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Abstract. Genes that function in translocation of 
secretory protein precursors into the ER have been 
identified by a genetic selection for mutant yeast cells 
that fail to translocate a signal peptide-cytosolic en- 
zyme hybrid protein. The new mutants, sec62 and 
sec63, are thermosensitive for growth and accumulate 
a variety of soluble secretory and vacuolar precursors 
whose electrophoretic mobilities coincide with those 
of the corresponding in vitro translated polypeptides. 
Proteolytic sensitivity of precursor molecules in ex- 
tracts of mutant cells confirms that polypeptide trans- 
location is blocked. Some form of interaction among 
the SEC61 (Deshaies, R. J., and R. Schekman. 1987. 
J. Cell Biol. 105:633-645), SEC62 and SEC63 gene 

products is suggested by the observation that haploid 
cells containing any pair of the mutations are inviable 
at 24°C and show a marked enhancement of the trans- 
location defect. The transloeation defects of two mu- 
tants (sec62 and sec63) have been reproduced in vitro. 
sec63 microsomes display low and thermolabile trans- 
location activity for prepro-a-factor (ppctF) synthe- 
sized with a cytosol fraction from wild type yeast. 
These gene products may constitute part of the poly- 
peptide recognition or translocation apparatus of the 
ER membrane. Pulse-chase analysis of the 
translocation-defective mutants demonstrates that inser- 
tion of ppc~F into the ER can proceed posttransla- 
tionally. 

I 
s spite of significant advances that have clarified the 
structure and function of molecules that mediate tar- 
geting of secretory proteins to the endoplasmic reticu- 

lum (for review, see Walter and Lingappa, 1986; Hortsch and 
Meyer, 1986), the actual process of polypeptide transfer 
across the ER membrane is poorly understood. A common 
view is that a proteinaceous translocation pore complex within 
the ER membrane facilitates transfer of the hydrophilic na- 
scent polypeptide across the hydrophobic core of the ER 
membrane (Blobel and Dobberstein, 1975; Blobel, 1980). 
The participation of membrane proteins in translocation, as 
well as in targeting, is indicated by the fact that translocation 
activity of microsomes is sensitive to proteolysis and chemi- 
cal alkylation (Walter et al., 1979; Meyer and Dobberstein, 
1980a, 1980b; Gilmore et al., 1982; Hortsch et al., 1986). 
Translocating proteins appear to lie within a polar environ- 
ment in the bilayer because intermediates interrupted in pen- 
etration may be solubilized by agents that disrupt protein 
structure without solubilizing membrane lipids (Gilmore and 
Blobel, 1985). A lack of specific probes or inhibitors has 
frustrated biochemical approaches to identifying functional 
translocator components. Recently, an ER membrane pro- 
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tein, termed signal sequence receptor (SSR), t that interacts 
directly with the signal peptide of nascent proteins has been 
identified by chemical cross-linking (Wiedmann et al., 1987). 
The functional role of SSR, however, remains to be deter- 
mined. 

Molecular dissection of the mechanism of protein sorting 
and intercompartmental transport within the yeast secretory 
pathway has been facilitated by the isolation and character- 
ization of a large number of conditionally lethal, tempera- 
ture-sensitive (Ts-) secretion (sec) mutants (Novick et al., 
1980; Ferro-Novick et al., 1984a). Biochemical analysis of 
the sec mutants showed that secretion and growth are blocked 
at the restrictive temperature, leading to the accumulation of 
soluble secretory and vacuolar precursors, as well as integral 
membrane proteins, within the secretory pathway (for review, 
see Schekman and Novick, 1982). Clearly, identification and 
cloning of genes whose products are required for protein 
translocation would expedite the functional characterization 
of ER membrane proteins essential for polypeptide translo- 
cation. Among the 25 complementation groups originally 
defined, none were defective in protein transfer across the 
ER membrane. 

1. Abbreviations used in this paper: AcPase, acid phosphatase; CPY, car- 
boxypeptidase Y; EMS, ethyl methanesulfonate; gpetE glycosylated pro-or- 
factor; Hol +, histidinol prototrophy; MSB, membrane storage buffer; 
ppeff, prepro-c~-factor; SSR, signal sequence receptor; TAME, Nct-p-tosyl- 
L-arginine methyl ester; TPI, triose phosphate isomerase; Ts-, tempera- 
ture-sensitive; YPD, 1% yeast extract, 2% peptone, 2% dextrose. 
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To extend our genetic approach to analysis of protein trans- 
location, we devised a genetic selection that permitted iso- 
lation of conditionally lethal yeast mutants defective in se- 
cretory protein translocation into the ER (Deshaies and 
Schekman, 1987). The selection strategy demanded cyto- 
plasmic localization of an enzyme (histidinol dehydrogen- 
ase) whose normal cytoplasmic location was modified by ap- 
pending a secretory signal peptide to its amino terminus. By 
selection for growth on minimal medium containing histidinol 
and screening mutants for pleiotropic defects in secretion, it 
was possible to distinguish between two classes of mutants 
that arose as histidinol prototrophs: signal sequence muta- 
tions and mutations in the ER translocation machinery. The 
see61 mutant has a defect in the translocation machinery and 
was described previously. In this report, we describe the 
isolation and characterization of two novel translocation mu- 
tants, sec62 and sec63, and present in vitro data that impli- 
cates the SEC63 gene product as a membrane-associated 
component of the ER translocation apparatus. In addition, 
the properties of haploid double mutants suggest that the 
products of the SEC61, SEC62, and SEC63 genes act along 
the same pathway. In an accompanying paper (Deshaies and 
Schekman, 1989), in vitro biochemical and molecular ge- 
netic analyses provide evidence that the See62 product is a 
component of the ER membrane. A preliminary account of 
these studies was reported elsewhere (Deshaies et al., 1988b). 

Materials and Methods 

Strains and Growth Conditions 
Bacterial and yeast strains used in this study are listed in Table I. Yeast 
strains were constructed by standard genetic techniques (Sherman et al., 
1983). A MATa derivative of FC2-12Ba was obtained by mating-type con- 

version with the plasmid pHO (Jensen et al., 1983). Original mutant isolates 
were backcrossed at least three consecutive times to RDBI03 to test for 
cosegregation of the Ts growth and a factor precursor accumulation pheno- 
types. Analysis of procarboxypeptidase Y (CPY) was aided by the use of 
pep4 mutant strains that are deficient in maturation of vacuole hydrolase 
precursors (Hemmings et al., 1981). The chromosomal PF./~ locus in the 
sect2 mutant was deleted by substitution with the Xho I-Eco RI fragment 
of pTS15, which carries a URA3 disruption of the PEP4 gene (Rothman et 
al., 1986). The pep4-3 mutation was introduced into the see63 mutant by 
mating with RSY32 and screening the tetrads for CPY activity (Jones, 
1977). 

Stationary phase yeast cultures were grown at 17"C or 24"C in rich 1% 
YPD medium containing bacto-yeast extract, 2% bacto-peptone (Difco 
Laboratories Inc., Detroit, MI) and 5 % glucose. YPD-agar and Wicker- 
ham's minimal medium agar plates contained 2% glucose and 2% bacto- 
agar. In preparation for radiolabeling of cells with [35S]SO42-, stationary 
phase cells were inoculated into low sulfate minimal medium (prepared with 
chloride rather than sulfate salts and supplemented with 200/~M ammonium 
sulfate) for overnight growth at 17"C or 24"C. Extraceilular acid phospha- 
tase (AePase) synthesis and secretion was derepressed by go:~ving cells over- 
night in low sulfate minimal medium prepared with phosphate-free salts and 
supplemented with 1130 tzM KI-12PO+. Liquid cultures were grown in flasks 
with vigorous agitation, and experiments were initiated with cells in loga- 
rithmic growth phase. The optical density at 600 nm (OD600) of dilute cell 
suspensions was ~ u r e d  in l-cm quartz cuvettes using a spectrophotome- 
ter (PMQII; Carl Zeiss, Inc., Thornwtxxi, NY); I OD6o0 of cells corre- 
sponds to 1 × 10 7 cells. 

R e a g e n t s  

DNA restriction endonucleases and modification enzymes were obtained 
from Boehringer-Mannheim Biochemieals (Indianapolis, IN) and from 
Bethesda Research Laboratories (Gaithersburg, MD). Histidinol, tunica- 
mycin, proteinase K, amino acid powders, PMSF, eyeioheximide, BSA, 
protein A, ethyl methanesulfonate (EMS), Triton X-100, and nucleoside 
triphosphates were purchased from Sigma Chemical Co. (St. Louis, MO). 
Carrier-free [35S]Na2SO4 was obtained from ICN Radiochemicals (Irvine, 
CA), and [3SS]methionine (>1,000 Ci/mmol), [1251]NaI (highest specific 
activity), and Amplify were from Amersham Corp. (Arlington Heights, 
IL). Staphylococcal nuclease $7, SP6 RNA polymerase, mTGpppG, crea- 
fine phosphate, and creatine phosphokinase were obtained from Boehringer- 

Table L Bacterial and Yeast Strains 

Strain Genotype Source 

S. cerevisiae 
FC2-12B ura3-52 1eu2-3,-112 trpl-I his4-401 HOLI-I MATte Parker 
RDMI5-SB sec61-2 pep4-3 ade2 um3-52 !eu2-3,-112 MATa Deshaies 
RDM33-4A sec61-2 ade2 his leu2-3,-112 MATa 
RDM43-9C see62-1 his4 ura3-52 Apep4: :URA3 MATte 
RDM52-7C sec61-2 sec62-1 ura3-52 2~pep4::URA3 MATte 
JRMI51 sec63-1 pep4-3 ura3-52 1eu2-3,-112 MATte 
JRMI56 pep4-3 ura3-52 1eu2-3,-112 MATte 
JRMI57 see63-1 pep4-3 are2-1 !eu2-3,-112 MATte 
JRM160 sec63-1 secl8-1 1eu2-3,-112 MATte 
JRM163 sect3-1 ura3-52 1eu2-3,-112 MATa 
JRM164 see62-1 sec63-1 pep4-3 his4 1eu2-3,-112 MATte 
RDB103 ade2 1eu2-3,-112 MATa 
RDBI42 secl8-1 ura3-52 1eu2-3,-112 MATa 
RSY32 pep4-3 are2 !eu2-3,-112 MATa 
PBY404C suc2-A 9 MA Tot 
MYY220 mas2-10 Apep4::LEU2 !eu2-3,-112 his3 Yaffe 
MYY238 mas2-1 Apep4: :LEU2 1eu2-3,-112 his3 Yaffe 

E. coli 
SE10 F- pyrF74::Tn5 ara(Alac pro) rpsL- thi 

(~80dlacZAM l 5) 
MCI061 F- araD139 A (araABOIC-leu) 76 79 Alacx 74 galU- 

galK- rpsL- hsdR- 

and Guthrie, 1985 
and Scheknum, 1987 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
Lab strain 
Lab strain 
Lab strain 
P. B6hni 

and Schatz, 1984 
and Schatz, 1984 

Emr et al., 1986 

Casadaban and Cohen, 1980 
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Mannheim Biochemicals. Protein A-Sepharose CL-4B and Sephadex G-25 
(medium) were purchased from Pharmacia Fine Chemicals (Piscataway, 
NJ); IgG Sorb from the Enzyme Center (Boston, MA); SDS-PAGE reagents 
and goat anti-rabbit antibody coupled to horseradish peroxidase were from 
Bio-Rad Laboratories (Richmond, CA); human placental ribonuclease in- 
hibitor from Promega Corp. (Madison, WI); and nitrocellulose membrane 
filters from Schleicher and Schuell, Inc. (Keene, NH). Lyticase (fraction 
II, •60,000 U/ml) was prepared as described by Scott and Schekman (1980). 
Invertase (Schauer et al., 1985), CPY (Stevens et al., 1982), and a-factor 
(l~thblatt and Meyer, 1986a) antisera were prepared as described previ- 
ously. Acid phosphatase antiserum was provided by G. Schatz (Biocenter, 
Basel, Switzerland); ATPase Fi/! subunit antiserum by Michael Douglas 
(University of Texas Health Sciences Center, Dallas, TX); and antiphos- 
phogiycerate kinase serum by J. Thorner (University of California, Berke- 
ley, CA). 

Modification of the HIS4 Gene Fusion 
A plasmid, p~SHFg, that carries a MFcd-SUC2-HIS4 gene fusion under 
the control of the MF~I promoter has been described previously (Deshaies 
and Schekman, 1987). To express the MFc~I-SUC2-HIS4 gene fusion in 
MATa as well as in MAT¢~ yeast strains, it was necessary to replace the 
MF¢I promoter with another that would allow constitutive, mating type in- 
dependent expression of the hybrid protein. A new recombinant plasmid 
(pGD2) that encodes the MFcd-SUC2-HIS4 gene fusion under the control 
of the triose phosphate isomerase (TPI) promoter was constructed as fol- 
lows: the plasmid pZVI60 (provided by V. MacKay; Zymos Corp., Seattle, 
WA), which contains the MF~I structural gene fused to the TPI promoter, 
was subjected to partial digestion with PvulI and complete digestion with 
Pst I, giving rise to a 3.4 kilobase (kb) fragment that retained the TPI pro- 
moter fused to the first eight codons of MF,~I. An incomplete MFcd-SUC2- 
HIS4 fusion (pGDI) was assembled by inserting an internal 2.7-kb Pvu 
II-Pst I fragment of the MF~I-SUC2-HIS4 gene from paSHF8 that lacked 
the 5'-terminal eight codons of MFcd and a 3"terminal domain of HIS4. 
The missing 3' portion of HIS4 was restored to the TPI promoter MF~I- 
SUC2-HIS4 gene fusion by replacing the Bum HI-Xho I fragment of pSHEI 
(containing a SUC2-HIS4 fusion; Deshaies and Schekman, 1987) with the 
Barn HI-Xho I fragment of pGDI, giving rise to plasmid pGD2. 

Recombinant DNA manipulations were performed according to standard 
methods (Maniatis et al., 1982). Plasmids pZVI60 and pGD1 were 
propagated in Escherichia coli strain SEI0 and pGD2 in strain MCI061. 

Mutant Isolation and Screening 
The experimental details pertaining to the isolation of yeast mutants sec61 
and sec62 were described previously (Deshaies and Schekman, 1987). The 
secretory mutant sec63 was obtained essentially as described for sec61 with 
the following modifications: FC2-12B cells were transfurmed with pGD2 
by the lithium acetate procedure (Ito et al., 1983). Three separate 5-ml cul- 
tures of each FC2-12B~ and FC2-12a cells containing pGD2 were grown 
to stationary phase in minimal medium supplemented with histidine, trypto- 
phan, leucine, and adenine at 30°C. Cells (14 ODeo0 U) were collected by 
centrifugation, washed once with sterile 50 mM potassium phosphate buffer 
(pH 7.0), and resuspended at a density of 20D~e0 U/ml in the same buffer. 
Mutagenesis was initiated with the addition of EMS to a final concentration 
of 3%, and the cells were incubated with the mutagen fur 30 rain at 30°C 
with agitation. These conditions fur EMS mutagenesis killed "-50% of the 
cells. The mutagen was neutralized by adding an equal volume of 12% so- 
dium thiosulfate. The cells were collected by centrifugetion, washed twice 
with 50 mM potassium phosphate (pH 7.0), and resuspended in 15 mi of 
minimal medium supplemented with histidine, tryptophan, leucine, and 
adenine. After a 24-h recovery period at 24°C with agitation, the cells were 
collected by centrifugation, resuspended to 10 ODto0/mi in 50 mM potas- 
sium phosphate (pH 7.0), and plated onto minimal medium supplemented 
with tryptophan, leucine, adenine, and 3 mM histidinol ('~5 × 106 viable 
cells/plate). After incubation at 30°C fur 6-17 d, histidinol + prototrophs 
(Hol +) were picked and patched onto YPD plates. After 2 d at 30°C, these 
were replica-plated onto YPD plates, and the replicas were incubated at 
30°C or 37°C fur 2-3 d. Clones that grew at 30°C but not at 37°C were 
picked and retested fur Ts- growth by streaking onto YPD plates and in- 
cubating at 37°C. After curing confirmed Hol +, Ts- mutants of the fusion 
plasmid by growth on YPD plates, the ct mating type isolates were screened 
by immunoblotting fur accumulation of intracellular prepro-~-factor (ppctF) 
as previously described (Deshaies and Schekman, 1987), except that bind- 
ing of cr factor antibody to cross-reacting bands was visualized with goat 
anti-rabbit antibody coupled to horseradish peroxidase. 

Radiolabeling and Immunoprecipitation 
Radiolabeling of wild-type and mutant cells with [35S]Na2SO4 (250-300 
/~Ci/ODt00 cells) and immunoprecipitntion of denatured proteins from the 
radiolabeled extracts were carried out, with the minor modifications noted 
below, as described elsewhere (Deshaies and Schekman, 1987). Aspara- 
gine-linked core oligosaccharide addition was inhibited by treating cells 
with 10/~g/ml tunicamycin (prepared as 10 mg/ml in absolute EtOH) for 
15' before and during [3sS]SO42- radiolabeling. Extracts were prepared by 
resuspending cells in 200--400 t~l 1% SDS, 50 mM Tris-HCl (pH 7.4), 1 
mM PMSE fullowed by addition of ,~4).2 g of 0.5 mm glass beads (Biospec 
Products, Bartlesville, OK), and vortexing the samples twice fur 30 s at full 
speed in 13 × I00 mm glass culture tubes. Lysates were heated to 95°C 
for 5 rain. Aliquots of the extracts were diluted to I ml with 4 vol of immu- 
noprecipilation dilution buffer (1.25% Triton X-100, 190 mM NaCI, 6 mM 
EDTA, 60 mM Tris-HCl, pH 7.4; Anderson and Blobel, 1983). For ~x factor 
and invertase immunoprecipitations, samples were supplemented with 2 mg/ 
rul of an unfractionated lysate of nonradioactive PBY404C cells (suc2A, 
MATa). Immunoprecipitation samples were cleared of insoluble material by 
addition of 25 ~I of a 10% IgG Sorb suspension, fullowed by incubation 
at RT fur 5-10 min and centrifugation in a microcentrifuge fur 5 min. The 
supernatant fraction was transferred to fresh microcentrifuge tubes, and the 
appropriate antiserum was added in saturating amounts fur overnight incu- 
bation at 4°C. After a 2-h incubation of the samples with protein A-scpharose 
CL4B beads at 22°C, the beads were collected by brief centrifugation and 
washed twice with 1% Triton X-100, 0.2% SDS, 150 mM NaCI, 5 mM 
EDTA, 50 mM Tris-HCl, pH 7.4 (IP buffer); once with IP buffer containing 
2 M urea; once with IP buffer containing 500 mM NaC1; and finally with 
150 mM NaC1, 5 mM EDTA, 50 mM Tris-HCi, pH 7.4. To reduce immuno- 
precipitation of nonspecific molecules, the bound antigens were dissociated 
from the protein A-Sepharose beads by heating in 1% SDS-50 mM Tris- 
HCI, pH 7.4, at 95°C fur 5 rain and subjected to a second round of immuno- 
precipitation as above. Finally, antigens were dissociated from the protein 
A-Sepharose beads by heating in SDS:PAGE sample buffer at 95°C for 5 
min and loaded onto 7.5 % (invertase, CPY, and AcPase) or 11.5 % (ct factor) 
SDS-polyacrylamide gels (Laemmli, 1970). 

Pulse-chase Radiolabeling of sec61 Cells 
Posttranslational translocation of ppaF was examined in sec61 (RDM 15- 
5B) cells grown to an ODt0o of 0.8 at 30°C in minimal medium sup- 
plemented with 200 ~tM (NI-Lt)2SO4. An aliquot of cells (2.60Dto0 U) was 
shifted to 37°C fur 30 min, harvested by centrifugation, and resuspended 
to 10Dt00/ml in minimal medium lacking sulfate. Cells were radiolabeled 
with 2.6 mCi of [3SS]Na2SO4 for 33 rain at 38°C. Labeling was terminated 
by adding 1/100 th volume of chase cocktail (0.3% cysteine, 0.4% methio- 
nine, 100 mM ammonium sulfate), and the cells were harvested by centrifu- 
gation and washed with 5 ml minimal medium supplemented with chase 
cocktail. The chase period was initiated by resuspending the washed cells 
in 2.6 mi minimal medium supplemented with 1× chase cocktail, 200 ~tg/mi 
BSA, and 2 mM Na-p-tosyI-L-arginine methyl ester (TAME). BSA and 
TAME were included to inhibit proteolytic degradation of secreted ct factor 
peptide (Ciejek and Thorner, 1979). After 0, 5, 15, 45, 90, and 150 min 
of chase, 0.4 ml aliquots were withdrawn, chilled on ice and adjusted to 10 
mM NAN3. Quenched samples were separated into cell pellet and culture 
fluid fractions by centrifugation in a clinical centrifuge. Supernatant frac- 
tious were supplemented with SDS to a final concentration of 0.4% and 
heated to 95°C fur 5 min. Cell pellets were washed with ice cold 10 mM 
NAN3, converted to spheroplasts (Deshaies and Schekman, 1987), and 
solubilized directly in SDS-PAGE sample buffer and heated to 95°C fur 5 
min. Samples were immunoprecipitated with either anti-or factor or an- 
tiphosphoglycerate kinase serum, and immune complexes were harvested 
and washed as described in Radiolabeling and Immunoprecipitation. Im- 
munoprecipitates were evaluated by SDS-PAGE on a 15% polyacrylamide 
gel. The stacking portion of the gel was run at a standard current (15 
mAmps), but the resolving gel was run at 50 mAmp, and an aluminum plate 
was clamped to the gel to allow heat dissipation. The gel was soaked in Am- 
plify without prior fixation and dried onto filter paper fur fluorography 
(Whatman Inc., Clifton, NJ). 

Preparation and Proteolysis of Mutant Extracts 
Proteolytic accessibility of accumulated pp~F was examined in lysatos 
(Deshaies and Schekman, 1987). Both sec62 secl8 and sec63 secl8 cells 
were grown overnight at 24°C and shifted to 30°C fur 60 min before labeling 
with [35S]Na2SO4 fur 30 min at 30°C. Spheroplasts were prepared and dis- 
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rupted in 0.3 M mannitol, 0.1 M KCI, 1 mM EGTA, 50 mM Tris-HCl, pH 
7.5, with a motor-driven homogenizer (Potter Elvejhem; Fisher Scientific, 
Pittsburgh, PA). Lysates were clarified at 660 g for 4 rain in a rotor (HB-4; 
Sorvall Instruments Die. [part of Dupont Co., Newton, CT]), and aliquots 
of the supernatant fraction were treated with proteinase K at a final concen- 
tration of 290 #g/ml in the presence or absence of 0.4% Triton X-100 on 
ice for varying periods of time. Proteolysis was terminated by addition of 
20% TCA, and the precipitates were solubilized in 1% SDS and immuno- 
precipitated with a factor or CPY antisera. 

In Vitro Analysis of  Protein Translocation 

Translocation ofc~ factor precursor was examined with membrane fractions 
from sec63 and SECcells grown at 24°C. Membranes were prepared as pre- 
viously described (Rothblatt and Meyer, 1986b), except that spheroplasts 
were formed with lyticase (",,25 U/ODe0o equivalent of cells) in 50% YP 
(1% bacto-yeast extract, 2% bacto-peptone), 1.2 M sorbitol, 5 mM DTT, 
20 mM Hepes, pH 7.5, for 25 min at 24°C, and then lysed with 10-15 strokes 
in a Dura-Grind stainless steel homogenizer (Wheaton Instruments Die., 
Millville, NJ) (clearance = 0.01 in) in ice. The membrane pellet obtained 
by centrifugation at 25,000 g for 25 min was washed once with membrane 
storage buffer (MSB: 0.25 M sorbitoi, 50 mM KOAc, 1 mM DTT, 20 mM 
Hepes, pH 7.4) and resaspended in MSB. Membranes were treated with 
staphylococcal nuclease $7 (250 U/ml) in the presence of 2 mM CaCI2 for 
5 rain at 20°C, and the reaction was terminated by addition of EGTA (final 
concentration of 4 mM). Microsomes were frozen in liquid nitrogen and 
stored at -85°C. 

Protein synthesis reactions were conducted with 100,000 g supernatant 
(S-100) fractions prepared from sec63 and SEC cells as described in the ac- 
companying paper by Deshaies and Schekman (1989). Translations were 
performed at 23°C for 30 min as previously described (Rothblatt and 
Meyer, 1986a), using pp~F mRNA (1 #1/20 #1 translation) transcribed in 
vitro from linearized plasmid pDJl00 (Hansen et al., 1986) with SP6 poly- 
merase (Melton et al., 1984). 

Posttranslational translocation of c~ factor precursor into yeast micro- 
somes was assessed in a 30 #1 reaction. Microsomes (0.09 A2so equivalents 
in 5 #1 of MSB) were added to a completed translation reaction (20 #1) in 
which further protein synthesis was blocked by addition of cycloheximide 
to 400 #M. Where indicated, microsomes were incubated at 33°C before 
addition to the translocation assay. Salts and ATP-regenerating system were 
readjusted to initial concentrations. Reactions were carried out for 30 min 
at 23°C and then chilled on ice. 

Sequestration of glycosylated a factor species within microsomes was as- 
sessed by exposing one-half (15 #1) of the translocation reaction to pro- 
teinase K (final concentration = 300 #g/ml) for 45 min on ice. Proteolysis 
was stopped by addition of PMSF to a final concentration of 1.6 mg/ml. Af- 
ter 5 min on ice, SDS-PAGE sample buffer was added to all samples which 
were then heated to 95°C for 5 min. The in vitro products were fractionated 
on 11.5% SDS-polyacrylamide gels, fixed and treated with Amplify for 
fluorography, and exposed to film (X-OMAT AR; Eastman Kodak Co., 
Rochester, NY) at -80°C. Fiuorograms were quantified by scanning with 
a spectrodensitometer (SD3000; Kratos Analytical Instruments, Ramsey, 
NJ) coupled to a density computer (SDS300; Kratos Analytical Instru- 
ments) and an integrator (3380A; Hewlett-Packard Co., Palo Alto, CA). 

Results 

Selection of  Secretory Protein Translocation Mutants 

The strategy for isolating thermosensitive, conditionally le- 
thal yeast mutants that fail to translocate secretory and 
vacuolar precursors into the endoplasmic reticulum was de- 
scribed previously (Deshaies and Schekman, 1987). Two 
genes, sectl and sect2, weredefined among 10 mutant iso- 
lates. We judged that a larger-scale isolation of Ts- histidinol 
prototrophs (Hol +) would lead to the identification of addi- 
tional translocation-defective yeast mutants. This was accom- 
plished by altering the protocol so that mutants could be 
selected in both a and c, mating type strains, which allowed 
arrangement of mutants into complementation groups by scor- 
ing diploids for rescue of  the Ts- growth phenotype. The 
MFcxl-SUC2-HIS4 fusion plasmid (p~xSHF8; Deshaies and 
Schekman, 1987) was modified to remove plasmid expres- 

sion from control of the ot mating type-specific M F a l  pro- 
moter. A constitutive promoter from the triose phosphate 
isomerase gene was fused to the signal sequence of M F a l  
creating a mating type-independent hybrid protein encoded 
by plasmid pGD2. 

The new selection plasmid, pGD2, allowed growth of 
sec61 (strain RDM 15-5B) cells but not Sec + cells (strain 
FC2-12Ba) at 30°C on minimal medium containing histidinol. 
This result confirmed the utility of  pGD2 in the selection of 
additional translocation sec mutants. Immunoblot  analysis of  
extracts prepared from a and oe cells harboring pGD2 showed 
that the hybrid protein was expressed in both mating types 
at approximately equal amounts (data not shown). The Hol 
growth phenotypes of  wild-type FC2-12B (MATa or MATcx) 
and sectl cells containing pGD2 correlated with a change in 
the electrophoretic mobility of  the hybrid protein in SDS- 
polyacrylamide gels. Wild-type cells expressed a higher mo- 
lecular weight form of the fusion protein, consistent with 
core glycosylation of the precursor within the ER lumen. 
sectl mutant cells accumulated a hybrid molecule identical 
in size to the predicted translation product. Thus the Hol- 
growth phenotype of pGD2-transformed wild-type cells was 
because of sequestration of the hybrid protein within the ER 
lumen. 

Mutagenesis of  FC2-12Box and FC2-12Ba yeast cells trans- 
formed with pGD2 produced a large number of  HoP  iso- 
lates among which slightly >10% also showed a "Is- growth 
phenotype (Table ID. "Is- ol mating type isolates were exam- 
ined by immunoblotting whole cell extracts for intracellular 
accumulation of ¢x factor precursor. Around 20% (73) of  the 
Ts- isolates accumulated a form that co-migrated with plxxF 
accumulated in sectl cells. Standard complementation tests 
allowed the identification of a large number of  new isolates 
of  sectl and see62 (Table II). Complementation groups 
among the remaining 20 Ts- isolates were established by 
mating each to the collection of MATa Ts- isolates and scor- 
ing for rescue of the growth defect in diploids at 37°C. Sev- 
eral potential new complementation groups were identified, 
representatives of which were crossed against wild-type swains 
to establish genetic linkage of the Ts- and sec phenotypes. 
After four cycles of  backcrossing only one new complemen- 
tation group, sect3, demonstrated linkage between the ther- 
mosensitive growth and ppcxF accumulation phenotypes. 

Unprocessed ~ Factor Precursor Accumulates in sec62 
and sec63 Cells 

The biogenesis of  ct factor was examined by radiolabeling 
mutant and wild-type cells at various temperatures. SEC 
(JRM156) cells, radiolabeled with [35S]SO42- for 30 rain at 
17°C or at 24°C, contained only a ~ 2 6 - k D  species corre- 
sponding to the core-glycosylated precursor form of o~ factor 
(gptxF) (Fig. 1, lanes 10-11 ). Rapid intracellular transport or 
reduced synthesis of  the precursor in wild-type cells at 37°C 
precluded detection of the core-glycosylated species at this 
temperature (Fig. 1, lane 12). Unglycosylated precursor was 
detected in wild-type cells only in samples treated with 
tunlcamycin (Fig. 1, lane 13). In contrast, see61 (RDM 15- 
5B) or sec63 (JRM151) cells labeled for 30 rain at 17°C or 
24°C contained a low molecular mass species (Fig. 1, lanes 
1-2, 7-8) which co-migrated on SDS-PAGE with ppotF 
translated in vitro (data not shown). Very little gptxF was ap- 
parent at either temperature. At 37°C, only the low molecu- 
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Table II. Histidinol Selection for  Conditionally Lethal Translocation Mutants 

Stage of mutant selection 

Number of colonies analyzed 

MATer cells MATa cells Frequency* 

Cells plated on MV-histidinol 
Histidinol prototrophs (Hol ÷) 
Temperature-sensitive for growth 
Accumulate unglycosylated prepro-c~-factor 
sec61 Alleles 
sec62 Alleles 
sec63 Alleles 

5.5 X 107 5.5 × 107 
3,951 1,452 4.9 X 10 -5 

393 216 5.5 X 10-6 
73 NEt 1.3 X 10 -6 
14 12 2.4 X 10 -7 
39 23 5.6 × 10 -7 
7 15 2.0 × 10 -7 

* This value represents the number of colonies exhibiting a given phenotype divided by the number of cells plated on histidinol. 
~t NE. not expressed in MATa cells. 

lar mass species was present (Fig. 1, lanes 3 and 9). How- 
ever, a shift in temperature from 17°C to 37°C did not alter 
the extent of precursor accumulation. Since tunicamycin- 
treated wild-type cells accumulated a large amount of un- 
glycosylated precursor in the ER lumen, the most likely ex- 
planation for this result is that the precursor form of ot factor 
is unstable if retained in the cytoplasm of cells growing at 
elevated temperatures, sec62 cells (RDM43-9C) were more 
thermosensitive (Fig. 1, lanes 4-6).  A low level of ppotF was 
apparent after radiolabeling for 30 min at 17°C, but gpotF 
predominated (Fig. 1, lane 4). Conversely, when sec62 cells 
were shifted to 24°C for 2 h before [35S]SO42--labeling, 
p l ~ F  was abundant and gp~F declined. These results sug- 
gested that sec62 and sec63 cells, like sec61 cells (Deshaies 
and Schekman, 1987), accumulated a precursor form of ot 
factor that was not modified by addition of N-linked core 
oligosaccharides or removal of the signal peptide. 

sec62 and sec63 Mutations Result in Accumulation of  
Factor Precursor in the Cytosol 

The processing deficient phenotype demonstrated in Fig. 1 
could result from a defect in polypeptide targeting to or 
translocation across the ER membrane. In this case, the 
precursor would accumulate in the cytosol or in association 
with the cytoplasmic face of the ER membrane, such as has 
been demonstrated in sec61 (Deshaies and Schekman, 
1987). Alternatively, a defect in precursor processing with 
no effect on translocation could account for intracellular ac- 
cumulation of ppotE In this instance, the precursor would re- 
main within the ER lumen. Such behavior has been docu- 
mented for sec53 and for tunicamycin-treated wild-type cells 
(Feldman et al., 1987; Ferro-Novick et al., 1984b). 

Protease accessibility of ppaF in homogenates of sec62 
and sec63 was used to assess the disposition of the precursor. 
The sec18 mutation, which blocks protein transport from the 
ER, was introduced into these strains to allow the accumula- 
tion of sequestered gpotF as an internal control in the proteol- 
ysis experiment (Deshales and Schekman, 1987). Haploid 
sec63 secl8 cells were radiolabeled with p5S]SO42- for 30 
min at 300C, a temperature at which secl8 is fully restrictive 
and sec63 only partially restrictive. Spheroplasts were 
formed, gently lysed, and pp~F (19 kD) and gptxF (26 kD) 
were detected by immunoprecipitation from samples in- 
cubated in the absence of protease (Fig. 2, upper and lower 
sections, lanes 1 and 2). Addition of proteinase K (290 #g/ 
ml) in the absence of detergent, resulted in a rapid and corn- 

plete degradation of the 19-kD species (Fig. 2 A, lanes 3-9). 
In contrast, the 26-kD glycosylated form was largely resis- 
tant to proteolysis, indicating protection within the ER lu- 
men. Approximately 40% of this core-glycosylated species 
was degraded during the first minute of proteolysis (Fig. 2, 
compare lanes 3 and 4), consistent with the observation that 
•50% of the 26-kD form is released into the supernatant 
fraction during the preparation of the cell homogenate (Fig. 
2, compare lanes 10 and 11). After 16 min of proteolysis, no 
further degradation of the 26-kD species was detected. The 
sensitivity of a partially glycosylated precursor (migrating at 
a position consistent with the presenc e of two asn-linked core 
oligosaccharides) appeared to result from preferential re- 
lease into the cytosol fraction during cell lysis (Fig. 2 A, lane 
1/). In the presence of detergent, gptxF species was com- 
pletely degraded within 1 min of adding protease. Digestion 
of ppo~F in the absence or presence of detergent, was com- 

Figure 1. Unglycosylated ppotF accumulates in sec mutants, sec61 
(RDM15-5B), sec62 (RDM43-9C), sec63 (JRM151), and SEC 
(JRM156) cells were radiolabeled with [35S]SO42- at 17°C for 30 
rain (lanes 1, 4, 7, and 10, respectively), or, following a 2-h preshift 
of parallel cultures to 24°C or 37°C, at 24°C (lanes 2, 5, 8, and//), 
or 37°C (lanes 3, 6, 9, and 12) for 30 rain. N-linked core glycosyla- 
tion ofct factor precursor was blocked in SECcells (lane 13) by in- 
cubating cells in the presence of tunicamycin (10 #g/ml) before and 
during radiolabeling. Cell extracts were prepared by glass-bead 
homogenization, and c~ factor antiserum cross-reacting material 
was immunoprecipitated. Immunoprecipitates were analyzed by 
electrophoresis on 11.5% SDS polyacrylamide gels. Each lane con- 
tained cross-reacting material immunoprecipitated from 0.75 
OD600 U of cells. Core-glycosylated a factor precursor is desig- 
nated glmF and ppc~F indicates unglycosylated ppc~E 
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Figure 2. Protease sensitivity of plmF in a sedSsec63 cell extract. 
A lysate was prepared after converting radiolabeled JRM160 cells 
to spheroplasts, as previously described (Deshaies and Schekman, 
1987; see also Materials and Methods). Aliquots of the lysate were 
mock-digested (lanes I and 2, top and bottom) or were treated with 
300 #g/ml protease K in the absence (lanes 3-9, top) or in the pres- 
ence (lanes 3-9, bottom) of 0.4% Triton X-100 for 0-16 min on ice. 
A separate aliquot (equivalent to 20D~00 U of cells) was fraction- 
ated by differential centrifugation into pellet (lane 10) and superna- 
tant (lane 11 ) fractions. Proteolysis was terminated by addition of 
20% TCA. All samples were immunoprecipitated with tx factor an- 
tiserum and electrophoresed on 11.5% SDS polyacrylamide gels. 
Each proteolysis sample contained a factor precursor immunopre- 
cipitated from 1.35 OD600 U of cells, a Factor precursors accumu- 
lated by the sec18 and sec63 mutations are indicated as gpc~F and 
pptxF, respectively. 

plete in 4 min, suggesting that the 19-kD precursor may form 
a weakly protease-resistant aggregate as a result of accumu- 
lation in the cytosol or at the ER membrane. Similar results 
were obtained with an extract prepared from sec62 secl8 
cells (data not shown). 

The selective solubilization of partially glycosylated c~ fac- 
tor precursor has also been observed in extracts of sec61 
secl8 cells (Deshaies and Schekman, 1987) and secl8 cells 
(Hicke and Schekman, 1989). While the secl8 mutation may 
increase the fragility of the ER causing both ppt~F and the 
partially glycosylated form to be released and susceptible to 
protease digestion, other lines of evidence indicated that 
secretory precursors accumulate in the cytoplasm of sec61, 
sec62, and sec63 cells. First, in sec61 seal8 cell extracts 
preproCPY is protease-sensitive in the absence of detergent, 
while the core-glycosylated forms are entirely resistant to 
protease (Deshaies and Schekman, 1987). In addition, the 
precursor forms of c~ factor, invertase, CPY, and AcPase ac- 
cumulating in the three sec mutant strains co-migrate with 
in vitro translation products on SDS-polyacrylamide gels, 

indicating that no signal peptide processing has occurred. In 
other sec mutants, such as sec53, displaying a pleiotropic 
glycosylation mutation, signal peptide processing is not 
affected (Feldman et al., 1987). 

The partition of accumulated ppetF between the sediment- 
able and supernatant fractions of the yeast lysate was exam- 
ined by differential centrifugation. As shown for sec63 cells 
in Fig. 2 A (lane 10), ppaF was quantitatively recovered in 
the 100,000 g (30-min) pellet, whereas gpotF was equally 
distributed between the pellet and supernatant fractions. 
This outcome suggested that the glycosylated precursors re- 
mained soluble once released from microsomes during 
homogenization while the accumulated ppaF either was 
firmly bound to the ER membrane surface or aggregated in 
the cytosol. Some form of membrane association was indi- 
cated by the observation that both CPY and p l~F  floated 
along with mutant membranes isolated on a dense sucrose 
cushion (data not shown). 

sec63 Microsomes Are  Defective In Vitro 

ppo~F can be translocated across the yeast ER membrane in 
vitro after polypeptide translation is complete (Hansen et al., 
1986; Rothblatt et al., 1986b; Waters et al., 1986). The abil- 
ity of microsome and cytosol fractions from sec63 cells to 
support posttranslational translocation of ppo~F was exam- 
ined in vitro, ppe~F was synthesized in a cell-free system 
using the 100,000 g supernatant (S-100) fraction prepared 
from sec63 or wild-type cells. After 30 min of protein syn- 
thesis at 23°C, cycloheximide (final concentration of 400 
#M) and then wild-type or mutant microsomes were added 
to the reactions. Translocation and core glycosylation of 
ppc~F were assessed at the end of a 30-min incubation at 
23°C by exposing a portion of each reaction to 300 #g/ml 
proteinase K for 45 min on ice and examining the radioactive 
products after SDS-PAGE and fluorography. Half of the o~ 
factor precursor translated in a wild-type S-100 fraction was 
imported into and glycosylated by microsomes from a SEC 
strain (JRM156) (Fig. 3). Microsomes from sec63 (JRM151) 
cells exhibited reduced (<20%) translocation activity. Lo- 
calization of the defective component to the membrane frac- 
tion was supported by the observation that ppaF translocated 
into wild-type microsomes with equal efficiency after syn- 
thesis in either a wild-type or sec63 S-100 fraction (data not 
shown). 

A direct connection between the sec63 mutation and the 
translocation mechanism was established by duplicating 
thermosensitive precursor assembly within mutant mem- 
branes. Wild-type and sec63 microsomes were preincubated 
at 33°C (the maximum temperature that wild-type mem- 
branes tolerated) for varying lengths of time and then mixed 
with ppaF made in a wild-type S-100 fraction. Production 
of sequestered gpc~F at 23 °C with membranes prepared from 
sec63 cells decayed by 50% after exposure to 33°C for 3 rain 
(Fig. 3). In contrast, 50% inactivation of wild-type micro- 
somes required longer than 20 min at 33°C. The loss of ac- 
tivity by sec63 microsomes was bimodal (Fig. 4). A rapid 
initial decrease in activity was followed by a gradual loss that 
paralleled the rate of inactivation observed for wild-type 
microsomes. Microsomes prepared from sec62 cells also 
displayed reduced translocation activity in vitro (Deshaies 
and Schekman, 1989). 
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Figure 3. In vitro analysis of oe factor precursor translocation into 
sec63 microsomes. Microsomes prepared from permissively grown 
sec63 (A) or wild-type (B) cells were preincubated at 33 °C for 0-15 
min and then added to a cycloheximide-inactivated pp~F translation 
reaction, to assay precursor translocation and glycosylation. After 
30 min at 23°C, the translocation reaction was cooled on ice and 
aliquots of each sample were pmteolyzed with 300 #g/ml pro- 
teinase K for 45 win on ice. Samples were fractionated on 11.5% 
SDS polyacrylamide gels, which were then dried and fluorographed 
onto preflashed film (X-OMAT, Eastman Kodak Co.). 
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Figure 4. Thermolability of in vitro ~ factor precursor translocation 
into sec63 microsomes. Translocation of pp~F was assayed exactly 
as described in Fig. 3. For each preincubation time point, the 
protease-resistant glycosylated species of ,-, factor were quantified 
by scanning the fluorograms in a spectrodensitometer. Data points 
indicate the fraction (in percent) of glycosylated o~ factor detected 
in sec63 (-zx-) or SEC+ (-e-) in microsomes not exposed to 33°C 
that was translocated after 2-15 min preincubation of microsomes 
at 33°C. The range in values from two experiments is given. The 
efficiency of pp~F translocation into SEC+ microsomes was 
,047 % and into sec63 microsomes was ,017 %. 

The SEC61, SEC62, and SEC63 Gene Products Act 
along the Same Pathway 

Two independent mutant loci that affect a common process 
may exhibit a more restrictive phenotype when combined in 
a haploid strain. Analysis ofsec mutants affecting processes 
late in the secretory pathway for evidence of genetic interac- 
tion has shown decreased viability at the permissive temper- 
ature in haploid strains carrying two mutations acting at the 
same step, whereas progeny of a cross between a late acting 
mutant and one affecting an early step showed no exaggera- 
tion of the %- growth phenotype (Salminen and Novick, 
1987). The relationship between the products of the SEC61, 
SEC62, and SEC63 loci in the process of polypeptide trans- 
location was examined by performing genetic crosses that 
placed pairs of mutations in the same haploid strain. 

The segregation pattern for spore viability at 24°C of 
tetrads obtained from a sec61 x sec62 cross indicated that 
haploid sec61 sec62 double mutants were inviable under con- 
ditions that were permissive for growth of either sec61 or 
sec62 strains (Table III). Genetic complementation analysis 
confirmed that all viable progeny of the cross were either 
wild-type or carried only a single sec mutation (Table IV). 
Viable double mutants could be obtained by germinating the 
spores at 17°C. The exaggerated temperature sensitivity of 
spores bearing two of the sec mutations was also demon- 
strated in the segregation pattern of viable sec62 × sec63 
spores germinated at 17°C or 24°C. Most (95%) of the 
tetrads analyzed gave rise to 1 or 2 spores that were inviable 
at 24°C. In contrast, 80% of the tetrads germinated at 17°C 
produced four viable colonies. In the latter group, 17 of 20 
tetrads subjected to complementation analysis contained at 
least one sec62 sec63 progeny (Table IV). An even more dra- 
matic effect of a double mutation was observed in the prog- 
eny of a sec61 × sec63 cross, from which viable secdl sec63 
could not be obtained at either 17°C or 24°C (Table HI). Ap- 
parently, absence of fully functional copies of both SEC61 
and SEC63 confers a lethal disability on such cells. These 
results suggest that the sec61, sec62, and sec63 mutations re- 
sult in a partial loss of function and define components acting 
in tandem in the process of polypeptide translocation. 

No such exaggeration of growth deficiency was seen in 
other double sec mutant combinations, secl8-1 is growth re- 
strictive at 30°C, yet haploid double mutations with sec61, 
sec62, or sec63 sporulated and grew normally at 24°C. secll 
mutations affect a suhunit of the ER signal peptidase (Bthni 
et al., 1988), yet were not more sickly when combined with 
any of the translocation mutations (P. B~hni and R. Schek- 
man, unpublished observations). 

sec62 and sec63 Cells Accumulate Various Secretory 
and Vacuolar Precursors 

A common mechanism for transfer of soluble secretory pro- 
tein precursors across the ER membrane requires that sec62 
and sec63 mutants accumulate multiple unprocessed protein 
precursors. Biogenesis of the vacuolar protease CPY, and the 
periplasmic enzymes invertase and AcPase was examined by 
immunoprecipitation of radiolabeled precursors from wild- 
type, single, and double mutant cells. 

TWo forms of CPY representing ER- and Golgi-modified 
species (pl and p2, respectively, Stevens et ai., 1982) were 
observed in SEC cells radiolabeled at 37°C (Fig. 5 A, lane 
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Table III. Haploid Double Mutants Are Inviable at 24°C 

Segregation of 
viable spores in 

tetrads 
(live/dead) 

Germination Number of 
Cross temperature tetrads 4:0 3:1 2:2 

sec61 x sec62 24°C 19 2 15 2 
(RDM 33-4A x 

RDM 43-9C) 17°C 15 8 5 2 
sec62 x sec63 24°C 20 1 10 9 
(RDM 43-9C x JRM 

163-4D) 17°C 20 16 2 2 
sec61 x sec63 24°C 21 5 13 3 
(RDM 15-5B x JRM 

163-4D) 17°C 21 2 14 5 

1). pep4 mutant strains, which lack proteinase A activity re- 
quired for processing of proCPY, were used to prevent the 
formation of mature CPY that migrates close to the position 
of preproCPY, sec62 Cells grown and labeled at 17°C pro- 
duced pl and p2 CPY and a small amount of a lower molecu- 
lar mass form (Fig. 5 A, lane 3). This low molecular mass 
species migrated more slowly than CPY immunoprecipitated 
from tunicamycin-treated SEC cells (Fig. 5 A, lane 2) possi- 
bly because of retention of the signal peptide (preproCPY). 
After 2 h at 37°C, mainly preproCPY was produced (Fig. 5 
A, lane 4). Some pl and p2 CPY was labeled in sec63 cells 
at 17°C or 37°C with a modest increase in preproCPY at the 
high temperature (Fig. 5 A, lanes 5-6).  Compared to sec61, 
sec63 cells were more deficient in CPY maturation at the re- 
strictive temperature (not shown). The translocation block 
was exaggerated in the two viable double mutant strains 
(sec61 sec62; sec62 sec63). Even at 17°C, very little matura- 
tion of preproCPY was observed; at 37°C the blocks were 
absolute (Fig. 5 A, lanes 7-10). 

Invertase synthesis was derepressed in minimal medium 
containing 0.1% glucose for 20-30 rain at 24°C or 37°C fol- 
lowed by radiolabeling for 30 rain. In the absence of dere- 
pression only the constitutive cytoplasmic form of invertase 
was detected (Fig. 5 B, lane 1). Unlike the substantial block 
in assembly of preproCPY, the mutants were incompletely 
restrictive in translocation of invertase (Fig. 5 B, lanes 4-5).  
Nevertheless, a novel form of invertase (p) not detected in 

derepressed SEC cells accumulated in sec6I at 37°C (Fig. 5 
B, lane 5; Deshaies and Schekman, 1987). Likewise, p was 
labeled in sec62 (Fig. 5 B, lanes 3-4) and sec63 (not shown). 
The p form co-migrated with the in vitro translation product 
of mRNA encoding secretory invertase (Fig. 5 B, lane 2). 
Thus, p represents unglycosylated preinvertase. Again, in 
contrast to the effect of double mutants on preproCPY as- 
sembly, the sec62 sec63 strain allowed translocation and gly- 
cosylation of invertase at 17°C (not shown). Preincubation 
of this strain at 37°C for 2 h however resulted in a complete 
block in invertase maturation. 

AcPase from wild-type cells migrated on SDS-PAGE as 
core-glycosylated (ER) and outer chain-glycosylated (secret- 
ed) species (Fig. 5 C, lanes 1-2). sec63 cells accumulated 
lower molecular mass forms of AcPase at 17°C or 37°C that 
were comparable to those produced in tunicamycin-treated 
wild-type cells (Fig. 5 (7, lanes 3-5). Identical results were 
obtained for AcPase in sec62 at both temperatures. The dou- 
ble mutant strains were nearly completely deficient in Ac- 
Pase translocation at all temperatures (Fig. 5 (7, lanes 6--9). 

The secretion selectivity of sec mutant blocks was 
confirmed by examining the import and processing of a mito- 
chondrial precursor protein, F,/3 ATPase. Extracts were 
prepared from wild-type, and single and double sec mutant 
cells that had been incubated for 2 h at 37°C. Two isolates 
of the mas2 mutant, which is defective in mitochondrial 
precursor processing (Yaffe and Schatz, 1984), were used as 
a control. After SDS-PAGE, immunoblotting with FtB-spe- 
cific antiserum showed only mature (m) F,/5 in the SEC and 
sec samples (Fig. 5 D, lanes 1-6), while both mature and 
precursor (p) were detected in the mas samples (Fig. 5 D, 
lanes 7-8). From this, we conclude that the sec mutations 
do not affect assembly of the mitochondrion. 

Posttranslational Translocation o f  p p ~ F  In Vivo 

Since intact, untranslocated secretory precursors accumu- 
lated in sec61 cells, it was possible to test whether these poly- 
peptides could complete translocation into the ER posttrans- 
lationally, sec61 cells were pulse-labeled with [3sS]SO4~- for 
33 min at 37°C, and a chase incubation at 30°C was initiated 
by transferring cells to fresh 30°C medium containing excess 
unlabeled ammonium sulfate, methionine, and cysteine. Ali- 
quots of the reaction were removed at various time points 
during the chase, and separated into cell pellet and culture 
medium fractions. All fractions were assayed for their con- 

Table IV. Segregation Analysis of  Tetrads from sec61 x sec62 and sec62 x sec63 Crosses 

Number of 
Cross Tetrad type tetrads Genotype of spores 

sec61 x sec62 Parental ditype 2 2 sec61SEC62, 2 SEC61sec62 
Nonparental ditype 2 2 SEC61SEC62, 2 inviable (sec61sec62)* 

Tetratype 15 1 SEC61SEC62, 1 sec61SEC62, 
1 SEC61sec62, 1 inviable (sec61sec62)* 

3 2 sec62SEC63, 2 SEC62sec63 
5 2 SEC62SEC63, 2 sec62sec63* 

12 1 SEC62SEC63, 1 sec62SEC63, 
1 SEC62sec63, 1 sec62sec63* 

sec62 x sec63 Parental ditype 
Nonparental ditype 

Tetratype 

* lnviability because of spore germination at 24°C. 
* Viable mutants obtained by spore germination at 17°C. 
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tent of  radiolabeled ot factor by immunoprecipitation fol- 
lowed by SDS-PAGE. 

ppotF in the pulse label gradually disappeared during the 
chase period (Fig. 6, lanes 1-6). Mature a factor accumu- 
lated in the culture medium in parallel with the decline in in- 
tracellular ppaF  (lanes 7-12). Cell lysis did not account for 
oe factor release since sec61 cells subjected to a 120-min 
chase retained the cytosolic phosphoglycerate kinase (lanes 
13 and 24). Radiolabeled sec61 cells contained a low molecu- 
lar mass species that persisted throughout the chase period 
(lanes 1-6). This molecule migrated more rapidly than 
secreted ot factor on SDS polyacrylamide gels, and possibly 
was generated by intracellular degradation of  ppo~F accumu- 
lated at the sec61 block. 

Though sec61 cells were radiolabeled at 37°C and chased 
at 30°C in the experiment described above, ppaF  was also 
secreted by sec61 cells retained at 37°C during the chase 
period (data not shown). In addition, untranslocated pptxF 
was converted to mature t~ factor and secreted even if the pro- 

Figure 5. Unglycosylated secretory and vacuolar precursors ac- 
cumulate in sec mutants. (A, B, and C) Stationary phase cells were 
inoculated into low-sulfate minimal medium and grown overnight 
at 17°C (A and C) or 24°C (B). Cells were radiolabeled in sulfate- 
free minimal medium with [3~S]SO42- at a concentration of 250- 
300 #Ci/OD600 for 30 min at the indicated temperature. N-linked 
core glycosylation ofCPY (A) and AcPase (C) was blocked by addi- 
tion of 10 #g/ml tunicamycin flu) to the culture medium 15 min 
before and during radiolabeling. After quenching radiolabel incor- 

poration by addition of ice-cold NaN3 to 10 mM, extracts were 
prepared by glass-bead lysis, and immunoprecipitated with the ap- 
propriate antiserum. Immunoprecipitates were analyzed by SDS- 
PAGE on 7.5% polyacrylamide gels. (A) SEC (JRM156), sec62 
(RDM43-9C), sec63 (JRMISI), sec61sec62 (RDM52-7C), and 
sec62sec63 (JRM164) cells were labeled for 30 rain at 17°C (lanes 
3, 5, 7, and 8) or 30 rain at 37°C after a 2-h preincubation at 37°C 
(lanes 1, 2, 4, 6, 8, and 10). Each lane contains anti-CPY cross- 
reacting material immunoprecipitated from 0.30D60o U of cells. 
preproCPY, accumulated CPY precursor; pl, core-glycosylated 
proCPY; p2, Golgi-modified proCPY; proCPY, signal peptide 
processed form of unglycosylated CPY precursor. (B) Before radio- 
labeling, cultures of sec61 (RDMIS-5B) and sec62 (RDM43-9C) 
cells were derepressed for invertase expression by transferring the 
cells into low-sulfate minimal medium containing 0.1% glucose at 
24°C or 37°C for 30 min. sec62 cells were radiolabeled for 30 rain 
at 24°C (lane 3) or 30 min at 37°C after a 60-rain preincubation 
at 37°C (lane 4). A companion culture ofsec62 cells were radiola- 
beled under repressing conditions (5 % glucose) for 30 min at 24°C 
(lane 1, -drp). Derepressed sec61 cells were shifted to 37°C for 
60 rain before radiolabeling for 30 rain at 37°C (lane 5). Secretory 
invertase precursor produced by cell-free translation of in vitro 
transcribed SUC2 mRNA (Rothblatt et al., 1987) in wheat germ ly- 
sate was included as a molecular mass standard (lane 3, /FT). 
Lanes 1, 3, 4, and 5 contain invertase immunoprecipitated from 0.5 
OD600 U of cells, cyto, cytoplasmic invertase; p, preinvertase; ER, 
core-glycosylated secretory invertase; secreted, outer chain-glyco- 
sylated periplasmic invertase. (C) Expression of extracellular acid 
phosphatase was derepressed as described in Materials and Methods. 
Cells were radiolabeled for 30 min at 17°C (lanes 1, 4, 6, and 8) 
or 30 rain at 37°C following a 2 h preincubation at 37°C (lanes 2, 
3, 5, 7, and 9). Each lane contains AcPase immunoprecipitated 
from 0.50D~o0 U of cells, preAcPase, unglycosylated precursor 
forms of acid phosphatase; ER, core-glycosylated AcPase; secreted, 
outer chain-glycosylated periplasmic AcPase. (D) Wild-type and 
mutant strains were grown overnight at 17°C and shifted to 37°C 
for 2 h. Extracts were prepared from unlabeled cells by glass-bead 
lysis and aliquots (equivalent to 0.50D600 U of cells) of the cell 
extracts were fractionated on a 7.5% SDS polyacrylamide gel. Fol- 
lowing transfer to a nitrocellulose membrane, the forms of mi- 
tochondrial ATPase F~/~ subunit were identified by probing the 
immunoblot with anti-F1/~ subunit serum and [~2S]protein A. p, 
precursor form of ATPase FI/3 subunit; m, protease-processed ma- 
ture form. 
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Figure 6. ppaF can be post- 
translationally translocated 
across the ER membrane in 
vivo. sec61 (RDMI5-5B) 
cells were pulse-labeled 
with [3sS]SO42- for 33 min 
at 3'7"C, and then chased for 
up to 120 min in the pres- 
ence of excess unlabeled 
eysteine, methionine, and 
ammonium sulfate. At var- 
ious time points during the 
chase period, aliquots of the 
culture were removed, sep- 
arated into cell pellet (In- 
tracellular, lanes 1-6) and 
culture medium (Secreted, 
lanes 7-12) fractions, and 
analyzed for their content 
of et-factor species by im- 
munoprecipitation and SDS- 
PAGE on a 25 % polyacryl- 

amide gel. The distribution of phosphoglycerate kinase in cell pellet (Cells, lane 13) and culture medium (Medium, lane 14) fractions 
prepared after 120 rain of chase allowed an estimate of the extent of cell lysis during the pulse-chase, prepro-ct-factor, accumulated at the 
see61 block; af, mature c~ factor peptide; PGK, phosphoglycerate kinase. 

tein synthesis inhibitor cycloheximide was present during the 
chase incubation. Therefore, secretion of accumulated ppc~F 
did not require full activity of the defective sec61 gene prod- 
uct or replacement with newly synthesized counterparts. 

Discuss ion  

A large scale genetic selection and screen for yeast mutants 
defective in protein translocation into the ER has identified 
three genes, SEC61, SEC62, and SEC63. Considering the 
number and distribution of mutant isolates among the three 
complementation groups, it seems unlikely that new genes 
would be identified by repeated application of the same se- 
lection protocol. A modification of our scheme in which the 
TRP1 gene replaced the HIS4 gene as a selectable cytoplas- 
mic marker yielded a translocation mutant ptU that appears 
to be allelic to sec63 (Toyn et al., 1988). Surprisingly, a 
different genetic selection designed to identify genes required 
for protein import into the yeast nucleus has uncovered an- 
other mutation allelic to sect3 (npll; Sadier et al., 1989). 

Additional genes required in the translocation process ex- 
ist and may require other approaches for their detection. One 
clear example is the 70-kD heat shock protein 0tsp70), which 
is represented by four isozymes in yeast encoded by the SSA 
gene family. These isozymes serve interchangeable roles in 
facilitating protein translocation into the ER and the mito- 
chondrion (Deshaies et al., 1988a). No single mutation in 
any one of the SSA genes yields a secretion defective pheno- 
type. Therefore, the selection of a single recessive mutation 
would not have revealed this important participant in the as- 
sembly process. Our selection scheme also demands that a 
mutation exert only a partial defect at a temperature compati- 
ble with growth, and a more complete defect at a higher, re- 
strictive temperature. Such alleles may not be obtained in 
certain genes. Variations of the procedure employing other 

signal peptides or low temperature (cold sensitive) restrictive 
mutations may uncover new genes. 

Phenotypically, sec61, see62, and sec63 appear to block 
protein translocation at a similar point in the pathway. All 
three accumulate unglycosylated precursor forms of four 
different secretory or vacuolar proteins. For ot factor precur- 
sor and preinvertase, it is clear that translocation is blocked 
before the signal peptide processing step. Defective translo- 
cation is confirmed with the demonstration that precursors 
accumulate outside the protective barrier of the ER mem- 
brane. The precursors appear to be membrane bound as 
judged by sedimentation and flotation along with membranes 
isolated from mutant cells. Perhaps a limited number of 
precursor molecules bind specifically to mutant membranes 
and cause a backlog of additional precursors to aggregate on 
the cytoplasmic surface of the ER. 

Accumulation of ppotF in the cytoplasm allows an in vivo 
test of the suggestion that this molecule may be translocated 
posttranslationally (Hansen et al., 1986). At least half of the 
pp~F radiolabeled in a pulse of sec61 cells interacted pro- 
ductively with the translocation machinery during a chase 
period and emerged from the cell as mature-sized pheromone. 
The kinetics of this chase are much slower than the rate of 
secretion seen in wild-type cells. It appears that the see61 de- 
fect represents a severe kinetic delay rather than an absolute 
block because the chase is equally slow but complete at 30°C 
or 37°C. A comparable test with sec63 cells showed qualita- 
tively the same efficiency of o~ factor secretion. 

The participation and localization of Sec gene products in 
polypeptide import can be directly tested by in vitro analysis 
of ppc~F translocation using fractions prepared from mutant 
cells, sec63 membranes display thermolabile translocation 
activity with ppcxF synthesized either in mutant or wild-type 
S-100 fractions. The simplest explanation of this result is that 
the Sec63 protein (Sec63p) is a membrane protein and the 
sec63 mutation creates a thermally inactivated form. Direct 
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sequence analysis of the SEC63 gene supports an integral 
membrane location for the gene product (Sadler et al., 
1989). Similar biochemical and molecular cloning results 
suggest that Sec61p and Sec62p are also integral membrane 
proteins (Deshaies and Schekman, 1989; C. Stirling and R. 
Schekman, unpublished results). These Sec proteins are likely 
candidates for the polypeptide translocation apparatus. 

A simple genetic test supports the notion that Sec61p, 
Sec62p, and Sec63p act together to facilitate translocation. 
Combination of any two of the three mutant loci in a haploid 
strain is lethal (sec61 sec63) or results in a lowered restrictive 
growth temperature (sec61 sec62; sec62 sec63). Viable dou- 
ble mutant strains are more severely deficient in transloca- 
tion of each of the four glycoproteins tested. The effect is 
specific because double mutants that include one of these loci 
together with a mutation that affects another step in the secre- 
tory process are not more growth restrictive than either 
haploid parent strain. One interpretation of these results is 
that Sec61p, Sec62p, and Sec63p are arranged in a complex 
or act on each other so that the presence of two partially 
functional members exaggerates the overall deficiency. The 
alternate interpretation that the gene products function in 
parallel pathways of protein import seems less likely since 
a null mutation in any one of these genes is lethal (C. Stirling 
and R. Schekman, unpublished observation; Deshaies and 
Schekman, 1989; Sadler et al., 1989). Synthetic lethality, in- 
ferring genetic interaction, has also been observed among 
sec mutants blocking secretory protein transport from the ER 
to the Golgi apparatus (C, Kaiser and R. Schekman, unpub- 
lished observation) and among mutants affecting protein 
delivery to the cell surface (Salminen and Novick, 1987). In 
each case, there is a complete concordance between the stage 
in the secretory pathway that is blocked and the double mu- 
tant combinations that generate enhanced lethality. 

While it is clear that the translocation mutants affect all 
four glycoproteins tested, invertase assembly seems to be the 
least severely affected. Even in the viable double mutants, in- 
vertase translocation and secretion occur at temperatures 
(17°C-24°C) where the other glycoproteins are completely 
blocked. Invertase differs from the other proteins in the com- 
position and structure of the signal peptide portion. Most 
secreted proteins that contain a cleaved signal peptide possess 
a basic amino acid residue near the NH2 terminus (Perlman 
and Halvorson, 1983; von Heijne, 1985); invertase lacks this 
feature. In addition, the invertase signal is considerably more 
hydrophobic (16 hydrophobic residues of a total 19) than the 
signals ofpreAcPase (9:14 after the lys residue), ppotF (12:17 
after the arg residue), or preproCPY (10:20 after the lys resi- 
due). Less hydrophobic signals, such as that from preproCPY, 
function poorly in a heterologous mammalian system, yet 
can be converted to a functional form by introduction of addi- 
tional hydrophobic amino acids (Bird et al., 1987). Converse- 
ly, hybrid protein containing the preproCPY signal fused to 
the invertase gene produces a hybrid that is completely blocked 
in sec62 cells (Johnson et al., 1987; R. Deshaies, unpub- 
lished results). Perhaps the invertase signal peptide parti- 
tions more readily into the ER bilayer and displays a less 
stringent requirement for a putative signal peptide receptor. 
At least part of the function of the translocation Sec proteins 
may be to recruit or affix secretory precursors to the ER 
membrane. This model predicts that integral membrane pro- 
teins with hydrophobic domains that mediate membrane as- 

sembly will be less severely blocked by the translocation s ec  

mutants. 
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