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Statistical Appendix 

Overview of Statistical Methods Used for Biomarker Selection 

There is no standard or agreed upon statistical methods used for ranking and selection of 

biomarkers related to a disease or a drug. Many different methods are used and they can 

potentially yield different rankings and selections.  There are two different types of 

methods in general – one, an univariate method and the other is a multivariate method.   

Univariate Method 

Univariate methods consider one biomarker at a time without considering association 

with others.  The most frequently used simple t-test belongs to this category.  For a 

disease marker selection, for example, t-test compares two group means between the 

normal and diseased samples.  This is equivalent to the use of Pearson’s correlation 

coefficient between the biomarker expression (“x”) and an indicator variable (“y”) coded 

as 0’s for normal and 1’s for diseased samples.  The same result can be obtained by 

considering the simple linear regression between the “x” and “y” and test the regression 

coefficients for significance (i.e. whether the regression coefficient is significantly 

different from zero).  The statistic used in this model is another t statistic formed by the 

ratio of the estimated regression coefficient to its standard error.  The actual ranking of 

biomarkers can be done by corresponding p-values and some cut point can be used for 

the final selection. The technique used in this study  also adjust the p-values for the 

multiplicity of the testing using the concept of false discovery rate (FDR). The idea of 

FDR is to control the average proportion of false positives in the selected list of 

biomarkers. In this simple linear regression setting, the regression coefficient is 

proportional to the Pearson’s correlation mentioned above and essentially tests the same 



thing – the association between a biomarker and the disease ignoring the association with 

other biomarkers.  In other words, Univariate analysis is based on the marginal 

correlation between a marker and the clinical endpoint. 

Multivariate 

Multivariate methods in general consider all the biomarkers in the experiment together in 

a single model and include many different regression and classification method.  These 

tools are called supervised learners and also called a wrapper based approach in the 

machine learning community. The types of regression (or classification) models can be 

either linear or nonlinear. Ordinary least squares (OLS) and logistic regressions are 

frequently used linear models. Decision trees and neural networks are examples of 

nonlinear models.  Let’s consider as an example the selection of disease markers using a 

multiple linear regression model. The regression coefficient in this case essentially 

measures the partial correlation between a biomarker and the disease adjusted for all the 

other biomarkers.  This is the reason why multivariate models are preferred since the 

partial correlation takes into account the association with other markers.  We know that 

all the biomarkers are related and their associations approximate the biological network 

in the disease pathways. It is well known that partial correlation is generally better 

measure of direct association between the two markers than the marginal correlation in 

the association network modeling.  Generally nonzero marginal correlation can mean 

either direct association or effects of other indirect variables. 

 

Ordinary least squares or logistic regression, however, can have a serious problem 

especially when the data is of high dimensional and as a result the biomarker expressions 



are highly correlated.  This is a well known multi-collinearity problem for linear 

regression and OLS’ regression coefficients can be very misleading since their standard 

errors are so large that sometimes they even have wrong signs in their estimates.  The 

same is true for logistic regression for classification and we can not rely on their 

coefficients and p-values for the ranking and selection of the biomarkers.  These models 

are unstable under multi-collinearity and are of high variance structure. 

 

A shrinkage method of estimation such as principal component regression (PCR), partial 

least squares (PLS) and ridge regression (RR) can bypass this multi-collinearity problem 

by regularization of the estimation process (1).  They may introduce a small bias but can 

reduce the variance of the estimated coefficients appreciably and hence are more stable.  

We have used partial least squares (PLS) regression and its discriminant analysis (PLS-

DA) to deal with high dimensional biomarker selection and found them very competitive 

with other methods of shrinkage estimation.  The PLS-DA is simply PLS applied to a 

categorical response variable. For a binary response, it is typically coded as 0 or 1 but 

other scaling of the response does not alter the ranking of the regression coefficients and 

hence interpretation of the result remains the same. The software package SIMCA (2) 

implemented PLS and PLS-DA in a very user friendly manner with an excellent 

graphical user interface. We found the package very useful for high dimensional data 

analysis in general.  There is a recent study comparing different shrinkage methods and 

currently active research is being done to improve the accuracy and flexibility of ridge 

regression to high dimensional biomarker selection (3). 

 



Nonlinear models such as decision trees and neural networks can improve the accuracy of 

their predictions by adopting nonlinearity but are of high variance structure and can be 

unstable as well.  Decision tree algorithms are unstable at times since variable selection is 

done in a stepwise manner and is of discrete nature (greedy algorithm).   

This can be true for any stepwise variable (biomarker) selection algorithms. 

Neural networks use many parameters in the estimation process (in many cases 

overparametrized) and a trade off can be again instability of the model.  One interesting 

computer intensive method called Random Forest (4) is based on the bootstrap 

aggregation of the many (> 500 for example) decision tree models and is a very 

promising tool for high dimensional biomarker selection.  Our limited experience showed 

that the PLS coefficients gave similar rankings of the biomarkers to the Random Forest in 

many cases of high dimensional data. 

Model Validation. 

Validation of a prediction model can be done externally on a separate test data or 

internally using a cross validation.  Typically cross validation is applied to come up with 

a best performing model e.g. to minimize a performance measure such as predicted 

residual sums of squares for a regression model.  Once a cross validated performance is 

obtained, the statistical significance of the performance measure is obtained by a 

permutation test.  The permutation test in this case is to randomly permute the labels of 

the response part of the data to assess the significance of the actual performance measure 

against those obtained from random permutations of labels.  If none of the   models from 

the 100 different random permutations of the labels of the response showed better 

performance than the model from original data then we can conclude the model is 



significant at P less than 0.01. Our approach of model validation was based on combining 

the ideas of the cross validation and the permutation test.   

 

Data analysis strategy used in the stusy. 

The ranking and selection of biomarkers is not a pure statistical exercise but should be a 

collaborative effort between statisticians and scientists.  We could obtain a ranking of 

biomarkers by a univariate statistical test and select a few in the top of a list or use a cut 

point based on p-values.  In many cases, people also adjust the p-values for the 

multiplicity of the testing but recently the concept of false discovery rate (FDR) became 

popular for the decision making, which professor Efron calls one of the genuinely useful 

new ideas (5). The idea of FDR is to control the average proportion of false positives in 

the selected list of biomarkers. However selecting biomarkers solely based on a 

univariate ranking may ignore the associations among the biomarkers and may end up 

with markers that have all similar functions.  In order to select diverse set of markers for 

COPD our approach of selecting a panel of predictive biomarkers for COPD was to 

cluster the biomarkers into a few clusters/ groups (say 30) first and then evaluate the 

predictiveness of each cluster for COPD.   Then we would select a few representative 

biomarkers from each group of the predictive clusters.  The particular clustering tool we 

have used was Variable Clustering (VARCLUS) procedure in SAS (6).  The VARCLUS 

procedure attempts to divide a set of variables into non-overlapping clusters in such a 

way that each cluster can be interpreted as essentially unidimensional.  Underlying 

computation of VARCLUS is very similar to a factor analysis and roughly a factor is 

equivalent to a cluster in VARCLUS.  The predictiveness of each cluster was then 



determined by computing partial correlation of each cluster centroid with COPD given all 

the other markers using partial least squares discriminant analysis (PLS-DA).  Each of the 

regression coefficients from the PLS-DA is essentially equivalent to the partial 

correlation between the cluster centroid and the response.  In this case the response is 

coded as a binary indicator variable and as long as the indicator variable has two distinct 

values such as 0 for control or 1 for COPD patient it does not matter what the scale is. 

Hence a regression coefficient essentially measures the partial correlation between an 

average biomarker in a cluster with COPD that is adjusted for all other cluster averages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Description of the analytes included in the micro-arrays. 

The total number of analytes included on arrays 1-5. Note data from CRP on array 5 was 

not useable due to CRP levels well above the upper detection limit of the assay which 

resulted in a ‘Hook effect”.  

Array 1 analytes 

 Analyte Name 
1 ANG Angiogenin 
2 BLC (BCA-1) B-lymphocyte chemoattractant 
3 EGF Epidermal growth factor 
4 ENA-78 Epithelial cell-derived neutrophil-activating peptide 
5 Eot Eotaxin 
6 Eot-2 Eotaxin-2 
7 Fas Fas (CD95) 
8 FGF-7 Fibroblast growth factor-7 
9 FGF-9 Fibroblast growth factor-9 
10 GDNF Glial cell line derived neurotrophic factor 
11 GM-CSF Granulocyte macrophage colony stimulating factor 
12 IL-1ra Interleukin 1 receptor antagonist 
13 IL-2 sRα Interleukin 2 soluble receptor alpha 
14 IL-3 Interleukin 3 
15 IL-4 Interleukin 4 
16 IL-5 Interleukin 5 
17 IL-6 Interleukin 6 
18 IL-7 Interleukin 7 
19 IL-8 Interleukin 8 
20 IL-13 Interleukin 13 
21 IL-15 Interleukin 15 
22 MCP-2 Monocyte chemotactic protein 2 
23 MCP-3 Monocyte chemotactic protein 3 
24 MIP-1α Macrophage inflammatory protein 1 alpha 
25 MPIF Myeloid progenitor inhibitory factor 1 
26 OSM Oncostatin M 
27 PlGF Placental growth factor 



Array 2 analytes 

 Analyte Name 
1 AR Amphiregulin 
2 BDNF Brain-derived neurotrophic factor 
3 Flt-3 Lig fms-like tyrosine kinase-3 ligand 
4 GCP-2 Granulocyte chemotactic protein 2 
5 HCC4 (NCC4) Hemofiltrate CC chemokine 4 
6 I-309 I-309 
7 IL-1α Interleukin 1 alpha 
8 IL-1β Interleukin 1 beta 
9 IL-2 Interleukin 2 
10 IL-17 Interleukin 17 
11 MCP-1 Monocyte chemotactic protein 1 
12 M-CSF Macrophage colony stimulating factor 
13 MIG Monokine induced by interferon gamma 
14 MIP-1β Macrophage inflammatory protein 1 beta 
15 MIP-1δ Macrophage inflammatory protein 1 delta 
16 NT-3 Neurotrophin 3 
17 NT-4 Neurotrophin 4 
18 PARC Pulmonary and activation-regulated chemokine 
19 RANTES Regulated upon activation, normal T expressed and presumably 

secreted 
20 SCF Stem cell factor 
21 sgp130 Soluble glycoprotein 130 
22 TARC Thymus and activation regulated chemokine 
23 TNF-RI Tumor necrosis factor receptor I 
24 TNF-α Tumor necrosis factor alpha 
25 TNF-β Tumor necrosis factor beta 
26 VEGF Vascular endothelial growth factor 



Array 3 analytes 

 Analyte Name 
1 BTC Betacellulin 
2 DR6 Death receptor 6 
3 Fas Lig Fas ligand 
4 FGF acid (FGF-1) Fibroblast growth factor acidic 
5 Fractalkine Fractalkine 
6 GRO-β Growth related oncogene beta 
7 HCC-1 Hemofiltrate CC chemokine 1 
8 HGF Hepatocyte growth factor 
9 HVEM Herpes virus entry mediator 
10 ICAM-3 (CD50) Intercellular adhesion molecule 3 
11 IGFBP-2 Insulin-like growth factor binding protein 2 
12 IL-2 Rγ Interleukin 2 receptor gamma 
13 IL-5 Rα (CD125) Interleukin 5 receptor alpha 
14 IL-9 Interleukin 9 
15 Leptin/OB Leptin 
16 L-Selectin (CD62L) Leukocyte selectin 
17 MCP-4 Monocyte chemotactic protein 4 
18 MIP-3β Macrophage inflammatory protein 3 beta 
19 MMP-7 (total) Matrix metalloproteinase 7 
20 MMP-9 Matrix metalloproteinase 9 
21 PECAM-1 (CD31) Platelet endothelial cell adhesion molecule-1 
22 RANK Receptor activator of NF-kappa-B 
23 SCF R Stem cell factor receptor 
24 TIMP-1 Tissue inhibitors of metalloproteinases 1 
25 TRAIL R4 TNF-related apoptosis-inducing ligand receptor 4 
26 VEGF-R2 (Flk-1/KDR) Vascular endothelial growth factor receptor 2 
27 ST2 Interleukin 1 receptor 4 



Array 4 analytes 
  Analyte Name 
1 ALCAM Activated leukocyte cell adhesion molecule 
2 β-NGF beta-nerve growth factor 
3 CD27 CD27 
4 CTACK Cutaneous T-cell attracting chemokine 
5 CD30 CD30 
6 Eot-3 Eotaxin-3 
7 FGF-2 Fibroblast growth factor-2 (FGF-basic) 
8 FGF-4 Fibroblast growth factor-4 
9 Follistatin Follistatin 
10 GRO-γ Growth related oncogene gamma 
11 ICAM-1 Intercellular adhesion molecule 1 
12 IFN-γ Interferon gamma 
13 IFN-ω Interferon omega 
14 IGF-1R Insulin-like growth factor I receptor 
15 IGFBP-1 Insulin-like growth factor binding protein 1 
16 IGFBP-3 Insulin-like growth factor binding protein 3 
17 IGFBP-4 Insulin-like growth factor binding protein 4 
18 IGF-II Insulin-like growth factor II 
19 IL-1 sR1 Interleukin 1 soluble receptor I 
20 IL-1 sRII Interleukin 1 soluble receptor II 
21 IL-10 Rβ Interleukin 10 receptor beta 
22 IL-16 Interleukin 16 
23 IL-2 Rβ Interleukin 2 receptor beta 
24 I-TAC Interferon gamma-inducible T cell alpha chemoattractant 
25 Lptn Lymphotactin 
26 LT βR lymphotoxin-beta receptor  
27 M-CSF R Macrophage colony stimulating factor receptor 
28 MIP-3α Macrophage inflammatory protein 3 alpha 
29 MMP-10 Matrix metalloproteinase 10 
30 PDGF Rα Platelet-derived growth factor receptor alpha 
31 PF4 Stromal cell-derived factor beta 
32 sVAP-1 Soluble Vascular Adhesion Protein-1  
33 TGF-α Transforming growth factor alpha 
34 TIMP-2 Tissue inhibitors of metalloproteinases 2 
35 TRAIL R1 TNF-related apoptosis-inducing ligand receptor 1 
36 VE-cadherin Vascular Endothelial Cadherin 
37 VEGF-D Vascular endothelial growth factor-D 

 



Array 5 analytes 

 Analyte Name 
1 4-1BB (CD137) 4-1BB 
2 ACE-2 Angiotensin I converting enzyme-2 
3 AFP Alpha fetoprotein 
4 AgRP Agouti-related protein 
5 CD141 Thrombomodulin/CD141 
6 CD40 CD40 
7 CNTF Rα Ciliary neurotrophic factor receptor alpha 
8 CRP C-reactive protein 
9 D-Dimer D-Dimer 
10 E-Selectin E-selectin 
11 HCG Human chorionic gonadotrophin 
12 IGFBP-6 Insulin-like Growth Factor Binding Protein 6 
13 IL-12 (p40) Interleukin 12 p40 
14 IL-18 Interleukin 18 
15 LIF Rα (gp190) Leukemia inhibitory factor souble receptor alpha 
16 MIF Macrophage migration inhibitory factor 
17 MMP-8 (total) Matrix Metalloproteinase-8 
18 NAP-2 Neutrophil Activating Peptide 2 
19 Neutrophil elastase Neutrophil elastase 
20 PAI-II Plasminogen activator inhibitor-II 
21 Prolactin Prolactin 
22 Protein C Human Protein C 
23 Protein S Human Protein S 
24 P-Selectin P-Selectin 
25 TSH Thyroid stimulating hormone 
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