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The carbohydrate content of purified Bacillus thuringiensis subsp. israeknsis crystal toxin was determined by
six biochemical tests, column chromatography on an amino acid analyzer, and the binding of 11 fluorescent
lectins. The crystals contained approximately 1.0% neutral sugars and 1.7% amino sugars. The anmino sugars
consisted of 70% glucosamine and 30% galactosamine. No N-acetylneuraminic acid (sialic acid) was detected.
The presence of amino sugars was confirmed by the strong binding of fluorescent wheat germ agglutinin and
the weak binding of fluorescent soybean agglutinin. These lectins recognize N-acetyl-D-glucosamine and
N-acetyl-D-galactosamine, respectively. The lectin-binding sites appeared evenly distributed among the protein
subunits of the crystal. The sugars were covalently attached to the crystal toxin because wheat germ agglutinin
still bound alkali-solubilized toxin which had been boiled in sodium dodecyl sulfate, separated by polyacryl-
amide gel electrophoresis, and transferred to nitrocellulose membranes. This study demonstrates the covalent
attachment of amino sugars and indicates that the B. ihutingiensis subsp. israelensis protein toxins should be
viewed as glycoprotein toxins. The crystals used in the present study were purified on sodium bromide density
gradients. Studies employing crystals purified on Renografin density gradients can give artificially high values
for the anthrone test for neutral sugars.

The bacterium Bacillus thuringiensis subsp. israelensis
produces a protein crystal that is toxic to the larval stage of
many mosquito and blackfly species. Consequently it is an
important component of many mosquito abatement pro-
grams. An understanding of the mode of action of these
mosquito toxins on the molecular level is desirable. Such an
understanding requires a structure-function analysis of both
the protein toxin and its target(s) in the larval gut. The size
and amino acid composition of several B. thuringiensis
toxins have already been determined (6, 21, 29, 30). More-
over, the amino acid sequences for the 28-kilodalton (kDa)
subunit of the B. thuringiensis subsp. israelensis crystal (31)
and the 134-kDa lepidoptera-active toxin from B. thuringi-
ensis subsp. kurstaki have been deduced (25) from the
cloned DNA sequences of their respective genes.
However, the possible presence of carbohydrates at-

tached to these protein toxins has not yet been resolved. In
particular, reports on the carbohydrate content of purified B.
thuringiensis subsp. kurstaki crystals range from 0.1 to 12%
(4, 5, 12, 13). These differences in reported values may be
due to different methods of crystal purification and the
limitations of the analytical procedures selected. Addition-
ally, it is necessary to prove the covalent attachment of
sugars, not merely their presence. Huber et al. (13) detected
<0.1% neutral sugars in extensively (more than 10 times)
washed B. thuringiensis subsp. kurstaki crystals. Moreover,
they noted that the apparent sugar content decreased with
each washing. This observation led them to suggest that the
sugars detected were not, in fact, covalently attached to the
crystal proteins but instead were products of sporulation and
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cell lysis, still adhering to the crystals owing to insufficient
washing (13).

Similar disagreements exist with regard to the carbohy-
drate content of B. thuringiensis subsp. israelensis crystals.
Insell and Fitz-James (14) reported a hexose content of 6%,
while Tyrell et al. (29) reported a carbohydrate content
"severalfold greater than for the other subspecies." Signif-
icantly, the same group had previously reported (5) that B.
thuringiensis subsp. kurstaki crystals contained 5.6% carbo-
hydrate, consisting of 3.8% glucose and 1.8% mannose. In
the present report, we reexamined the carbohydrate content
of B. thuringiensis subsp. israelensis crystals. This analysis
included six colorimetric tests and the chromatographic
separation of amino sugars on an amino acid analyzer as well
as the ability of purified Bacillus crystals to bind 11 different
fluorescent lectins. Our data demonstrate that the larvicidal
toxins in the Bacillus crystal should be viewed as glycopro-
tein toxins since at least the lectin-specific carbohydrates are
covalently attached to specific sites on the protein subunits.

MATERIALS AND METHODS

Toxin preparation. A single-colony isolate of B. thuringi-
ensis subsp. israelensis taken from a Bactimos powder
(courtesy of Brian Federici, University of California, River-
side) was grown on GGYS medium (20). After sporulation,
the protein crystals were purified on NaBr gradients as
described previously (3, 21). The crystals were solubilized
for 2 h at 37°C in 50 mM NaOH with 10 mM EDTA at pH
11.7 (21) followed by centrifugation at 15,000 x g for 10 min.
Protein concentrations in the supernatants were determined
from the A280 (El%°m = 11.0 [29]).

Hydrolysis was performed on B. thuringiensis subsp.
israelensis crystal protein by heating for 6 h at 95°C in 4 N
HCl under nitrogen. After hydrolysis, the HCI was removed
by vacuum desiccation. Neutral carbohydrates in the pres-
ence of amino acids interfere with the determination of
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TABLE 1. Detection of carbohydrates in B. thuringiensis subsp. israelensis toxin by colorimetric assays'
Alkali- Acid-

Assay Carbohydrates measured Intact solubilized hydrolyzedcrystals ~~toxinh toxin"

Phenol-sulfuric acid Neutral sugars 0.7 ± 0.07 0.5 ± 0.04 NDd
Anthrone Neutral sugars 1.0 ± 0.02 0.1 ± 0.01 ND
Orcinol N-Acetylneuraminic acid 0 0 ND
Lee and Montgomery Neutral sugars and hexosamines 3.5 ± 0.05 ND 3.8 ± 0.15
Elson-Morgan Hexosamines 0 ND 1.8 ± 0.15e
Morgan-Elson Hexosamines and N-acetylated hexosamines 0 ND 1.7 ± 0.12

a A 1- to 2-mg sample of purified toxin was used per assay. Assays were performed as described in Materials and Methods. Results are the percentage of
carbohydrate ± standard error. Each number represents a minimum of four replicates.

b Crystal toxin was solubilized at pH 11.75 for 2 h at 37°C. After centrifugation at 15,000 x g, the supernatant was analyzed for carbohydrate content.
Crystal toxin was hydrolyzed in 4 N HCI at 95'C for 6 h. After vacuum desiccation, the neutral sugars were removed by cation-exchange chromatography.

d ND, Not determined.
e Using glucosamine as the standard.

amino sugars, and these were removed by cation-exchange
chromatography on AG 50W-X2 (Bio-Rad Laboratories,
Richmond, Calif.) (2, 11).

Determination of carbohydrate content of crystal protein by
colorimetric assays. A number of colorimetric assays were
performed to determine the content of neutral sugars, amino
sugars, and N-acetylneuraminic acid (sialic acid). The phe-
nol-sulfuric acid (2, 11), anthrone (2, 11), orcinol (24), Lee
and Montgomery (17), and Elson-Morgan (2, 28) and Mor-
gan-Elson (2, 28) determinations were performed as de-
scribed previously. A 1-to 2-mg sample of purified toxin was
used per assay. Glucose was used as a standard for the
phenol-sulfuric acid and anthrone assays, and N-acetyl-
neuraminic acid was used as a standard for the orcinol assay.
Because acid hydrolysis of the glycoprotein removes the
acetyl moiety from N-acetylated carbohydrates (1, 9), glu-
cosamine and galactosamine were used as standards for the
Lee and Montgomery and Elson-Morgan reactions.
Chromatographic separation of amino sugars. Amino sug-

ars were separated by chromatography on a Beckman amino
acid analyzer (9). Hydrolyzed crystal protein (2 mg) was
lyophilized and suspended in 1 ml of 0.2 M sodium citrate,
pH 2.2. Samples were applied to a column of PA-35 resin
(0.9 by 10.5 cm) maintained-at 60°C. Flow rates of 100 and 35
ml/h for buffer and ninhydrin solutions, respectively, were
used. The 0.158 M sodium citrate buffer of Plummer (23) was
used for chromatography. Glucosamine and galactosamine
(10 p.g/ml) were used as standards.

Lectin binding to intact crystals. Purified Bacillus crystals
(5 mg) were mixed with 10 ,ul of fluorescein isothiocyanate-
labeled lectin (1 mg/ml) (EY Laboratories, San Mateo,
Calif.). The mixture was incubated for 30 min at room
temperature with occasional agitation. The crystals were
pelleted by centrifugation for 5 min at 15,000 x g. The pellet
was washed three times with 1 ml of buffer and then
resuspended in 3 ml of buffer and read on a Perkin-Elmer
44A fluorescence spectrophotometer with 490 and 525 nm as
excitation and emission wavelengths, respectively.

Lectins utilized were purified from Concanavalia
ensiformis (concanavalin A), Griffonia simplicifolia (GS I
and GS II), Dolichos biflorus (DBA), Maclura pomifera
(MPA), Ulex europaeus (UEA-1), Glycine max (soybean
agglutinin [SBA]), Arachis hypogaea (PNA), Triticum
vulgaris (wheat germ agglutinin [WGA]), Bauhinia purpurea
(BPA), and Limulus polyphymus (LPA). Incubation condi-
tions were as recommended by EY Laboratories. The buffer
for concanavalin A was 50 mM Tris hydrochloride (pH
7.0)-150 mM NaCl-1 mM CaCl2-1 mM MnCl2. The buffer

for GS I and GS II binding was 10 mM sodium phosphate
(pH 7.45)-150 mM NaCl (PBS) plus 5 mM CaCl2. The buffer
for LPA was 50 mM Tris hydrochloride-150 mM NaCl-10
mM CaCl2. The PBS buffer was used for all other lectins.

Lectin binding to solubilized toxin. Solubilized toxin was
applied to nitrocellulose membranes by vacuum filtration
with a dot-blot apparatus. The membrane was incubated in
3% bovine serum albumin in PBS to block nonspecific
binding sites. The nitrocellulose was washed two times with
PBS. The WGA-horseradish peroxidase conjugate (200 ,ug)
(Sigma Chemical Co., St. Louis, Mo.) was then added in 20
ml of PBS plus 1.0% bovine serum albumin. It was incubated
for 2 h at room temperature and then washed four times in
PBS and one time in 20 mM Tris hydrochloride-500 mM
NaCl (pH 7.5). Horseradish Peroxidase Color Development
Reagent (containing 4-chloro-1-naphthol) (Bio-Rad Labora-
tories) was used to detect lectin binding. Protein controls
were bovine serum albumin which is not a glycoprotein and
ovalbumin which contains mannose and N-acetylgl-
ucosamine.

Lectin binding to individual crystal proteins. Solubilized
crystal proteins were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis on 12.5% gels, using the
discontinuous system of Laemmli (16). The proteins were
then transferred to nitrocellulose membranes with a Hoeffer
transblot apparatus operating at maximum voltage for 1 h.
Transfer buffer consisted of 192 mM glycine, 25 mM Tris,
and 20% methanol. One portion of the nitrocellulose was
stained with naphthol blue black and scanned with a Hoeffer
densitometer to determine the relative amount of protein
transferred to nitrocellulose in each band. The remaining
nitrocellulose was used for WGA-horseradish peroxidase
conjugate binding as described above. The nitrocellulose
was then scanned to quantitate the relative amount ofWGA
binding to each protein band.

RESULTS

Chemical determinations. B. thuringiensis subsp. isra-
elensis crystals purified on sodium bromide gradients were
analyzed by six different colorimetric methods (Table 1).
The anthrone and phenol-sulfuric acid methods are specific
for neutral sugars. In intact crystals, these assays detected
1.0 and 0.7% carbohydrate, respectively, whereas lower
levels were detected in the pH 11.75 solubilized crystal
protein (Table 1). This decrease in the neutral sugar content
of the alkali-solubilized proteins may be due either to alkali-
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labile protein-carbohydrate linkages (beta-elimination) or to
incomplete solubilization of the Bacillus crystals (21), with
the alkali-insoluble proteins being highly enriched in carbo-
hydrates. The alkali-insoluble proteins typically make up
20% of the total crystal protein, and based on the phenol-
sulfuric acid assay, the insoluble protein pellet contained
3.8% neutral sugars. A qualitatively similar enrichment for
carbohydrates had previously been observed by Insell and
Fitz-James (14).
However, neither the anthrone nor the phenol-sulfuric

acid method detects amino sugars. To alleviate this diffi-
culty, Lee and Montgomery (17) introduced a modification
of the phenol-sulfuric acid method in which the hexosamines
are first deaminated with nitrous acid. This procedure de-
tected 3.5% total sugars (neutral and amino) in intact B.
thuringiensis subsp. israelensis crystals and 3.8% total sug-
ars in acid-hydrolyzed crystal protein (Table 1).
The Elson-Morgan reaction (2, 28) with acetylacetone

detects free amino sugars, while the Morgan-Elson reaction
(28) with acetic anhydride measures both free and N-
acetylated amino sugars. These reactions require that the
hexosamines be liberated before colorimetric determination,
and as expected, hexosamines were only detected after their
release by acid hydrolysis (Table 1). The Elson-Morgan
reaction detected 1.8% amino sugars, while the Morgan-
Elson reaction detected 1.7% amino sugars (Table 1). No
attempts were made to optimize hydrolysis conditions. Stan-
dard hydrolysis conditions (4 N HCl at 95°C for 6 h) were
used for both reactions (9). Since the conditions necessary
for the hydrolysis of amino sugar-containing polymers vary
tremendously (1), the data obtained represent minimum
amounts of carbohydrate present. Last, no N-acetylneu-
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FIG. 1. Chromatographic separation of amino sugars on an
amino acid analyzer. (A) Amino acid calibration mixture (500 nmol)
plus 10 ,ug of both glucosamine and galactosamine per ml; (B)
analysis of 0.5 mg of B. thuringiensis subsp. israelensis crystal
protein after hydrolysis in 4 N HCI for 6 h. Abbreviations: GlcNH2,
glucosamine; GalNH2, galactosamine.

TABLE 2. Binding of lectins by B. thuringiensis subsp.
israelensis crystal toxina

Lectinb Major sugar specificity Fluorescence

Concanavalin A D-Mannose 0.06
GS I D-Galactose 0.00
GS II N-Acetyl-D-glucosamine 0.00
LPA N-Acetylneuraminic acid 0.04
DBA N-Acetyl-D-galactosamine 0.00
MPA D-Galactose 0.00
UEA-1 L-Fucose 0.09
SBA n-Acetyl-D-galactosamine 0.44
PNA D-Galactose 0.00
WGA N-Acetyl-D-glucosamine 3.76
BPA N-Acetyl-D-galactosamine 0.00

a Crystals (5 mg) were incubated with 10 p.g of fluoresein isothiocyanate-
labeled lectins. The crystals were washed by centrifugation three times with 1
ml of buffer. Units given are arbitrary fluorescent units when the excitation
wavelength i5 490 nm and the emission wavelength is 525 nm. Experiments
were repeated three times with similar results.

b Lectins utilized were purified from Concanavalia ensiformis (concanava-
lin A), Griffonia simplicifolia (GS I and GS II), Dolichos biflorus (DBA),
Maclura pomifero (MPA), Ulex europaeus (UEA-1), Glycine max (soybean
agglutinin [SBA]), Arachis hypogaea (PNA), Triticum vulgaris (wheat germ
agglutinin [WGA]), Bauhinia purpurea (BPA), and Liimulus polyphymus
(LPA).

raminic acid was detected in the B. thuringiensis subsp.
israelensis protein by the orcinol method (Table 1).
Chromatographic separation of amino sugars. D-Glucosa-

mine and D-galactosamrine are the only amino sugars known
to be components of glycoproteins (9), and chromatographic
analysis indicated that both of them were present in hydro-
lyzed Bacillus crystal protein (Fig. 1B). Only two amino
sugar peaks were detected, and their retention times were
identical to those for the glucosamine and galactosamine
standards (Fig. 1A). Of the total hexosamines detected (8.7
± 0.55 ,ug/mg of crystal protein), integration of the peak
areas indicated 70 ± 2.7% glucosamine and 30 ± 2.7%
galactosamine. This glucosamine/galactosamine ratio agrees
very well with that calculated from the colorimetric tests for
amino sugars. In the Elson-Morgan assay, glucosamine and
galactosamine give identical color yields on a molar basis,
whereas in the Morgan-Elson reaction galactosamine gives
only 35% of the color of glucosamine (28). When both
reactions are used, they provide two stimultaneous equa-
tions whose solution determines the amount of glucosamine
and galactosamine present in an unknown mixture. For
acid-hydrolyzed crystal protein (Table 1), these equations
indicated approximately 80% glucosamine and 20%
galactosamine.

Lectin binding. Lectins are proteins which contain highly
specific binding sites for a wide range of carbohydrate
structures. We tested 11 differenct fluorescent lectins for
their ability to attach to intact B. thuringiensis subsp.
israelensis crystals on the assumption that lectin binding
would indicate the presence of the corresponding sugars. Of
these 11 lectins, only WGA and SBA gave fluorescence
intensities significantly above background (Table 2), with the
fluorescence owing to WGA attachment being far more
intense. The specifity of this binding was shown by compe-
tition with N-acetyl-D-glucosamine. In the presence of ex-
cess N-acetyl-D-glucosamine, the fluorescent WGA no
longer bound Bacillus crystals.

Covalent attachment. We next sought to determine
whether WGA was binding to the protein toxin itself or to
some contaminant, possibly introduced during crystal prep-
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FIG. 2. Binding ofWGA to ovalbumin (OV) and B. thuringiensis
subsp. israelensis (BTI) protein. The crystal toxin was solubilized as
described in Materials and Methods. The solubilized toxin and
ovalbumin were applied to nitrocellulose membranes and incubated
with WGA-horseradish peroxidase conjugate, and the color was

developed as described in Materials and Methods. Amounts of
proteins applied per dot for ovalbumin are 4 (a), 8 (b), 16 (c), 24 (d),
and 0 (e) ,ug. Amounts of toxin protein applied are 18 (a), 36 (b), 72
(c), 108 (d), and 0 (e) ,ug.

aration. This point was clarified by demonstrating the con-

tinued ability of WGA to bind alkali (pH 11.75)-solubilized
crystal protein. Two methods were used. In the first method,
solubilized toxin was applied directly to nitrocellulose mem-
branes and incubated with WGA-horseradish peroxidase
conjugate (Fig. 2). In the second method, solubilized toxin
was boiled in sodium dodecyl sulfate sample buffer (16) and
resolved by polyacrylamide gel electrophoresis. The sepa-
rated proteins were then transferred to nitrocellulose mem-
branes and incubated with the WGA-horseradish peroxidase
conjugate. In both experiments, B. thuringiensis subsp.
israelensis crystal protein and the glycoprotein ovalbumin
bound WGA, while the sugar-free bovine serum albumin
control did not.

Distribution of WGA-binding residues. B. thuringiensis
subsp. israelensis crystals are composed of multiple protein
subunits ranging in size from 28 to 140 Kda (21, 29). The
distribution of WGA-binding sites among these multiple
protein subunits was quantified by transferring them from
sodium dodecyl sulfate gels to nitrocellulose membranes and
comparing their reactivity with WGA-horseradish peroxi-
dase (Table 3). All the major protein bands bound WGA, and
the ratio of bound WGA to protein was roughly equivalent
for each band (Table 3). The lectin-binding sites appeared
evenly distributed among the major classes of the protein
subunits. Unfortunately, the precision of the method did not
permit resolution within the major classes, i.e., 135 versus
140 kDa.

Possible artifacts. Most procedures for the purification of
B. thuringiensis crystals involve either NaBr (3) or Reno-
grafin (26) gradients. Significantly, Renografin is the N-
methyl-D-glucamine salt of 3,5-diacetylamino-2,4,6-triiodo-
benzoate, and N-methyl-D-glucamine is prepared from
D-glucose and methylamine. If these gradient components
were not completely removed after crystal purification, they
could interfere with subsequent analysis of the carbohydrate
content of the crystal. Accordingly, the anthrone, phenol-
sulfuric acid, and Lee and Montgomery (17) assays were
performed with increasing concentrations of either NaBr or
Renografin. Sodium bromide did not interfere with any of
these assays; it would be physically impossible to have an
interfering level of NaBr present in crystal samples. Simi-
larly, Renografin did not interfere with the phenol-sulfuric
acid and Lee and Montgomery assays. However, Renografin
did interfere with the anthrone reaction. If 0.13 mg of
Renografin was present in a 1-mg sample of carbohydrate-
free protein, the anthrone reaction would give an erroneous
indication of 5% carbohydrate.

DISCUSSION

We used six colorimetric tests to analyze the carbohydrate
content of the B. thuringiensis subsp. israelensis mosquito
larvicidal protein crystals. Purified crystals contained
roughly 2.7% total carbohydrate, consisting of 1.0% neutral
sugars and 1.7% amino sugars (70% glucosamine and 30%
galactosamine). The presence of both glucosamine and
galactosamine is in qualitative and quantitative agreement
with the binding of the fluorescent lectins WGA and SBA by
intact crystals. Column chromatography on an amino acid
analyzer confirmed the presence of amino sugars in purified
crystals. It is important that the column chromatography
detecting both glucosamine and galactosamine is conducted
on acid hydrolysates of intact crystals rather than of alkali-
solubilized crystal protein. This precaution avoids the dan-
ger of alkali-catalyzed epimerization of the N-acetylhexo-
samines (19) by which glucosamine and galactosamine could
possibly interconvert. However, quantitative estimation of
sugars in glycoproteins is considered to be a problem of
extreme complexity (7), and the absolute levels of sugars
present are less certain. Complete release of the sugars
present inevitably leads to the destruction of some of those
sugars (7). Additionally, the colorimetric tests for sugars are
qualitative and nonstoichiometric (2). The amounts of amino
sugars detected by column chromatography were substan-
tially less than those detected by the colorimetric tests.
The crystals analyzed in this study were purified from

sodium bromide density gradients. Two other groups have
studied the carbohydrate content of crystals purified from
Renografin gradients (14, 29). In both cases, the levels of
sugar detected were much higher. Tyrell et al. (29) reported
the presence of glucose, mannose, fucose, rhamnose,
xylose, and galactosamine at a level severalfold greater than
in crystals from other subspecies of B. thuringiensis. Since
this group had previously reported 5.6% carbohydrate in
crystals from B. thuringiensis subsp. kurstaki (5), the indi-
cated carbohydrate level in B. thuringiensis subsp.
israelensis crystals should be -11.2%. Similarly, Insell and
Fitz-James (14) reported that B. thuringiensis subsp.
israelensis crystals contained 6% hexose by dry weight using
the anthrone test for neutral sugars.

Glycoproteins of bacterial origin are rather rare. They
have been found in halobacterial flagellin (32), a surface
protein from Myxococcus xanthus (18), and the paracrystal-
line S-layer proteins on the outer surface of many eubacteria
and archaebacteria (27). Because of this rarity and because
the presence of crystal glycoproteins from other B. thuringi-
ensis subspecies has been controversial (5, 13), it was
important to demonstrate that the amino sugars detected in
B. thuringiensis subsp. israelensis crystals were, in fact,
covalently bound to the protein toxin. Covalent attachment
of at least the amino sugars is indicated because the crystal
glycoprotein subunits could still be detected by WGA bind-

TABLE 3. Relative amount of WGA bound by B. thuringiensis
subsp. israelensis protein subunits separated by

sodium dodecyl sulfate-gel electrophoresis
Mol wt of % Protein per % WGA bound per

Bacillus protein (103) band band

135-140 11 13
68-70 27 23
38-40 22 28
28 40 36
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ing after (i) alkali solubilization, (ii) sodium dodecyl sulfate-
gel electrophoresis, and (iii) transfer from polyacrylamide
gels to nitrocellulose membranes. These observations indi-
cate that the amino sugars are intrinsic crystal components
and that the mosquito larvicidal toxin must be viewed as a
glycoprotein.

B. thuringiensis subsp. israelensis crystals bound WGA
strongly and SBA weakly, but they did not bind nine other
fluorescent lectins. Binding by WGA indicates the presence
of either N-acetyl-D-glucosamine or N-acetylneuraminic
acid. However, N-acetylneuraminic acid was not detected
chemically, and the lectin LPA, which is specific for N-
acetylneuraminic acid alone, did not bind. Both WGA and
SBA bind amino sugars preferentially, and their attachment
to B. thuringiensis subsp. israelensis crystals confirms the
presence of amino sugars. However, the absence of attach-
ment by the other nine lectins cannot be used to eliminate
other possible carbohydrates. Some lectins may be able to
penetrate to the critical carbohydrate residues, while other
lectins of the same saccharide-binding specificity may not
(10). Finally, both GS II and WGA recognize beta-linked
N-acetyl-D-glucosamine, but only the WGA bound the Ba-
cillus crystals. In addition to the steric access problem
already mentioned, this difference could reflect a more
subtle aspect of lectin specificity. GS II binds only to
terminal N-acetyl-D-glucosamine residues, while WGA has
the ability to bind internal residues as well (10).
Our study used lectins to characterize purified B.

thurigiensis subsp. israelensis crystals and as such it is quite
different from that of DeLucca (8), which used lectins to
distinguish the vegetative surface layers of 28 serovars of B.
thuringiensis. However, there was no correlation between
the binding specificity of the crystals and the vegetative
cells. The lectins WGA and SBA bound B. thuringiensis
subsp. israelensis crystals but did not bind B.thurigiensis
subsp. israelensis vegetative cells (8), whereas the lectin
from G. simplicifolia recognized B. thuringiensis subsp.
israelensis vegetative cells (8) but not B. thuringiensis subsp.
israelensis crystals.
N-Acetylglucosamine is most commonly attached to pro-

teins at Asn-X-Ser and Asn-X-Thr sequences via N-
glycosidic linkage to the amide N of asparagine (22). The
amino acid sequence of the 28-kDa subunit from B. thuringi-
ensis subsp. israelensis crystals has recently been deduced
from the DNA sequence of its cloned gene (31). This
sequence indicates a 27,340-dalton protein consisting of 259
amino acids. Significantly, the sequence contains four Asn-
X-Thr tripeptide sites, at positions 104 to 106, 167 to 169, 170
to 172, and 246 to 248 (31). Four potential attachment sites
are sufficient to accommodate the carbohydrate levels de-
tected. If each attachment site contained a single N-
acetylglucosamine residue, the resulting protein would be
3.14% carbohydrate.
The significance of glycoproteins in the Bacillus crystal

extends beyond their structural chemistry. The amino sugars
also serve an important function in larval pathogenicity (G.
Muthukumar and K. W. Nickerson, manuscript in prepara-
tion) consistent with toxin binding to a lectinlike receptor in
the larval gut. Knowles et al. (15) have demonstrated that
toxicity of B. thuringiensis subsp. kurstaki crystals toward a
lepidopteran cell line (Choristoneura fumiferana CF1 cells)
is inhibited by preincubation of the toxin with both N-
acetylgalactosamine and N-acetylneuraminic acid as well as
with the lectins which bind these amino sugars. The occur-
rence of lectinlike receptors in the mosquito larval gut and
their involvement in pathogenicity is currently being inves-

tigated along with the enzymology of sugar attachment in the
procaryotic bacterium B. thuringiensis subsp. israelensis.
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