Leong et al., http://www.jem.org/cgi/content/full/jem.20071082/DC1

SUPPLEMENTAL MATERIALS AND METHODS

Immunoblotting. Concentrated supernatant from cultured cells was obtained by filtering 3-d-conditioned medium through a 100,000-kD cutoff ultrafiltration membrane (Millipore).

Flow cytometry. MCF-10A cell lines were detached by incubation in PBS-based enzyme-free cell dissociation buffer (Invitrogen). Cells were stained with mouse monoclonal antibody to surface E-cadherin (Chemicon), followed by goat anti-mouse Alexa Fluor 594 (Invitrogen) secondary antibody. Samples were run on a flow cytometer (EPICS ELITE-ESP; Beckman Coulter), and data were analyzed with WinList software (Verity Software House Inc.).

Methylation assays. For global genomic DNA methylation analysis, 500 ng of genomic DNA was digested with the restriction enzymes HpaII, MspI, or McrBC (all obtained from New England Biolabs, Inc.). HpaII is unable to digest CpG-methylated DNA, whereas its isoschizomer MspI is not sensitive to CpG methylation and, thus, is a positive control for DNA digestion. McrBC digests CpG-methylated DNA only in the presence of GTP. For McrBC digestion, reactions were performed with GTP (McrBC-plus-GTP) or without GTP (McrBC-minus-GTP). Entire reaction mixtures were assessed in 2% TAE-agarose gels containing ethidium bromide. For HpaII and McrBC-plus-GTP reactions, digested DNA products above 6 kb were quantitated by densitometry. For control and McrBC-minus-GTP reactions, undigested DNA products corresponding to the topmost DNA band were quantitated by densitometry. Data are expressed as a ratio of digested over undigested DNA products (digested/undigested ratio) and represent the mean ratio + SEM from five control tumors and five XNotch4 tumors.

Immunostaining. 7- μ m-thick tumor cryosections were stained with hematoxylin and eosin, rabbit polyclonal antibody to HA (BAbCo), and rat monoclonal antibody to mouse CD31 (BD Biosciences). For quantitation of the percentage of CD31-stained area, at least six random fields at 200× magnification were analyzed per tumor using Northern Eclipse software. Vascular density was quantitated by expressing the CD31-stained area as a percentage of the total tumor area. For quantitation of the number of vessels per square millimeter, entire tumor sections were analyzed using Northern Eclipse software. Data are expressed as the mean percentage of CD31-stained area + SEM from 14 control tumors and 12 XNotch4 tumors, and the mean number of vessels per square millimeter + SEM from 13 control tumors and 16 XNotch4 tumors.

REFERENCES

- 1. Noseda, M., L. Chang, G. McLean, J.E. Grim, B.E. Clurman, L.L. Smith, and A. Karsan. 2004. Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. *Mol. Cell Biol.* 24:8813–8822.
- Noseda, M., G. McLean, K. Niessen, L. Chang, I. Pollet, R. Montpetit, R. Shahidi, K. Dorovini-Zis, L. Li, B. Beckstead, R.E. Durand, P.A. Hoodless, and A. Karsan. 2004. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. *Circ. Res.* 94:910–917.
- 3. Shou, J., S. Ross, H. Koeppen, F.J. de Sauvage, and W.Q. Gao. 2001. Dynamics of notch expression during murine prostate development and tumorigenesis. *Cancer Res.* 61:7291–7297.
- Muller, P., S. Kietz, J.A. Gustafsson, and A. Strom. 2002. The anti-estrogenic effect of all-trans-retinoic acid on the breast cancer cell line MCF-7 is dependent on HES-1 expression. J. Biol. Chem. 277:28376–28379.
- MacKenzie, F., P. Duriez, B. Larrivee, L. Chang, I. Pollet, F. Wong, C. Yip, and A. Karsan. 2004. Notch4-induced inhibition of endothelial sprouting requires the ankyrin repeats and involves signaling through RBP-Jkappa. *Blood*. 104:1760–1768.
- Fujita, N., D.L. Jaye, M. Kajita, C. Geigerman, C.S. Moreno, and P.A. Wade. 2003. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 113:207–219.
- 7. Herman, J.G., J.R. Graff, S. Myohanen, B.D. Nelkin, and S.B. Baylin. 1996. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. *Proc. Natl. Acad. Sci. USA*. 93:9821–9826.
- Graff, J.R., E. Gabrielson, H. Fujii, S.B. Baylin, and J.G. Herman. 2000. Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J. Biol. Chem. 275:2727–2732.
- 9. Okubo, T., T.K. Truong, B. Yu, T. Itoh, J. Zhao, B. Grube, D. Zhou, and S. Chen. 2001. Down-regulation of promoter 1.3 activity of the human aromatase gene in breast tissue by zinc-finger protein, snail (SnaH). *Cancer Res.* 61:1338–1346.
- van Doorn, R., R. Dijkman, M.H. Vermeer, J.J. Out-Luiting, E.M. van der Raaij-Helmer, R. Willemze, and C.P. Tensen. 2004. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. *Cancer Res.* 64:5578–5586.
- 11. Decary, S., J.T. Decesse, V. Ogryzko, J.C. Reed, I. Naguibneva, A. Harel-Bellan, and C.E. Cremisi. 2002. The retinoblastoma protein binds the promoter of the survival gene bcl-2 and regulates its transcription in epithelial cells through transcription factor AP-2. *Mol. Cell Biol.* 22:7877–7888.
- 12. Liu, L., M. Zeng, and J.S. Stamler. 1999. Hemoglobin induction in mouse macrophages. Proc. Natl. Acad. Sci. USA. 96:6643-6647.
- 13. MacKenzie, F., P. Duriez, F. Wong, M. Noseda, and A. Karsan. 2004. Notch4 inhibits endothelial apoptosis via RBP-Jkappa-dependent and -independent pathways. J. Biol. Chem. 279:11657–11663.

Table S1.PCR primer sequences

		Sp	ecies					
0	D :	specificity		_		Deference		
Gene	Primer	Human	Iviouse		Primer sequences (5' to 3')	Reference		
lagged 1	Δ	Y		Forward:	CTATGATGAGGGGGATGCT	1		
Jaggeur	B	Λ	х	Forward:	AATGGAGACTCCTTCACCTGT	2		
	C	х	x	Reverse:	CGTCCATTCAGGCACTGG	2		
lanned?	A	x	~	Forward:	TGGGATGCCTGGCACA	This study		
Juggeuz	B	~	x	Forward:	CAGGGCACGCGGTGT	This study		
	C	x	x	Reverse:	CCGGCAGATGCAGGA	This study		
Delta-like1	A	x	~	Forward:	GAGGGAGGCCTCGTGGA	This study		
Derta inter	B	~	х	Forward:	IGGTTCTCTCAGAGTTAGCAGAG	This study		
	C	x	x	Reverse:	AGACCCGAAGIGCCTTIGIA	This study		
Delta-like3	A	x	x	Forward:	CGGATGCACTCAACAACCT	This study		
Derta Inco	B	x	~	Reverse:	GAAGATGGCAGGTAGCTCAA	This study		
	C	~	х	Reverse:	ATAGATGTCTCTGGGGGAGATGA	This study		
Delta-like4	Ă	х	X	Forward:	GCATIGITTACATIGCATCCIG	This study		
Denta inter	В	X		Reverse:	GCAAACCCCCAGCAAGAGAC	This study		
	C	~	х	Reverse:	GTAGCTCCTGCTTAATGCCAAA	This study		
Notch1	Ă	х		Forward:	CACTGTGGGCGGGTCC	3		
litteri	В	X		Reverse:	GITGIATIGGITCGGCACCAT	3		
	C	~	х	Forward:	GGCCACCTCTTCACTGCTTC	2		
	D	х	X	Reverse:	CCGGAACTICTIGGICICCA	2		
Notch2	Ā	X		Forward:	AATCCCTGACTCCAGAACG	- This study		
	В		х	Forward:	AACTGGAGAGTCCAAGAAACG	2		
	C	х	X	Reverse:	TGGTAGACCAAGTCTGTGATGAT	2		
Notch3	A	X		Forward:	TGAGACGCTCGTCAGTTCTT	1		
Hoteno	В	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	х	Forward:	CACCITGGCCCCCTAAG	2		
	C	х	X	Reverse:	TGGAATGCAGTGAAGTGAGG	2		
Notch4	A	X		Forward:	TAGGGCTCCCCAGCTCTC	1		
	В		х	Forward:	CAAGCTCCCGTAGTCCTACTTC	2		
	C	х	X	Reverse:	GGCAGGTGCCCCCATT	2		
HES1	A	X		Forward:	AGGCGGACATTCTGGAAATG	4		
	В	Х		Reverse:	CGGTACTTCCCCAGCACACTT	4		
HEY1	А	Х		Forward:	GGAGAGGCGCCGCTGTAGTTA	5		
	В	Х		Reverse:	CAAGGGCGTGCGCGTCAAAGTA	5		
	С	Х	Х	Forward:	GAGAAGCAGGGATCTGCTAA	This study		
	D	х	Х	Reverse:	CCCAAACTCCGATAGTCCAT	This study		
HEY2	А	х	Х	Forward:	ACAGGGGGTAAAGGCTACTTTG	This study		
	В	Х		Reverse:	CTGCTGCTGCTGCGTTT	, This study		
	С	Х	Х	Reverse:	GAAGGACAGAGGGAAGCTGTGTG	5		
HEYL	А	Х	Х	Forward:	TCCCCACTGCCTTTGAG	This study		
	В	Х		Reverse:	CTGCTGGGGGCGACA	This study		
	С	Х	Х	Reverse:	GGCACTCTTCCCAGGAT	This study		
E-cadherin	А	Х		Forward:	CAGCACGTACACAGCCCTAA	6		
	В	Х		Reverse:	ACCTGAGGCTTTGGATTCCT	6		
	С	Х		Forward:	TTAGGTTAGAGGGTTATCGCGT	7		
	D	Х		Reverse:	TAACTAAAAATTCACCTACCGAC	7		
	E	Х		Forward:	TAATTTTAGGTTAGAGGGTTATTGT	7		
	F	Х		Reverse:	CACAACCAATCAACAACACA	7		
	G	Х		Forward:	GTTTAGTTTTGGGGAGGGGTT	8		
	Н	Х		Reverse:	ACTACTACTCCAAAAACCCATAACTAA	8		
Slug	А	Х		Forward:	AGATGCATATTCGGACCCAC	6		
	В	Х		Reverse:	CCTCATGTTTGTGCAGGAGA	6		
Snail	А	Х		Forward:	AATCGGAAGCCTAACTACAGCGAG	9		
	В	Х		Reverse:	CCTTGGCCTCAGAGAGCTGG	9		
SIP1	А	Х		Forward:	ACACCCCTGGCACAACAA	This study		
	В	Х		Reverse:	GTGTCACTGCGCTGAAGGTA	This study		
Twist1	А	Х		Forward:	CACTGAAAGGAAAGGCATCA	10		
	В	Х		Reverse:	GGCCAGTTTGATCCCAGTAT	10		
GAPDH	А	Х		Forward:	GGACCTGACCTGCCGTCTAGAA	11		
	В	Х		Reverse:	GGTGTCGCTGTTGAAGTCAGAG	11		
	С		Х	Forward:	AATGTGTCCGTCGTGGATCT	12		
	D		Х	Reverse:	CCCTGTTGCTGTAGCCGTAT	12		
	E	Х	Х	Forward:	CCCATCACCATCTTCCAG	13		
	F	Х	Х	Reverse:	ATGACCTTGCCCACAGCC	13		

^aThe primer identifier is a letter assigned to each individual primer. Various combinations of two primers (Table S2, Primer set) are used to amplify the target gene of interest.

 Table S2.
 PCR primer sets and conditions

Gene	Primer	Annealing	Product size	
	setª	temperature (°C)	(bp)	
Human Jagged1	A/C	53	507	
Mouse Jagged1	B/C	53	383	
Human Jagged2	A/C	53	550	
Mouse Jagged2	B/C	58	550	
Human Delta-like1	A/C	55	448	
Mouse Delta-like1	B/C	55	410	
Human Delta-like3	A/B	55	338	
Mouse Delta-like3	A/C	55	329	
Human Delta-like4	A/B	60	456	
Mouse Delta-like4	A/C	55	473	
Human Notch1	A/B	55	85	
Mouse Notch1	C/D	60	529	
Human Notch2	A/C	53	589	
Mouse Notch2	B/C	53	583	
Human Notch3	A/C	53	667	
Mouse Notch3	B/C	60	449	
Human Notch4	A/C	60	486	
Mouse Notch4	B/C	53	486	
Human CSL	A/B	57	123	
Human HES1	A/B	55	103	
Human HEY1	A/B	57	428	
Human and mouse HEY1	C/D	53	137	
Human HEY2	A/B	57	574	
Human and mouse HEY2	A/C	53	531	
Human HEYL	A/B	53	583	
Human and mouse HEYL	A/C	53	391	
Human E-cadherin	A/B	53	159	
Human E-cadherin-M	C/D	57	116	
Human E-cadherin U	E/F	53	97	
Human E-cadherin-promoter sequencing	G/H	50	270	
Human Slug	A/B	53	258	
Human Snail	A/B	50	400	
Human SIP1	A/B	53	234	
Human GAPDH	A/B	53	142	
Mouse GAPDH	C/D	53	256	
Human and mouse GAPDH	E/F	53	446	
	•			

^aThe primer set is a primer identifier pair (see Table S1 for individual primer identifiers) used to amplify the target gene of interest.

Gene	Accession no.	Breast 1	Breast 2	Adrenal	Brain	Endocrine	Gastric	Lung	Ovarian	Renal	Salivary	Sarcoma 1	Sarcoma 2
Jagged1	NM_000214	Х											
Jagged1	AA933616		Х										
Jagged1	R70684		Х				Х	Х	Х	Х		Х	
Jagged1	U77914			Х	Х	Х					Х		Х
Jagged1	Al378220			Х							Х		
Jagged1	U73936				Х								
Jagged1	U61276				Х								
Jagged1	Al457817				Х								
Jagged1	T96855							Х					
Slug	AI572079	Х											
Slug	H57309		Х				Х	Х	Х	Х		Х	
Slug	N91754		Х				Х	Х	Х	Х		Х	
Slug	U69196			Х		Х					Х		Х
Slug	NM_003068				Х								
Snail	NM_005985	Х											
Snail	AA465052							Х	Х	Х			
Notch1	NM_017617	Х											
Notch1	AA903201		Х										
Notch1	H18865		Х										
HEY1	NM_012258	Х											
HEY1	R61374		Х										
HEY2	NM_012259	Х											
HEY2	AI299482		Х										
HEYL	AL040198	Х											
HEYL	AA969508		Х										
HEYL	R27319		Х										

 Table S3.
 Gene accession numbers associated with Oncomine microarray data sets

X indicates accession numbers associated with the particular data set.