells with 2'deoxy-cAMP. Bars 
are SDs from three experiments. 
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Figure 5. The aetin nucleation activity of lysates from stimulated 
cells pellets with the Triton cytoskeleton. The plot shows the initial 
rate of actin polymerization in association with cytoskeletons from 
stimulated cells divided by the initial rate of actin polymerization 
in association with cytoskeletons from unstimulated cells versus 
time after stimulation. 5 #M 2'deoxy-cAMP was used as the chemo- 
tactic hormone and pellets were formed at 8,700 g for 1 min. Simi- 
lar results were obtained with 8,700 g for 30 s and 3 min. Error 
bars show SE of the mean for at least four experiments. 

tons prepared by similar procedures to that described here 
have been shown by electron microscopy to be composed of  
a network of cortical microfilaments (16, 18), 

Measurements of  the amount of nucleation activity in cyto- 
skeletal pellets and supernatants by fluorescence emission 
demonstrates that all of  the detectable activity is associated 
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Figure 6, The actin nucleation activity of lysates from stimulated 
cells decays rapidly back to prestimulation levels, whereas the actin 
nucleation activity of pelleted cytoskeletons is stable but is inac- 
tivated by supenaatants. Cells were stimulated wi~ 0.5 tam 2'de- 
oxy-cAMP for 8 s and then lysed. Supernatants and pellets (cyto- 
skeletons) were separated by brief centrifugation and pellets were 
resuspended in lysis buffer (&) or supernatants from unstimulated 
cells (I). The plot shows the amount of nucleation activity remain- 
ing in lysates (o) or resuspended cytoskeletons as a fund;on of the 
time elapsed between cell lysis or resuspension of pellets, respec- 
tively, and addition of exogenous G actin. After the nucleation ac- 
tivity of cytoskeletons was allowed to decay to 0% in the presence 
of unstimulated supematant, cytoskeletons were pelleted and resus- 
pended in unstimulated supernatant (u, n = 4) or lysis buffer (zx, 
n = 5) and reassayed. Error bars denote SEM, 
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Figure 7. Lysate supernatants slow the rate of depolymerization of 
F actin. (.4) Pyrene-labeled F actin was mixed with (1) supernatants 
prepared from unstimulated cells; (2) lysis buffer; (3) Purified D/z- 
tyo~telium severin in lysis buffer; (4) purified Dictyostelium severin 
in supernatant from unstimulated cells. 3 and 4 were at a molar ratio 
of 1 sever;n/30 actin monomers. F actin was then diluted to 0,15 
#M in a buffer containing mill;molar calcium. The amount of 
purified severin added was equal to the amounts of endogenous 
severin predicted to be present in the supernatant (34). Plot shows 
typical traces of fluorescence decrease due to depolymerization af- 
ter dilution. (B) The experiment was repeated with supematants 
prepared from ceils at various times after stimulation with 0.5 #M 
2Ueoxy-cAMP. F actin was diluted to 0.15/~M and the rate of depo- 
lymerization was recorded as in A. The initial rate of depolymeriza- 
tion (decrease in arbitrary units of fluorescence/rain) in the pres- 
ence of lysate supernatant (A) is low compared with that in lysis 
buffer (o) at all times sampled. Error bar is the SD from live ex- 
periments. 

with the cytoskeleton. This is true regardless of the time after 
stimulation when the measurement is made (Fig. 5). Further- 
more, the amount of  nucleation activity present in the cyto- 
skeleton varies after stimulation and follows a pattern that is 
similar to that observed for variations of  the nucleation activ- 
ity in lysates after stimulation. 

Actin Nucleation Activity in the Cytoskeleton Is 
Regulated by a Soluble Factor 

The stability of the aclin nucleation activity in ]ysates was 
investigated as summarized in Fig. 6. Lysates prepared from 
cells at 8 s after stimulation contained nucleation activity that 
decayed back to prestimulation levels rapidly with a half life 
of  30 s. Similar results were obtained with lysates from cells 
that were stimulated for 65 s. 

However, nucleation activity associated with cytoskeletons 
remained stable compared with that in lysates when resus- 
pended in lysis buffer (Fig. 6), suggesting that a soluble fac- 
tor remaining in the supernatant is responsible for decay of  
the nucleation activity in lysates. 

To study this, pellets were resuspended in supernatants 
prepared from either stimulated or unstimulated cells. Addi- 
tion of  supernatants to cytoskeletons resulted in rapid decay 
of  the nucleation activity (Fig. 6). Inhibition of  nucleation 
activity was obtained with supernatants prepared from un- 
stimulated cells as well as cells that bad been stimulated for 
various times. Inhibition of  the nucleation activity by super- 
natants was not caused by proteolysis of  either the nucleation 
site or exogenous actin because the addition of  the protease 
inhibitor cocktail described in Materials and Methods actu- 
ally caused a slight increase in the amount of  inhibition oh- 
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served and incubation of G actin with supernatants for sev- ~6- 
eral hours had no effect on the polymerizability of the actin 14. 
(data not shown). Furthermore, cytoskeletons were mixed 0~ : 
with unstimulated supernatant and their nucleation activity ~ lo 
was allowed to decay to unstimulated values. When these ~ s 
cytoskeletons were pelleted and resuspended in lysis buffer o 

"1 
to remove the supernatant, the nucleation activity was recov- IT 4 
ered while cytoskeletons resuspended in supernatant re- 2 
mained inactive (Fig. 6). 

0 
0 

Properties of the Inhibitor of Actin Nucleation 

Inhibition of the nucleation activity that is associated with 
the cytoskeleton might result from severing of filaments. To 
investigate this possibility, the severing activity of superna- 
rants was measured as described in Materials and Methods. 
As shown in Fig. 7 A, dilution of pyrene-labeled F actin in 
buffer leads to loss of fluorescence because of depolymeriza- 
tion. Upon addition of the severing protein severin, to an 
amount equal to endogenous severin in crude supernatants 
(34), the rate of depolymerization in buffer is increased due 
to an increase in the number of filament ends. However, upon 
dilution of F actin into supernatants capable of inhibiting the 
actin nucleation activity of cytoskeletons, the rate and extent 
of actin depolymerization was greatly decreased even rela- 
tive to that of F actin alone. Addition of purified severin to 
these supernatants increased the rate of depolymerization to 
that in buffer containing severin, indicating that an inhibitor 
of severin was not present in the supernatant. Similar results 
were obtained with supernatants assayed in the presence of 
either mM calcium or EGTA, whereas severin required 
Ca 2+ for severing activity. 

Furthermore, supernatants decreased the rate of actin de- 
polymerization regardless of the time after stimulation when 
lysates were made (Fig. 7 B). Similar results were obtained 
in the presence of either millimolar calcium or EGTA. These 
results indicate that supernatants capable of inhibiting the 
nucleation activity of cytoskeletons do not exhibit severing 
activity under our assay conditions. 

Next, the possibility that inhibition of the nucleation activ- 
ity might result from capping of filament ends was inves- 
tigated. The capping activity of supernatants was measured 
as described in Materials and Methods. Because the assay 
was done in lysis buffer, the barbed end of the filament is the 
preferred end for polymerization (25). As a result the cap- 
ping assay described here is most sensitive to blockade of the 
barbed end. 

As shown in Fig. 8 A, addition of supernatant caused inhi- 
bition of the initial rate of seeded actin polymerization. Fur- 
thermore, the final extent of polymerization was consistently 
lower in the presence of supernatant than in buffer alone. The 
amount of supernatant protein required for inhibition is 
shown in Fig. 8 B. About 16 ~tg/ml of supernatant protein was 
sufficient for 50% inhibition of the seeded rate of actin poly- 
merization in a solution containing 130 #g/ml of actin. Cal- 
cium was not required for inhibition, because similar results 
were obtained with concentrations of EGTA in the lysis 
buffer ranging from 1 mM (free Ca 2÷ of '~0.1 ttM) to 10 
mM. As the EGTA concentration was increased, the amount 
of inhibition observed increased by a factor of 1.2 at 10 mM. 

The inhibitory activity of the supernatant was not because 
of alterations in the polymerizability of actin since preincu- 
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Figure 8. Lysate supernatants inhibit the initial rate and decrease 
the final extent of polymerization from F actin seeds. Lysate super- 
natants from unstimulated cells were prepared in lysis buffer con- 
mining 5 mM EGTA. Polymerization was initiated with I t~M unla- 
beled F actin. (A) Polymerization was recorded as fluorescence 
increase over time in lysis buffer alone (0), 40% supernatant (0.4), 
or 100% supernatant (1.0). The extent of polymerization after 18 h 
at 22"C is indicated for 0 and 1.0. Differences in the extent of poly- 
merization were significant at 18 h as indicated by the SDs that fall 
within the symbols (n = 4 for each). (B) The percent of inhibition 
of the initial rate of seeded actin polymerization increases with the 
amount of supernatant protein added. 0% inhibition is the rate of 
seeded actin polymerization in lysis buffer alone. 

bation of G actin with freshly prepared supernatants for 0 or 
20 min had no effect on the final extent of polymerization. 
Aging of supernatants at 22°C before assay caused a slight 
drop in the amount of inhibition (20% decrease after 30 min) 
indicating that the inhibitory activity is unstable in the crude 
supernatant (data not shown). 

Finally, the inhibitory activity of supernatants is not likely 
to be due to Dictyostelium profilin that was carried in with 
the supernatant since, assuming the content of profilin in 
Dictyostelium is similar to that in Acanthamoeba (25), there 
would be only 1 Dictyostelium profilin for every 75-80 actin 
monomers in the assay mixture. 

The Inhibitor of Actin Nucleation Is Regulated after 
Chemotactic Stimulation 

To determine whether the inhibitory activity in the superna- 
tants was regulated by stimulation with cAMP, lysates were 
prepared from cells at various times before and after stimula- 
tion. Supernatants were generated by centrifugation as usual 
and assayed for their ability to inhibit seeded actin polymer- 
ization as described for Fig. 8. As shown in Fig. 9, the 
amount of inhibition of seeded actin polymerization by su- 
pernatants varied markedly after stimulation. Significant 
decreases in inhibition were seen at 5 s and between 30 and 
45 s, and increases above unstimulated levels were seen at 
20 and "~50 s. The general pattern of regulation of the inhibi- 
tor of seeded actin polymerization in supernatants followed 
the inverse of the pattern of regulation of nucleation activity 
in lysates for at least the first 45 s after stimulation with 
2'deoxy-cAMP (Fig. 9). 

Discussion 

Ameboid Cells Contain a Hormone-stimulated Actin 
Nucleation Activity 
The above results demonstrate that stimulation of aggrega- 
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Figure 9. The inhibitor of seeded actin polymerization in superna- 
rants is regulated after stimulation of cells with cAME Inhibition 
of seeded actin polymerization by supernatants was measured as de- 
scribed in Fig. 8 in 5 mM EGTA ( . ) .  Supernatants were prepared 
from cells either before (0 s) or after stimulation with 2.8 #M 
2'deoxy-cAMP at the times indicated. Nucleation activity in cell ly- 
sates is shown for comparison (<>). 

tion competent Dictyostelium amebae with the chemoattrac- 
tant cAMP and its analogue 2~leoxy-cAMP causes an in- 
crease in the amount of nucleation activity in cell lysates. 
Similar results have been obtained with feeding amoebae in 
response to the chemoattractant folic acid (21). 

Actin nucleation activity that is stimulated by chemotactic 
hormones results in actin polymerization that is sensitive to 
cytochalasin D. Sensitivity to cytochalasin D is observed in 
lysates prepared even at early times after stimulation, indi- 
cating that the contribution of barbed-end assembly to the 
rate of polymerization does not vary with time across a peak 
of nucleation activity. 

Calcium is not required for expression of the nucleation 
activity in vitro. In fact, similar amounts of nucleation activ- 
ity were detected in lysates from stimulated cells in lysis 
buffer containing either 1 or 10 mM EGTA. Lack of a cal- 
cium requirement for nucleation activity in vitro, however, 
is not informative regarding the situation in vivo because a 
calcium-dependent step in generating the nucleation activity 
may have already occurred at a time between cell stimulation 
and cell lysis. Unfortunately, other studies concerning the in- 
volvement of calcium in the rearrangement of the actin 
cytoskeleton during chemotactic stimulation are not defini- 
tive on this point either. Treatment of saponin-permeabilized 
Dictyostelium amebae with micromolar calcium leads to an 
increase in the amount of actin in triton cytoskeletons (13). 
However, the increases in pelletable actin observed in these 
experiments could result from a calcium-elicited actomyosin 
contraction as demonstrated in cell extracts (9) and not to de 
novo assembly of actin filaments. In addition, a cAMP-induced 
calcium influx, which peaks at 30 s and leads to a calculated 
increase in cytosolic calcium from 0.3 to 10 #M (5), follows 
kinetics that arc temporally correlated with the cringe response 
(i.e., cell contraction), which peaks at 25-30 s (15, 20, 23) 
but not nucleation activity. Therefore, the role of calcium in 

regulating actin polymerization in general and actin nuclea- 
tion activity in particular during chemotactic stimulation re- 
mains unresolved at present. The development of cell models 
that can be both stimulated and assayed for actin nucleation 
and polymerization in vitro will be valuable in determining 
whether calcium plays a regulatory role in this response. 

The parallel change in F actin content of cells and nuclea- 
tion activity suggests that F actin could be the "nucleus" for 
assembly. That is, the nucleation activity could be actin fila- 
ment ends that are uncapped during stimulation. This would 
explain the rapid appearance of the nucleation activity in the 
cytoskeleton after stimulation. This hypothesis would em- 
phasize the importance of the inhibitor of nucleation activity 
that is regulated by stimulation in a way related to the appear- 
ance of the nucleation activity. 

Properties of the Hormone-regulated Inhibitor of Actin 
Nucleation Activity 
Supernatants prepared from Triton lysates contain an inhibi- 
tor of the actin nucleation activity of cytoskeletons. The 
mechanism of inhibition of the nucleation activity does not 
involve proteolysis because protease inhibitors do not pre- 
vent or slow inhibition and the nucleation activity of cyto- 
skeletons can be recovered after complete decay by washing 
cytoskeletons in buffer. 

Inhibition does not appear to involve a severing activity. 
This possibility was considered because severing would lead 
to disruption of the actin cytoskeleton and blockade of the 
barbed ends of the newly cut filaments. Disruption of the 
cytoskeleton could result in loss of nucleation activity. How- 
ever, severing activity was not detected in the supernatants 
even under assay conditions sufficient to detect the amounts 
of endogenous severin (discussed below) predicted to be 
present in the supernatant (34). 

The supernatant did inhibit the elongation of actin fila- 
ments under assay conditions where the barbed end dominates 
elongation. This activity was regulated after stimulation of 
cells with cAMP. This suggests a mechanism of inhibition of 
actin nucleation activity involving the capping of filaments 
at their barbed ends. Consistent with this is the finding that 
the final extent of polymerization was lower in the presence 
of supernatant as compared with that in buffer. This difference 
could be explained by the blocking of barbed ends if the con- 
centration of capping protein is '~5 nM, i.e., '~0.2% of the 
supernatant protein with an equilibrium constant ranging from 
109 to 10 ~° M -t as measured for brain capping protein and 
gelsolin, respectively (28, 33). 

Inhibition of seeded actin polymerization occurs in vitro 
in millimolar EGTA, suggesting that, if a capping activity 
is involved, it does not require calcium. Calcium-insensitive 
barbed-end capping proteins have been identified in Dic- 
tyostelium. A small, calcium-insensitive, heterodimeric cap- 
per with subunits measuring 34 and 32 kD has been identified 
(27) which resembles similar capping proteins in brain, Acan- 
thamoeba, and skeletal muscle (25). 

In addition, a severing protein with significant sequence 
homology to gelsolin (1) named severin has been isolated 
from Dictyostelium amebae. It constitutes ,v0.2% of the 
soluble protein (34). Although this protein has a calcium- 
regulated severing activity, it could function as a calcium- 
insensitive capping protein if first bound to G actin in the 
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presence of calcium. Such a complex is stable in EGTA in 
vitro and could cap filaments at barbed ends by a process 
resembling filament reannealing. A capping activity of this 
kind has been measured for gelsolin by Selve and Wegner (28). 

The calcium insensitivity of the inhibitory activity of su- 
pernatants does not exclude this latter possible mechanism 
because the calcium-dependent step may have occurred at a 
time between cell stimulation and cell lysis. Modulation of 
the amount of actin-gelsolin complex in platelets after throm- 
bin stimulation (22) suggests that a similar complex involv- 
ing the related protein severin could form after cAMP stimu- 
lation of Dictyostelium. Development of cell models that can 
be both stimulated and assayed for capping activity in vitro 
will be essential in determining whether calcium plays a role 
in this process. Further analysis of the types of proteins es- 
sential for inhibition will require purification of the inhibi- 
tory activity because the supernatant fraction is too crude to 
resolve the components or mechanisms involved. 
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