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Summary 
We report here the first extensive study ofa T cell repertoire for a class I major histocompatibility 
complex (MHC)-restricted cytotoxic T lymphocyte (CTL) response. We have found that the 
T cell receptors (TCRs) carried by 28 H-2Ka-restricted CTL clones specific for a single 
Plasmodium berghei circumsporozoite nonapeptide are highly diverse in terms of V g  Jot, and JB 
segments and aminoacid composition of the junctional regions. However, despite this extensive 
diversity, a high proportion of the TCRs contain the same V~8 segment. These results are in 
contrast to most previously reported T cell responses towards class II MHC-peptide complexes, 
where the TCR repertoires appeared to be much more limited. In our study, the finding of 
a dominant V/~ in the midst of otherwise highly diverse TCRs suggests the importance of the 
VB segment in shaping the T cell repertoire specific for a given MHC-peptide complex. As 
an additional finding, we observed that nearly all clones have rearranged both TCR ot loci. Moreover, 
as many as one-third of the CTL clones that we analyzed apparently display two productive 
ot rearrangements. This argues against a regulated model of sequential recombination at the ot 
locus and consequently raises the question of whether allelic exclusion of the TCR ot chain is 
achieved at all. 

T he mouse TCR ot/~ is a disulphide-linked heterodimeric 
integral membrane glycoprotein. Each chain of •40- 

45 kD contains a C and a V extracellular domain (1). The 
diversity of each ot and B V domain results from the somatic 
recombination of ",,100 Va with "~50 joining ot (Jot) gene 
segments and of '~20 V/5 with two diversity fl (DE) and 
12joining B (J~0) gene segments, respectively. Imprecise joining 
and addition of template-independent N-nucleotides further 
contribute to this diversity (2). The TCR is closely related 
to Ig by similar domain organization, overall sequence ho- 
mology, and conservation of key residues. Along this line, 
Chothia et al. (3) have proposed an outline of the TCR ter- 
tiary structure, based on the known three-dimensional struc- 
ture of Igs. 

Whereas B cells recognize epitopes on native antigenic pro- 
teins, T cells can only recognize antigens in the context of 
cell surface syngeneic MHC molecules (4). The antigens rec- 
ognized by T cells can be mimicked by synthetic peptides 
(5). The crystallographic structure of two class I MHC mol- 

ecules has revealed a groove in the external domain, where 
the antigenic peptide could lie (6-8). There is now evidence 
that the antigens are naturally processed into short peptides 
that are loaded onto MHC molecules and exported at the 
cell surface (9-11). 

The T cell specificity for an MHC-peptide complex is de- 
termined exclusively by the TCR (12). Accordingly, one ques- 
tion has received much attention. What is the diversity of 
the TCR.s carried by T cells of a given specificity? 

The determination of the primary structure of a number 
of TCKs carried by T cell clones or hybridomas of a given 
specificity, mostly MHC class II restricted, has been performed 
for a variety of protein antigens, either of eucaryotic origin, 
such as pigeon cytochrome c (pcc) 1 (13-19), beef insulin (Bi) 

1 Abbreviations used in this paper: Bi, beef insulin; CS, circumsporozoite; 
HA, hemagglutinin; HEL, hen egg lysozyme; LCMVgp, lymphochorio- 
meningitis virus glycoprotein; MBP, myelin basic protein; pcc, pigeon 
cytochrome c; SpWMb, sperm whale myoglobin. 
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(20, 21), hen egg lysozyme (HEL) (22), sperm whale myo- 
globin (SpWMb) (23), and murine myelin basic protein (MBP) 
(24, 25), or of viral origin, such as X repressor cI (~,cI) (26, 
27), influenza virus hemagglutinin (HA) (28), and lym- 
phochoriomeningitis virus glycoprotein (LCMVgp) (29, 30). 
Studies on hapten-specific T cells, for which the presented 
form of antigen is unknown, have been also undertaken 
(31-34). 

The general picture that emerges from these studies is that 
T cells of a given class II MHC-peptide complex specificity 
bear TCRs that exhibit a limited diversity. This limitation 
concerns in most cases both ol and/3 chains, and for each 
chain, both the V and J segments, and the amino acid com- 
position of the junctional region, where for the/3 chain a 
conserved amino acid was observed. Strikingly, the selective 
pressure is such that T cells with identical TCR o~ and/or 

chains have been isolated from different individual mice 
at a high frequency. 

We have previously reported the isolation of H-2K d- 
restricted CD8 + CTL clones specific for the P. berghei cir- 
cumsporozoite (CS) protein. (35, 36; Romero et al., manu- 
script in preparation). Notably, some of these clones were 
shown to protect the mice from malaria upon adoptive transfer. 
In this system, the nonapeptide PbCS 252-260 was shown 
to be the most potent peptide both in terms of K d binding 
and CTL recognition (37). 

We have now determined the primary structure of the cr 
TCRs carried by 28 independent H-2Ka-restricted CTL 
clones specific for the P. berghei CS nonapeptide using cDNA- 
PCR followed by sequencing. To this end, we have devel- 
oped and followed two original procedures. First, we have 
screened each T cell clone by PCR with a collection of 19 
Vol and 20 V~/oligonucleotides in conjunction with a C a  
and a C~ oligonucleotide, respectively. Second, we have set 
up new conditions for directly sequencing double-stranded 
PCR products (38). 

In this first extensive analysis of a class I MHC-restricted 
response, we found that although the TCRs were highly di- 
verse in terms of Vo4 Jc~, and J~/segments and amino acid 
composition of the junctional regions, the response was para- 
doxically dominated by a VB segment. We also observed that 
nearly all clones had rearranged both TCR ot loci and that 
in as many as one third of these clones, both rearrangements 
were apparently productive. 

Materials and Methods 
Cells. The isolation of CTL clones CS.B28, CS.B83, CS.C1, 

CS.C7, and CS.Cll from BALB/c mice immunized with P. berghei 
sporozoites has been described dsewhere (35). The other CTL clones 
analyzed in the present report were derived from mice immunized 
with synthetic P. berghei CS peptides. CTL clones that were origi- 
nated from the same mouse are designated by a common capital 
letter followed by a number for each done. The panel of 28 inde- 
pendent CTL clones was obtained from a total of 13 immune mice. 
Briefly, the CTL dones can be grouped into six categories based 
upon the strain of mice, the antigen used for in vivo priming, and 
the antigen used for in vitro stimulation as foUows: (a) BALB/c 
mice immunized by intravenous injection of irradiated P. berghei 
sporozoites and their spleen cells stimulated in vitro with the PbCS 

249-260 12-mer peptide (CTL B and C; total of five clones); (b) 
BALB/c mice immunized subcutaneously with the 10-mer PbCS 
251-260 coupled to a helper epitope and their lymph node cells 
stimulated in vitro with the 10-met peptide (Widmann et al., manu- 
script in preparation; CTL P, Q, and R; total of six clones); (c) 
(I~LB/c x C57BL/6)F1 mice immunized subcutaneously with 
the 12-met PbCS 249-260 and their lymph node cells stimulated 
in vitro with the same peptide (CTL E, F, and M; total of seven 
clones); (d) (BALB/c x C57BL/6)F1 mice immunized intrave- 
nously with a lipid derivative of the 9-met PbCS 252-260 and their 
spleen cells stimulated in vitro with the 12-mer PbCS 249-260 (CTL 
H and L; total of four clones). (e) BALB/c mice immunized intra- 
venously with the above lipopeptide and their spleen cells stimu- 
lated in vitro with the 12-mer PbCS 249-260 (CTL K; one clone). 
(f) (BALB/c x C57BL/6)F1 mice immunized subcutaneously 
with the 8-met PbCS 253-260 and their lymph node cells stimu- 
lated in vitro with the same peptide (CTL I and J; total of five 
clones). The details of in vivo priming and in vitro stimulation 
and cloning are reported elsewhere (35, and Romero et al., manu- 
script in preparation). Cloned cells were harvested 5-7 d after the 
last restimulation for cell surface staining or for RNA extraction. 

Cell Surface Labeling with VB-specific mAbs. CTL clones were 
stained with several anti-V~ mAbs: F23.1 (anti-VB8.1, 8.2, 8.3), 
F23.2 (anti-V~8.2) (39), KJ16 (anti-VB8.1, 8.2) (40), 44-22-1 (anti- 
V~6) (41), Mm VB-TCR-6B (anti-VB13) (PharMingen, San Diego, 
CA), 14-2 (anti-V/~14) (42) and TR310 (anti-VB7) (43). Briefly, 
cells were stained with saturating amounts of the anti-V~ mAb 
followed by an appropriate FITC-labeled anti-Ig second reagent 
or Avidin-PE. Samples were passed on a FACS II | flow cytometer 
(Becton Dickinson & Co., Sunnyvale, CA). 

RNA Extraction, cDNA Synthesis, and PCR. Total RNA was 
extracted from 106 cells by disruption of the cells in guanidium 
thiocyanate followed by ultracentrifugation through a cesium chlo- 
ride cushion. Pelleted tLNA was thereafter extracted once with 
phenol-chloroform, ethanol precipitated, and suspended in 50/~1 
water. Single-stranded cDNA synthesis was carried out on 5/~g 
total RNA with oligo(dT)15 and AMV reverse transcriptase 
(Boehringer Mannheim Biochemicals, Indianapolis, IN) according 
to manufacturer's instructions. After an ethanol precipitation, the 
cDNA was suspended in 100/~1 water. PCR was carried out in 
100/~1 on 1/100 of the cDNA with 1.5 U ofTaq polymerase (Cetus 
Corp., Emeryville, CA) according to manufacturer's instructions. 
The primers are listed in Table 1. 30 cycles, each of 95~ for 1 
min, 55~ for 1 min, and 72~ for 1 rain, were completed in a 
thermostater (Cetus Corp.). 

Direct Sequencing of Double-stranded Linear DNA. The PCR 
products were ethanol precipitated and separated by electropho- 
resis on a 2% agarose gel. The band of interest was cut out, sub- 
mitted to electrodution, and the duted DNA ethanol precipitated. 
This double-stranded linear DNA was directly sequenced with the 
Sequenase version 2.0 kit (United States Biochemicals, Cleveland, 
OH) and 3SSdATP as described (38). Briefly, 0.4 pmol of template 
was boiled for 10 rain in 10 #1 with a 20-fold molar excess of se- 
quencing primer. The sample was rapidly transferred to a dry-ice 
ethanol bath. Labeling mix (5.5/~1) was added to the frozen pellet 
and the tube allowed to warm. Once the ice melted, the solution 
was incubated for ~30 s at room temperature and then four 3.5-#1 
samples were transferred to the borders of wells containings 2.5 
/~1 of the respective ddNTPs mixtures. The 96-well plaque was then 
spun down and incubated at 37~ for 2 rain. The reaction was 
stopped by 5 ~1 of stop solution. The sequence products were sepa- 
rated on an 8 M urea, 6% acrylamide gel. 

Probabilities. Let us consider that a rearrangement has a proba- 
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bility p, to be productive: p1 depends on both the frequency of 
germline V, (D), and J pseudogenes and the frequency of unproduc- 
tive V(D)J recombinations. Let us also consider a probability p2 
for a productive rearrangement to shut off the recombination of 
the other locus: p2 depends on hypothetical post translational re- 
quirements, e.g., level of expression, heterodimer formation, cell 
surface expression, positive selection, etc. In any case, if the two 
ol loci rearrange sequentially and if the recombination is regulated, 
the proportion of cells with one productive plus one unrearranged 
(o~ § two productive (ol § § and one productive plus one 
unproductive (~ § c~ recombinations would be: 1/(2 - pip2), 
(1 - p2)p1/(2 - lOipa), and (1 - p1)/(2 - pip2), respectively. 
Thus, since F~ must be a value between 0 and 1/3, and ira between 
0 and 1, these proportions can be estimated to be between 1/2 and 
3/5, 1/6 and 0, and 1/3 and 2/5, respectively. Our observed values 
for any of the three categories differ significantly from these ex- 
pected values. Even if we cannot rigorously discriminate between 
productive and unproductive rearrangements because we do not 

have the full-length sequences, it is established that only 4 of 28 
CTL clones, at most, have still one unrearranged ol locus, instead 
of 14-17 as expected. Consequently, a regulated model of sequen- 
tial recombination is unlikely to hold at the TCK a loci. 

Results  

A collection of 47 CTL clones, H-2K d restricted and 
specific for the PbCS nonapeptide 252-260, was derived from 
13 mice and is described elsewhere (35, 36; Romero et al., 
manuscript in preparation). The combination of different mice 
and VB cell surface expression, as determined by fluorescence 
staining (see Materials and Methods), indicated that at least 
23 clones were independent. All CTL clones were then tested 
by cDNA-PCR with a sense oligonucleotide specific for the 
Vfl determined by FACS | analysis and an antisense CB oli- 
gonucleotide (Table 1), followed by direct sequencing of the 

Table 1. Oligonucleotides 

VB* Sequence (5' to 3') Vow* Sequence (5' to 3') 

VB1 

v82 
v83 
V84 
VBS.1 
v~5.2 
vB6 
v~7 
v~8.1 
v~8.2 
vts8.3 
vB9 
v~10 
v~11 
VB12 

VB13 
VB14 
v~15 
vB16 
v~18 

cBs 

CCCAGTCGTTTTATACCTGAATGC Val  
TCACTGATACGGAGCTGAGGC V~2 
C C T T G C A G C C T A G A A A T T C A G T C C  Va3 
GCCTCAAGTCGCTTCCAACCTC V~4 
GTCCAACAGTTTGATGACTATCAC V~5 
AAGGTGGAGAGAGACAAAGGATTC V~6 
CTCTCACTGTGACATCTGCC V~7 
TACAGGGTCTCACGGAAGAAGC V~8 
CATTCTGGAGTTGGCTTCCC V~9 
CCTCATTCTGGAGTTGGCTACCC V~10 
ACGCAAGAAGACTTCTTCCTCCTGC V~11 
T C T C T C T A C A T T G G C T C T G C A G G C  V~12 
ATCAAGTCTGTAGAGCCGGAGGAC V~13 
GCACTCAACTCTGAAGATCCAGAGC V~13.1 
GAAGATGGTGGGGCTTTCAAGGATC V~34S-281 
AGGCCTAAAGGAACTAACTCCAC V~A10 
ACGACCAATTCATCCTAAGCAC V~BWB 
CCCATCAGTCATCCCAACTTATCC V~BMA 
CACTCTGAAAATCCAACCCAC V~BMB 
CAGCCGGCCAAACCTAACATTCTC V~5T 

C~fJ Sequence (5' to 3') 

GCACTGATGTCCATCTTCTC 
AAAGGGAGAAAAAGCTCTCC 
AAGTACTATTCCGGAGACCC 
CAGTATCCCGGAGAAGGTC 
CAAGAAAGACAAACGACTCTC 
ATGGCTTTCCTGGCTATTGCC 
TCTGTAGTCTTCCAGAAATC 
CAACAAGAGGACCGAGCACC 
TAGTGACTGTGGTGGATGTC 
AACGTCGCAGCTCTTTGCAC 
CCCTGCACATCAGGGATGCC 
TCTGTTTATCTCTGCTGACC 
ND 
ACCTGGAGAGAATCCTAAGC 
TCCTGGTTGACCAAAAAGAC 
TGGTTTGAAGGACAGTGGGC 
CATTCGCTCAAATGTGAACAG 
CAAATGAGAGAGAGAAGCGC 
GGAAAATGCAACAGTGGGTC 
GACATGACTGGCTTCCTGAAGGCCTTGC 

Sequence (5' to 3') 

CBa CCAGAAGGTAGCAGAGACCC C~a 
CBb CTTGGGTGGAGTCACATTTCTC Cab 

TGGCGTTGGTCTCTTTGAAG 
ACACAGCAGGTTCTGGGTTC 

* V~ primers are sense oligonucleotides designed according to each VB gene segment. The VB gene segment nomenclature follows that of references 
51, 67, 68, and 69. 
* V~ primers are consensus sense oligonucleotides designed according to the known members of each Vol subfamily. The Voe gene subfamily nomen- 
clature follows that of references 2, 45, 75, and 76. Nucleotide sequence of the V~13 subfamily (2) was not available. The Voe5T gene segment 
sequence and specific primer were kindly provided by P. Marche (Institut Pasteur, Paris, France). 
SThe Cfl primers are consensus antisense oligonucleotides for the CB1 and C/~2 genes (71, 72). C3b is located 3' to Cfla. 
II The Cc~ primers are antisense oligonucleotides designed according to the single Co~ gene (77, 83). Coeb is located 3' to Cola. 
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A 

CTL clone v~ 

B28 v67 
M1 Vpl4 

RAI0.3.3 V~I4 

B83 V66 

CII V~6 
V~IO 

FI2 v~6 
V~I2 * 

Cl vpS.l 
H3 Vp8.1 

Fl Vp$.1 
V~5.2 

QAII.3.2 V~8.1 

17 Vp~.2 
F8 v68.2 

vp6 

E2~ V613 

QB7.3.2 Vpl3 

H2 V~13 
K1 V~13 

El5 V613 

PF2.10.1 V~13 

HI V613 

J3 V~I3 

J5 Vpl3 

M2 V~13 

J2 V~13 

L4 V~I3 

PE5.1.1 V~13 
J4 Vpl3 

C7 v613 

RF3. i0.3 V613 

B 

CTL clone v~ 

B28 V~8.F3.3 
Ve4.~gR * 

M1 V@8.F3.3 
Vu5.TA72 

~ I 0 . 3 . 3  V~8.F3.3 
V~5.MS202 * 

B83 V~8.F3.4 
V~I.B83 * 

CII V~8.F3.5 
FI2 V~8.F3.3 

V~ST.J3 * 

C1 V~4~ * 
H3 V~I0.TA57 

V~BMA~ 

F1 V~7.S284EKp 
V~2~ * 

QAII.3.2 V~4.AII32 
V~8.F3.4 * 

[7 V~5.MI)A 
V~4.AII32 

F8 V~6.TAI 
V~I.II.3 

E22 VeS.F3.4 
V~4.~TR 

QB7.3.2 V~4.3 
V@8.F3.2 

H2 V~2.TAI9 
V~7.~ 

K1 V~3.~HD$58 
V e 4 . 3  

F]5 Va3.810 
V~BMB.42HII* 

PF2.10.1 V~3.AR5 
V~4.F2101 

HI Vu~.3 
v e 4 . 3  * 

33 VUST.J3 
V~I0.1F8 * 

J5 V~4.3 
M2 V~BMA.M2 

V~4.MDI3 

J2 v~2.Ra9 
L4 V@4.3 

PE5.I.I v~2.81 
V@B.F3.3 

J4 VeBMAoPI4 
V~I.EI 

C7 V~3.pHDS58 
V ~ 8 . F 3 . 3  * 

RF3.10.3 V~4.F3103 
Ve3.pHDS58 * 

...TGT GCT AGC AGT TCC CGC TAT GAA CAG 

...TOT GCC TGG eGG ACT GGC GGG TTT GCT 

...TGT GCC TGG AGC AAG GGG GCG ~GA GGT 

,..TGT GCC AGC ACC CCC ACC GGG AUA AAC 

...TGT GCC AGC ATC CCG ACG GCA AAC ACC 

...TGT GCC AGC AGG CTA TGA ACA GTA CTT 

...TGT GCC AGC ATC ~n~ I C I  GGG ~C ACC 

~ GCC AGC AGT TTT GGC ACA ACA ACC 

�9 ..TGT GCC AGe AGT GTG ACA GGG TCA AAC 

...TGT GCC AGC AGT GAT TCA CAG GGC ACA 

...TGT GCC AGC AGT GAT GAG GGA GTG GGG 

..~ GCC AGC TCT CTC CGG SAC AGG GG~ 

.o.TGT GCC AGC AGS CCG GGA CAA CCC TAT 

..~ GCC AGC GGT GAT GGA AAC CAG GCT 

...TGT GCC AGC GGT GCG ACT GGG nGG GCA 

, . . T G T  GCC AGC AGT CAC TAG GGG AGG CCA 

~ GCC AGC AGT CCT ACA GGG AAA TCA 

...TGT GCC AGC AGT CCC CCC f2~_~TT GCA 

...TGT GCC AGC AGT CCC ACA GGT AGA AAC 

...TGT GCC AGC AGG AGG CAG GGT GGC ACA 

...TGT GCC AGC AGT CCT CCT CAG GGG AAC 

...TGT CCC AGC AGT TTC CGG GGG GGG CAA 

...TGT GCC AGC AGT TCA GCC AGG GGT GAC 

�9 ..TGT GCC AGC AGG ~AC Ang GGG CGC ACC 

,..TGT GCC AGC AGT TCC CCA C~G nnA TCC 
.~ GCC AGC AGT TTG GGA CAG GGG GCT 

,..TGT GCC AGC AGT TTC CCG GAC AGG GCT 

..,TGT GCC AGC AGC CGA CTG GGG GCT TCC 

..~ GCC AGC AGT TTC CAA TAT GAA CAG 

...TGT GCC AGC AGC CGC CGG GAC AGG G~T 

...TGT GCC A~C AGC CAC GGG GAT TCA AAA 

...TGT GCC AGC AGT CCG GGA CAn ~nC CTC 

...TGT GCC AGC ~GC CTA CTG GGG ACC AAG 
~ GCC AGC AGT TCC GCT AGT GCA GAA 

...TGT GCT CTG AGT GGA GGT TCA GCC TTA 

...TGT GCT CTG GGT GCC CTG GAG GAA GCA 

...TGT GCT CTG GGT ACT GGA GGC AAT /&AT 

...TGC GCA GTC AAT ATG GCT ACT GGA GGC 

...TGT GCT CTG AGT GGG TCG AAT CAA GGA 

...TGT GCA GTC AGT GTA GTG GAG GCA GCA 

...TGT GCT TTG AAC GGA GGT TCA GCC TTA 

...TGT GCA GTG AGG TGA GCT CGG GAT ACA 

...TGT GCT CTG AGT GAA ACA GGA GGT GCA 

...TGT GCT CTG AGT GAT CAA GGA GGT GCA 

...TGT GCA GCA AGT GAA CAG GAA ACT ACA 

...TGT GCT CTG AGT CTC GTC ATC TTC TGG 

...TGT GCT TTG GGC CTG TTC GGT GAC AAC 
~ GGC ACT GOA GCT AAC ACT GGA AAG 
...TGC GCT CTC TCG GAT CCG TCT AAT TAC 
.~ GCA GCA AGT GCC GGA ATA ACA ATA 

...TGT GCT CTG GTG AAT TAC AAC GTG CTT 

...TGT GCT TTG AGT CTA CCA GGG AGG CAG 

...TGC GCA GTC AGT GCC TAT GCA AAC AAG 

...TGT GCT CTG CCA ATA ATA ATG CAG GTG 

...TGT ATC CTG AGA GCG GGT TAC CAG AAC 

...TGT GCA GTT TGA ATC AAG GAG GGT CTG 

...TGT GCT TTG GTA AAT TCT GG~ ACT TAC 

...TGT GCT CTG AGT GAC GGG GAA CAT GGG 

...TGT GCT CTG AGT CAT GGG ACT TAC CAG 

...TGT GCT TTG AGT GGG GAC GAC TCG GGA 

...TGT GCA GCA AGT GCA /&AT TCT GGG ACT 

...TGT GCT CTC TGG GAG CTG GCC GGA GGT 

...TGT GCT GTG AGC ATG AAT GAA TAC AGA 

...TGT GCT CTG GGT GAG GGA AGC AAT GCA 

...TGT GCG GGG ACA GGC AAT ACC GGA AAA 

...TGT GCT ATG AGA GAG GGA ATT ATG GGG 

...TGT GCT CTG AGC ATA ACA GGC AAT ACT 

...TGT GCT CTG GAC CAG ACA GGC TTT GCA 

..oTGT GCC CGC GGC ACC AAT ACA GGC AAA 

...TGT GTT CTG GGT GGG GGG GAG CAG TGG 

...TGT GCG GGT AAT CAA GGA GGG TCT GCG 

...TGT GCT ATG GTC ACG CGT CCA AGC AGC 

o..TGT CTC TGG GAA CTG GGA ACT GGG TCT 
..~ GTC TCA AAT TCT GGG ACT TAC CAG 
...CCA AAT A.%C TAT GCC CAG GGA TTA CCA 

...TGT GCA GCG GGC ATA ACT TTT GGG... 

...TGT GCT CTG GGT GCC CAG GGA GGC AGA 

...TGT GCA GCA AGA GGA GGA AAC TAC AAA 

...TGT GCT CTG AGT GAT CAA GGA GGT GCA 

...TGT GCT GAC AAT AAC AGA ATC TTC TTT 

...TGT GCA GCT AGT GAG CAA TGG GGG TGG 

...TGT GCT GCG AGT TAT GGG GGC AGT GGC 

...T~T GCT CTG AGA AGG CAA TAC TAG AAA 

...T~T GCT CTG GGT GAT CGG TAT GGG GGC 

...TCT GCT GTG AGC CAA CAG GCA ATA CTA 

TAC TTC GGT... 
GAG CAG TTC TTC DGA... 

CAA AAC ACC TTG TAC TTT GGT... 

AAC CAG GCT CCG CTT TTT GGA... 

GGG CAG CTC TAC TTT GGT..o 
CGG T... 
GGG CAG CTC TAC TTT GGT... 

AGC TCC GCT TTT TGG A.,. 

ACA GAA GTC TTC TTT GGT... 

GAA GTC TTC TTT GGT... 

~AA AAC ACe TTG TAC TTT GGT... 
ACA CCG GGC AGC TCT ACT TTG CT... 

GAA CAG TAC TTC GGT... 

CCG CTT TTT GGA... 

AAC ACC GGG C~G CTC TAC TTT DGT... 

AGA CAC CCa GTA CTT TGG G... 

AAC ACA GAA GTC TTC TTT GGT... 

AAC ACA GAA GTC %TC TTT GGT... 

ACA GAA GTC TTC TTT GGT... 

GAA GTC TTC TTT GGT... 

CAA GAC ACC CAG TAC TTT GGG... 

GAC ACC CAG TAC TTT GGG... 

ACC CAG TAC TTT GGG... 

AAC GAA AGA TTA TTT TTC GGT~ 

AAC GAA AGA TTA TTT TTC GGT... 

TTT AAC TAT GCT GAG CAG TTC TTC GGA... 

AAC TAT GCT GAG CAG TTC TTC GGA... 

TAT GAA CAG TAC TTC GCT... 

TAC TTC GGT... 
CAG GCT CCG CTT TTT GGA... 

CAC CTT GTA CTT TGG T... 

ACC GGG CAG CTC TAC TTT GGT,.. 

ACA CCC AGT ACT TTG GG... 

ACG CTG TAT TTT GGC.., 

GGG AGG CTG CAT TTT GGA... 
ATG CAA AGC TAA CTT CGG G... 

AAG CTG A~T TTT GGT... 
AAT AAT AAG CTG ACT TTT GGT... 

GGG TCT GCG AAG CTC ATC TTT GGG... 
ATT ACA AAC TGA CAT TTG GG... 

GGG AGG CTG CAT TTT GGA... 
ACA AAC TCA CTT TTG GA... 

GAT AGA CTC ACC TTT GGG... 
GAT AGA CTC ACC TTT GGG... 
AAT ACG TCT TTG GA... 
CAG CTG GCA ACT CAT CTT TGG A... 
AGT AAG CTG ATT TGG GGC~ 
CTC ACG TTT GGA... 
AAC GTG CTT TAC TTC GGA... 
ACA GAA TCT TCT TTG GT... 

TAC TTC GGA,.. 
AGC TCT GAT ATT TGG A... 
ATG ATC TTT GGC... 
CCA AGC TCA CAT TCG GA... 

TTC TAT TTT GGG... 
CGA AGC TCA TCT TTG GG... 

CAG AGG TTT GGA... 
CTA CAA ACT TAC TTC GGG... 
AGG TTT GGA... 
TA~ AAC AAA CTC ACT TTT GGA... 
TAC CAG AGG TTT GGA... 
TCA GAC CTT AGG GAG AGC TGC AAT TTT GGA... 

GGT GCA GAT AGA CTC ACC TTT GGG.,. 
AAG CTA ~CC TTC GGG.,. 

CTC ATC TTT GGA... 
GCA GTG GCA ACA AGC TCA TCT TTG GA... 
AGA AAA CTC ATC TTT GGG... 
AGT GCG CTG ACA TTT GGA... 
TTA ACC TTT GGG... 
CAA CAA GCT CAT CTT TGG A... 
AAG CTC ATC TTT GGG... 
AAG GCA CTG GGT CTA AGC TGT CAT TTG GGoo. 
AAG CTG TCA TTT GGG... 
AGG TTT GGA... 
TTC GGT..~ 

GCT CTG ATA TTT GGA... 

CCT ACG TTT GGG... 
GAT AGA CTC ACC TTT GGG... 

GGC... 
ATA GCA ACT ATC AGT TGA TCT GGG GC... 
AAC AAG CTC ATC TTT GGA... 
ACT CAT CAA TGG G... 

AGT GGC AAC AAG CTC ATC TTT GGA... 
G~A AAC TCA TCT TTG GG... 

JP 

0p2.9 
�9 ~p2.1 
Jp2.4 
apl.5 
Jpz.~ 
Jp2.7 

J61.5 

J~l .i 

J61 ,I 

062., 

opz.9 

J62.z 

J6)..l 
apl.1 
Jpl.l 
Jpl . i  
J62.5 
Jp2.5 
J62.5 
J61.4 

J61.4 
Jpz,1 
o6z .~ 
opz,7 
o6z.7 
O~1.5 

J62.4 
JpZ.z 
J p 2 . 5  
J62.3 

JU 

JULB2 
J{~B28 

J(%2B4 
JCt2B4 
J (IT A27 
3(X3DT 

Jg{LB2 
J~@732 

JUTA80 
JUTAS0 
JUTAI9 
JUTA28 
J(~BDFLI 
JUt5 
JUI4.~ 
J~MD-13 

JUl '%. 4 
J~U%IO 

Jel7 
J(ZTA37 
JUTA65 
J({TA27 

J~TA39 
JUI4T 
J•TA39 
JUB732 

JUTA39 
JUH2 

Jg~TA80 
JUKI 

J(XTA57 
JUTTII 
J(XC7 
JC~pHP$58 

J~TA61 
J(~520K 
J~TA27 
J(XTAI 
JeTAI 
J(XTA39 
J(~112.2 
J~TA31 
J~tAI 0 

JCtT6 
JUT A@ 0 
J(IMDI 3 
J(~i-27 
J~TTII 
J(~C7 
J~TTII 
Jt~C7 

Fi~rm 1. TCK a and ~ cDNA 
junctional nur.leotide sequences. (A) 
TCR ~ eDNA junctional sequences. 
Out-of-frame sequences are indi- 
cated by an asterisk. Nomenclature 
for V/3 gene segments follows that 
of references 67-69 and 51. Sequences 
are in references 67 (VBI, VB6, 
v~7), 70 (vm0, vr vm3), 68 
(VB14, V~16), and 51 (V~5.2, 
VB8.1, V/38.2). The J~ sequences 
are from references 71 and 72. The 
V~ and J~ gene segment sequences 
are identical to the published ones. 
However, two JB genes differ from 
the original reports: there is a base 
insertion (underlined) in the JB1.5 
segment ( . . .  AACCA _GGCT- 
C C G . . . )  and a base substitution 
(underlined) in the J~1.4 segment 
( . . .  CTGTCTGTCCTG...). Each 
of these changes occurred in all 
respective CTL clones. The DE seg- 
ments are underlined (73, 74). The 
CB1 and CB2 genes could not be 
discriminated on a sequence basis 
and probably follow the J~ cluster 
to which the VB is rearranged (71, 
72). (B) TCR. o~ cDNA junctional 
sequences. Out-of-frame sequences 
are indicated by an asterisk. Nomen- 
clature for the Vol gene subfamilies 
follows that of references 2, 45, 75, 
and 76. The Vol subfamily is sepa- 
rated from the Vo~ gene segment by 
a period. The V~ gene segments are 
named according to the original 
cell in which they were isolated, 
from references 77 (3.pHDS58), 45 
(5.TA72, 10.TA57, 6.TA1, 2.TA19), 
78 (5.MDA, 4.MD13, 1.E1), 14 
(4.3), 46 (8.F3.2, 8.F3.3, 8.F3.4, 
8F3.5), 79 (7.~2B4Exp), 33 (3.810), 
21 (BMB.42H11), 26 (2.81), 80 
(BMA.P14), 81 (4.(~7R), 24 (4.PJ- 
R25), 75 (7.2), 34 (3.AR5), 17 
(10.1F8), 82 (2.Ra9), 60 (5.MS202), 
23 (1.11.3), and this report (1.B83, 
5T.J3, BMA.H3, 2.F1, 4.Al132, 
4.F2101, BMA.M2, 4.F3103). The 
Jo~ gene segments are from refer- 
ences 83 (TTll), 77 (pHDS58), 
78 (LB2, MD13, 2B4, C5), 45 
(TA27, TA80, TA19, TA28, TA37, 
TA65, TA39, TA57, TA61, TA1, 
TA31), 84 (BDFLI), 14 (14.4), 
32 (112.2), 33 (520K), 75 (3DT), 
59 (A10), 85 (14T), 86 (T6), 28 
(1-27), and this report (B28, B732, 
I7, H2, K1, C7). The Voc and Jo~ 
gene segment sequences are identical 
to the published ones. However, 
Jo~MD13 in clone J-4 differs by 
a silent base substitution (under- 
lined) from the original Jo~MD13 
( . . .  T T T G C ~  . . .). These se- 
quences are available from EMBL/ 
C-enBank/DDBJ under accession 
numbers X60837 to X60921. 
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double-stranded PCR product. This procedure allowed a rapid 
determination of putative sister clones, i.e., CTL clones iso- 
lated from the same mouse and displaying an identical TCR 
[3 gene sequence. Thus, 28 independent CTL clones could 
be identified unambiguously (Fig. 1 A). All studies described 
below were carried out on these 28 clones. 

Few CTL Clones Express Two Distinct VDJC [3 Transcripts. 
For each done, the nudeotidic sequence of the amplified 
cDNA revealed an open reading frame encoding TCR [3 chain 
key residues (Fig. 1 A and Fig. 2). To further document these 
findings, we performed cDNA PCR on each CTL done with 
a coUection of 20 digonudeotides specific for each of the 
known functional V[3 gene segments of the V[3 b haplotype 
(Table 1). All these primers were shown to amplify the respec- 
tive V[3 gene segment under the experimental conditions used. 
6 of 28 CTL dones were found to express two different VDJC 
[3 transcripts. However, only one transcript was productive 
in every case (Fig. 1 A and Table 2). Since most if not all 
V[3 gene segments are known (44), the combination of cell 

surface stainings and nudeotide sequences indicated that the 
transcripts encoding the functional [3 chains were unambig- 
uously determined (Fig. 2). 

Nearly All CTL Clones Express Two Distinct VJC et Tran- 
scripts. We analyzed the VJC ot transcripts by cDNA-PCR 
followed by direct sequencing. Each CTL clone was tested 
separately with 19 consensus oligonudeotides designed ac- 
cording to the known members of 19 Vot subfamilies in con- 
junction with a Cot oligonudeotide (Table 1). In contrast 
to the ;~ transcripts, 23 of 28 CTL clones were found to ex- 
press two different VJC ol transcripts (Fig. 1 B). One of the 
five CTL clones in which only one VJC ot transcript was 
detected, C1, contained an out-of-frame transcript, and thus 
presumably expressed a second undetected in-frame transcript. 
Another CTL done, J5, was found to express an out-of-frame 
VDJC ~ transcript (Casanova et al., manuscript in prepara- 
tion). The remaining three clones, Cll ,  J2, and L4, could 
possibly retain one unrearranged ol locus. However, given 
the large estimated number of Vot gene segments and pos- 

CTL clone V~ FW CDR3 FW J~ 

B28 7 CAS S S R Y E Q 

M1 14 CAW G T G G F A E 

RAI0.3.3 14 CAW S K G A R G Q 

B83 6 CAS T P T G T N N 

CII 6 CAS I P T A N T G 

FI2 6 CAS I G T G G T G 

C1 8.1 CAS S V T G S N T 

H3 8.1 CAS S D S Q G T E 

F1 8.1 CAS S D E G V G E 

QAII.3.2 8.1 CAS R P G Q P Y E 

I7 8.2 CAS G D G N Q A P 

F8 8.2 CAS G G T G G A N 

E22 13 CAS S P T G K S N 

QB7.3.2 13 CAS S P P Q V A N 

H2 13 CAS S P T G R N T 

K1 13 CAS R R Q G G T E 

FI5 13 CAS S P P Q G N Q 

PF2.10.1 13 CAS S F R G G Q D 

HI 13 CAS S S A R G D T 

J3 13 CAS R D R G R T N 

J5 13 CAS S S P Q G S N 

M2 13 CAS S L G Q G A F 

J2 13 CAS S F R D R G N 

L4 13 CAS S R L G A S Y 

PE5.1.1 13 CAS S F Q Y E Q 

J4 13 CAS S R R D R D Q 

C7 13 CAS S P G Q G L T 

RF3.10.3 13 CAS S S A S A E T 
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Q FFG 2. 

N T L YFG 2. 

Q A P LFG I. 

Q L YFG 2 

Q L YFG 2 

E V FFG 1 

V FFG 1 

N T L YFG 2. 

Q YFG 2. 

LFG 1 

T G Q L YFG 2 

T E V FFG 1 

T E V FFG 1 

E V FFG 1 

V FFG 1 

D T Q YFG 2 

T Q YFG 2 

Q YFG 2. 

E R L FFG 1 

E R L FFG I. 

N Y A E Q FFG 2. 

Y A E Q FFG 2. 

E Q YFG 2. 

YFG 2. 

A P LFG I. 

G Q L YFG 2. 

L YFG 2 

.2  

.2  

.1  

.1  

7 
Figure 2. TCR ~ chain junc- 

fi tional amino acid sequences. 28 
2 CTL clones are listed on the ver- 

tical axis. For each clone, the TCR 
1 /3 transcript with both an open 
1 reading frame and the triplets 

coding for key residues at the VDJ 
1 junction (3) was considered to en- 
1 code the functional TCR/3 chain. 

For all clones (~cept B28, not 
5 stained by the antiV#7 mAb), 
5 the FACS | stainings with anti-V~ 

mAbs were in strict agreement with 
5 the ~ transcript assignments. The 

�9 4 deduced amino acid sequences (in 
single-letter amino acid code) of the 

4 junctional, hypervariable and puta- 
1 tively CDR3-1ike regions, ac- 

cording to Chothia et al. (3), are 
1 represented. The presumed Ig-like 
7 loop, designated CDR.3 for conve- 

nience, is putatively supported by 
7 two framework branches (FW). 
5 The Cys residue is at position 92 

in the ~3 chain. The V/3 and J/3 seg- 
2 ments are also reported (see Fig. 1 

�9 3 for references). 



Table 2. Status of the TCR ot and fl V(D)JC Transcripts 

CTL clones 

Status* cx fl 

+ / - 17*(61%) 6 (22%) 
+ / + 8 (29%) 0 
+/0 3S(10%) 22 (78%) 

* The symbols + and - indicate transcripts that exhibit or not, respec- 
tively, an open reading frame at the V(D)JC junction, and the symbol 
0 indicates the absence of transcript detected by cDNA PCR. 
* Clones M2 (+ / + ) and J5 ( +/0) are included in this category because 
they express either a nonfunctional, although in-flame, ot transcript, due 
to the absence of the triplet coding for the key Cys residue at position 
90, or a t5 transcript, respectively. Clone C1 (0/- ) is also included be- 
cause it bears an ot/B TCR on the cell surface and must therefore express 
a productive ot transcript in addition to the unproductive one detected 
(see Fig. 3 A). 
SThe three clones Cll, J2, and L4 might express an additional t~ tran- 
script that would not hybridize to the PCR primers (see Fig. 3 B). 

sibly subfamilies of unknown sequences, these clones might 
rather express an ot transcript that did not hybridize to the 
oligonucleotides used. 

Among the 23 CTL clones that expressed two ot transcripts, 
nine expressed both ot transcripts in frame at the VJCjunc- 
tion. In one of them, M2, the triplet coding for the key Cys 
residue at position 90 was deleted (3). Because of partial se- 
quencing, we cannot rule out that a Vot pseudogene seg- 
ment could render one of the two ot transcripts unproduc- 
tive in a number of these clones. However, the estimated 
frequency of Vot pseudogenes is low (45--47). The remaining 
14 CTL clones expressed one transcript in-frame and one out- 
of-flame (Table 2). Thus, for 16 CTL clones that expressed 
either a second unproductive ot transcript (including M2) or 
a ~ transcript (J5), the transcript encoding the functional ot 
chain could be assigned unambiguously (Fig. 3 and Table 3). 

The Vf113 Gene Segment-encoded Region Is Overrepresented. 
Six Vfl gene segments from five different subfamilies are rep- 
resented (Fig. 2). V[313 is predominant, found in 16 CTL 
clones (57%). The frequency of V[313 clones is lower among 
those from mice immunized with irradiated P. berghei sporo- 
zoites (1/5). Among CTL clones from peptide-immunized 
animals, the frequency of V[313 usage is 74% (15/23). The 
V[313 frequency among CD8 + lymphocytes in these strains 
of mice is between 3% and 5% (data not shown). Further- 
more, the V[313 predominance is unlikely to be the result 
of an increased representation of V[313 among H-2Ka-re - 
stricted T cells, since only one V[313 usage was found in the 
analysis of 25 independent H-2Kd-restricted CTL clones 
specific for other peptides (data not shown). 

The TCR [3 Chain Primary Structures Are Otherwise Highly 
Diverse. All 28 TCR fl chains differed from each other, and 
apart from the V[313 usage, no other predominant structural 
features were identified for the [3 chain repertoire. Indeed, 

10 Jfl segments, out of 12 possible genomic segments, are 
used among 28 CTL clones. Even among the 16 Vf113 CTL 
clones, eight different Jfl segments are used. Likewise, no 
preferential Jfl segment usage was observed for the other Vfl 
segments. Furthermore, the length of the CDR3 loop, defined 
according to Chothia et al. (3), varies from 6 to 12 amino 
acids, without striking dominant intermediate values. The 
CDR3 lengths are also highly variable among CTL clones 
that share a given Vfl segment and even among those that 
share a given V[3-Jfl pair. When all loops of a given length 
were compared for the amino acid composition at a given 
position, no conservation could be found. Even when posi- 
tions were assigned with respect to the Cys 92 residue (3), 
loops with different lengths did not show any obvious amino 
acid conservation. Moreover, even loops of a given length 
and supported by a given Vfl or Jfl framework failed to show 
amino acid conservation in the non-V/~ or non-Jfl-encoded 
regions, respectively. 

The Functional TCR ot Chains Are Also Highly Diverse The 
16 known functional TCR ot chains were found to differ from 
each other (Fig. 3). No Vot subfamily predominance such 
as the VB 13 among Vfls was observed. Overall, 8 different 
Vot subfamilies, 13 different Vot gene segments, and 13 
different Jot segments were found among the 16 CTL clones. 

Table 3. Gene Segments Used by Unambiguous Functional 
TCR Heterodimers 

CTL clone* Vfl* Jfl Vot Jo~ 

B28 7 2.7 8.F3.3 LB2 
RA10.3.3 14 2.1 8.F3.3 TA27 
B83 6 1.5 8.F3.4 LB2 
F12 6 2.2 8.F3.3 TA80 
F1 8.1 2.4 7.t~2B4Exp 14.4 
QAll.3.2 8.1 2.7 4.Al132 14.4 
17 8.2 1.5 5.MDA 17 
F8 8.2 2.2 6.TA1 TA65 
F15 13 2.5 3.810 TA57 
H1 13 2.5 4.3 TA61 
J3 13 1.4 5T.J3 TA27 
J5 13 1.4 4.3 TA1 
M2 13 2.1 BMA.M2 TA39 
J4 13 1.5 BMA.P14 MD13 
C7 13 2.2 3.pHDS58 TTll  
RF3.10.3 13 2.3 4.F3103 TTll  

* For 16 CTL clones, the functional ot chain, engaged in heterodirneric 
formation with the fl chain and specific of the H-2Ka-PbCS252-260 com- 
bination, was unambiguously determined. Indeed, 14 clones express a 
second, out-of-flame, ot transcript. In addition, clone J5 expresses a 
transcript, and one of the two in-flame ot transcripts from clone M2 has 
deleted the triplet coding for the key Cys residue at position 90. 
* Nomenclature and references for the VB, Jfl, Vot, and J~ gene seg- 
ments are in the legend to Fig. 1. 
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CTL V(X FW CDR3 

A 

B28 8.F3.3 CAL S G G S A L G R L 

RAI0.3.3 8.F3.3 CAL S G S N Q G G S A K L 

B83 8.F3.4 CAL N G G S A L G R L 

FI2 8.F3.3 CAL S D Q G G A D R L 

C1 

F1 7.82B4Exp CAL S D P S N Y N V L 

QAII.3.2 4.AI132 CAL V N Y N V L 

I7 5.MDA CAV S A Y A N K M 

F8 6.TAI CIL R A G Y Q N F 

FI5 3.810 CAG T G N T G K L 

HI 4.3 CAR G T N T G K L 

J3 5T.J3 CAG N Q G G S A K L 

J5 4.3 CLW E L G T G S K L 

M2 BMA.M-2 CVS N S G T Y Q 

J4 BMA.PI4 CAD N N R I 

C7 3.pHDS58 CAA S Y G G S G N K L 

RF3.10.3 4.F3103 CAL G D R Y G G S G N K L 

B 

CII 8.F3.5 CAL S E T G G A D R L 

J2 2.Ra9 CAA G I 

L4 4.3 CAL G A Q G G R A L 

FW Jot 

HFG LB2 

IFG TA27 

HFG LB2 

TFG TA80 

YFG 14.4 

YFG 14.4 

IFG I7 

YFG TA65 

IFG TA57 

TFG TA61 

IFG TA27 

SFG TAI 

RFG TA39 

FFG MDI3 

IFG TTII 

IFG TTII 

TFG TA80 

TFG TA31 

IFG AI0 

C 
M1 8.F3.3 CAL G T G G N N K L TFG 2B4 

5.TA72 CAV N M A T G G N N K L TFG 2B4 

H3 10.TA57 CAL G L L G D N S K L IWG BDFLI 

BMA.H3 CGT G A N T G K L TFG C5 

E22 4.~7R CAL S D G E H G L Q T YFG 14T 

8.F3.4 CAL V N S G T Y Q RFG TA39 

QB7.3.2 4.3 CAL S H G T Y Q RFG TA39 

8.F3.2 CAL S G D D S G Y N K L TFG B732 

H2 2.TAI9 CAA S A N S G T Y Q RFG TA39 

7.2 CAL W E L A G G S D L R E S C NFG H2 

K1 3.pHDS58 CAV S M N E Y R G A D R L TFG TA80 

4.3 CAL G E G S N A K L TFG K1 

PF2.10.1 3.AR5 CAL S I T G N T R K L IFG C7 

4.F2101 CAL D Q T G F A S A L TFG pHDS58 

PE5.1.1 2.8I CAA R G G N Y K P TFG T6 

8.F3.3 CAL S D Q G G A D R L TFG TA80 

Figure 3. TCR ot chain junctional amino acid 
sequences. The 28 CTL clones are separated in three 
groups, as in Table 2. Group A (17 clones) gathers 
14 clones for which the functional ot chain can be 
unambiguously assessed due to the presence of a 
second, out-of-flame, ot transcript. It also includes 
clone J5, which expresses a 8 transcript, and clone 
M2, which expresses two in-flame ot transcripts, 
one of them being, however, nonfunctional since 
it has deleted the triplet coding for the conserved 
Cys residue at position 90. Clone C1, for which 
we could not detect a productive ot transcript, is 
also included. Group B (three clones) gathers dones 
for which only one ot transcript was detected and 
found to be productive. Thus, we can not a~rm 
that the corresponding ot chain is necessarily func- 
tional. Group C (eight clones) gathers clones that 
express two ot transcripts in flame at the VJjunc- 
tion, both potentially encoding a functional ol 
chain. For each group, the ot chain-deduced amino 
acid sequence (in the single-letter code) of the 
CDR3-equivalent loop, according to Chothia et 
al. (3), is reported with the Vot and Jot segments 
(for references see Fig. 1). The key Cys residue is 
at position 90 in the ot chain. 

The C D R 3  lengths were found to be extremely variable, 
ranging from 4 to 11 amino acids and wi thout  any particular 
distribution. Moreover, no obvious amino acid conservation 
was found, even when  loops o f  a given length and/or sup- 
ported by a given Vot or JoL framework were compared. W h e n  
all different possible ol chains from the CTL clones for which 
the functional ot chain was only putative were included in 
the analysis, the structural diversity was further increased. 
Altogether, the T C R  c~ chain primary structures were found 
to be highly diverse. 
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D i s c u s s i o n  

We have analyzed the TCKs from 28 independent CTL 
clones specific for the PbCS nonapeptide 252-260 presented 
by the H-2K a restriction element. The sequences o f  the 
amplified T C K  ol and 3 c D N A s  were determined. From this 
analysis, two  major observations were made. First, nearly all 
CTL clones have rearranged both T C K  c~ loci, and as many 
as one third o f  these clones apparently display two  produc- 
tive ot rearrangements. Second, although all T C K  ot and fl 
chains differ from each other and are highly diverse in terms 



of both Vc~ Jo~, JB segments and amino acid composition 
of the junctional regions, where no conserved amino acid 
was found, there is a strong dominance of the V~13 segment. 

Rearrangements of the VDJ B Gene Segments. All CTL 
clones express only one productive VDJC 3 transcript and 
a few (22%) express an additional unproductive one (Table 
2). This study at the mRNA level by cDNA-PCR provides 
reasonably reliable information on genomic VDJ rearrange- 
ments. Similar proportions at the genomic level are described 
for the Ig H chain locus in B cells, where a regulated model 
of sequential recombination is believed to account for allelic 
exclusion (48-50). In this model, a complete VDJ rearrange- 
ment occurs first on one chromosome, and only if this is not 
productive can the other locus then rearrange. Such a model 
predicts that on the average 40-50% of peripheral cells should 
contain two distinct VDJ rearrangements (see Materials and 
Methods). The somewhat lower level (22%) in the present 
study could be explained in part by rearrangements involving 
a V3 pseudogene of the V3 b haplotype (44, 51, 52), for 
which we did not design specific oligonudeotides. Since most 
if not all TCR V3 gene segments are presumably described, 
rearrangements involving new V3 segments are very unlikely 
(44). Surprisingly, two mouse T cell clones harboring two 
productive ~ rearrangements have recently been reported (53, 
54). The relatively large series analyzed here suggests that 
the frequency of such ceils is very low and that consequently 
they may have little biological significance. Altogether, the 
TCR 3 gene VDJ rearrangements appear to be consistent 
with a regulated model of sequential recombination that main- 
tains a strict allelic exclusion for the TCR B chain. 

Rearrangements of the v j  ol Gene Segments. In contrast 
to our findings for the B transcripts, nearly all CTL clones 
analyzed express two distinct oe VJC transcripts (Table 2). 
Few previous studies have analyzed the status of rearrange- 
ments at both oe loci in T cell clones, mainly because of the 
size of the Joe locus, which extends over a stretch of 60 kb 
and thereby makes the analysis by Southern blot difficult and 
sometimes ambiguous (55-58). In one study, only 3 of 10 
T cell clones were reported to be rearranged at both c~ loci 
(58). In contrast, Malissen and colleagues (55) reported that 
both ol loci were rearranged in eight of nine T cell clones. 
Our cDNA-PCR approach with an extensive series of Vol 
primers followed by sequencing has allowed us to demon- 
strate unambiguously that at least 24 of 28 clones have rear- 
ranged both o~ loci. Thus, it is likely that both TCR oe loci 
are generally rearranged in most peripheral ol/B T cells. 

At least 8 of the 28 CTL clones (29%) specific for the 
P. berghei CS nonapeptide appear to express two productive 
ol transcripts. In the literature, three T cell clones have been 
described that dearly bear two productive ol rearrangements 
(59-62), but in the absence of an extensive study to estimate 
the frequency of such cells, their biological relevance was un- 
clear. Our study now indicates that the occurrence o fT  cells 
that express two productive e~ transcripts is probably rather 
frequent. Moreover, it raises the question of whether TCR 
o~ chain allelic exclusion (i.e., the presence of a single hetero- 
dimer at the cell surface) is actually achieved in such lym- 
phocytes. 

Altogether, these results on the TCR oe gene VJ rearrange- 
ments strongly suggest that the recombination events at the 
TCR ~ loci differ considerably from those at the Ig and TCR 
3 loci, and that a regulated model of sequential recombina- 
tion may not hold for the TCR o~ genes (see Materials and 
Methods). 

Diversity of the TCR ~ and 3 Chains. Several class II MHC- 
restricted helper T cell responses to well-defined peptides have 
been reported. For some antigens, the number of sequences 
is too low to give an idea of the actual repertoire. For those 
studies with a sufficient number of sequences, there is dearly 
the occurrence of not only a dominant V3 segment but also 
an associated dominant J3 segment, a common CDR3 length, 
and a conserved amino acid in the non-V3-, non-J3-encoded 
part of the CDR3 loop (Table 4). However, the diversity of 
the repertoire varies slightly from case to case and the re- 
sponse to HA appears to be the most diverse. In addition, 
a very striking feature is the fact that T cell clones bearing 
TCR/~ chains identical at the amino acid level could be iso- 
lated in all these studies from different individual mice at a 
high frequency. In contrast, apart from the V313 dominance, 
we found no structural limitations in the CTL response to 
the P. berghei CS nonapeptide-K d complex and no identical 

chains, despite a larger number of clones analyzed. 
A striking recurrence of particular combinations of Vo~ 

gene subfamily, Jot segment, and CDR3 length has been ob- 
served in most class II MHC-restricted T cell responses ana- 
lyzed (Table 5). Most strikingly, T cell clones bearing iden- 
tical ot chains were isolated from different individual mice. 
This is again compelling evidence for a very strong selective 
pressure, given the potential diversity of the receptor chains. 
As an exception, the response to HA appears to be more di- 
verse. However, the function of the proteins encoded by the 
ol transcripts in the latter study is only putative, since data 
on the second TCR ~ locus are lacking. In the present study, 
in which we analyzed not only many but, most importantly, 
unambiguously assigned functional oe chains, we found no 
dominant Vo~ usage, no limitations on the junctional struc- 
tures, and no identical oe chains. 

For the 16 CTL clones in our study where the functional 
oe/3 pairing is unambiguous (Table 3), there is no obvious 
preferential J~'JB pairing, nor Vow-V3 pairing. Rather, there 
is a large diversity of pairing between chains encoded by 
different Vo~ and V3 gene subfamilies or segments. Thus there 
are 11 or 15 different or/3 pairs, considering V gene subfami- 
lies or segments, respectively, out of 16 TCRs. Notably, the 
V313 and V~8 subfamily-encoded chains appear to be mutu- 
ally exclusive with those of Voe8. If the remaining 12 clones 
are included in the analysis, the diversity of pairing is further 
increased. In contrast, most other T cell responses analyzed 
to date display limited pairing diversity. Of  these, the HA 
response appears to be the most diverse, but again, the o~ 
chains are only putative and so the pairing among functional 
chains could possibly be less diverse. In many studies, TCRs 
identical not only for one chain but for both the c~ and 
chains were isolated from different individual mice (Table 5). 

Each of the 28 CTL clones has a unique fine specificity 
pattern when tested for recognition of a series of Ala- 
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Table 4. Comparison of the TCR ~ Chain Repertoires Reported for Various Antigens 

MHC-peptide Total Identical Dominant Dominant Dominant Conserved 
complex* Strain* TCK/~s TCR ~11 V ~  (n) J/$ (n) length (n) amino acid** 

MHC class II 
pccsH04/IE k B10.A, F~/A 15 2,2,2,2,2 V~3 (7) J~1.2 (5) 9 (5) N 

VB16 (6) Jfl2.1 (6) 9 (6) DT 

pccslq04/IE' B10.S(9R), Ft/9R 7 2 V~I (6) JB1.2 (5) 8 (3) D 
SpWMb,~m/IE d DBA/2 6 3 V~8.2 (6) JB2.7 (5) 10 (5) W D W  

MBP~.9N^c/IA ~ PL/J, (P x S) Ft 8 2,2,2 VB8.2 (7) J~2.7 (4) 8 (4) GLG 

B10.PL 6 4 VB8.2 (5) JA82.7 (5) 9 (5) AGG 

Xcllz.26/IE k A/J 11 3,2 VB1 (8) JB2.1 (7) 10 (7) E 

HA~0~20/IE d BALB/c 13 3 V~8.3 (7) JB1.3 (4) 8 (4) G 

MHC class I 

PbCS2s2.260/K d BALB/c, (B x C)F1 28 NF** VB13 (16) NF NF NF 

* For references, see Introduction. Only studies with at least six sequenced TCRs specific for a given MHC-peptide complex are included. Thus, 
studies on HEL-, Bi-, pcc (B10S[SR])- and LCMV-specific T cells are not reported. Studies on hapten-specific T cells are not mentioned because 
the processed form of the antigen is unknown. 
* Responses to a given MHC-peptide combination in different strains are considered separately, with the exceptions of chimeras (F1/A [(B10A x 
BIOS[9R])F~ bone marrow in B10.A irradiated host] and Ft/9R [(B10.A x B10.S[9K])F1 bone marrow in irradiated B10.S(9R)], as well as hybrids 
(P x S)F1 ([PL.J x SJL]Fa)and (B x C)F1 ([BALB/c x C57BL/6]F1). 
S Only sequenced TCR B chains are considered. The numbers indicate the total number of sequenced/S chains for each particular specificity and 
strain. Probable sister clones, i.e., clones displaying the same TCR gene sequence and coming from the same animal, are excluded. 
II Only identical TCR/S chains isolated from different individual mice are reported, irrespective of the V/~ or JB usage. Each number indicates how 
many chains share a given structure. For example 3,2 means that two distinct groups of identical chains were found, one with three members, and 
one with two members. 
�82 Any element, gene segment (V~/, J/S) or CDR3 length (3), is said to be dominant if it represents more than a third of the previous dement(s), 
in the order of the Table. The nature of these elements in each case is given in the V/S, J/S, and length columns, respectively, n indicates the number 
of TCRs sharing this element among the ones carrying the previous one(s). 
** Conserved amino acid indicates the non-VB, non-J/s-encoded conserved residue (single-letter code) in the CDR3 loop among TCRs sharing the 
previous dominant V/s-JB-length combination (only N in the pcc [B10.A] response is not absolutely conserved, present in four out of five TCR/~ chains). 
** None found. 

Table 5. Comparison of the TCR cr Chain Repertoires Reported for Various Antigens 

MHC-peptide* Total Identical Identical Dominant Dominant Dominant 
complex Strain* TCR oes TCR oetl TCRoe/3 Vce (n) Jo~ (n) length (n) 

MHC class II 
pccsl.104/IE k 

SpWMb110-m/IE d 

MBP1.gNAo/IA" 

XcI12.2JIE k 

HA,~120/IE d 

MHC class I 

PbCS2s2.~0/K d 

B10.A, F1/A 16 4,2,2,2 2,2,2 Vcd l  (15) Jo~TA84 (10) 9 (6) 

DBA/2 6 3 NF Vc~l (4) Jc~C5 (3) 10 (3) 

PL/J, (P x S)F1 8 3,2 2 Vc~4 (8) Jc~TA31 (6) 9 (6) 

B10.PL 7 6 3 Vc~2 (6) JccTA39 (6) 8 (6) 

A/J 11 3,3 3 Vot2 (11) JotTA1 (7) 8 (6) 
BALB/c 13 NF NF NF NF NF 

BALB/c, (B x C)F1 16 NF NF NF NF NF 

For abbreviations and references, see Table 4. The Vot indicates subfamilies. As opposed to the 3 chain, the non-V, non-J-encoded region of the 
ot chain is too small and unprecise to look for amino acid conservation. 
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substituted related peptides (Romero et al., manuscript in 
preparation). The clones thus appear to recognize a large 
number of epitopes on the CS nonapeptide-K d complex. 
This heterogeneity of fine specificity patterns clearly corre- 
lates with the diversity of TCR primary structure found for 
this set of CTL clones specific for the P. berghei CS nonapepfide- 
K d complex. 

A Paradoxical VB Dominance. As mentioned previously, 
the dominance of the V~13 gene segment may be peptide 
related, at least in part, since other Kd-restricted responses 
apparently fail to show a V~13 dominance. In agreement, 
a similar V~ dominance has been reported for the other re- 
sponses studied, with no apparent correlation to the restric- 
tion element (Table 4). In the currently prevailing models 
of TCR-MHC-peptide interaction (3, 63, 64), the CDR-1- 
like and CDR2-1ike loops of both c~ and B chains, encoded 
by the Vc~ and V~/gene segments, respectively, are thought 
to interact with MHC residues, whereas the CDR3-1ike loops 
would interact with the peptide. This general topology was 
based on the much higher variability of the CDR3 loop and 
the peptide, when compared to CDR1 and CDR2 loops and 
the MHC molecule, respectively. It is now supported by in- 
creasing experimental evidence, showing that naturally oc- 
curring (14, 16, 18, 23, 27, 28) and experimentally engineered 
(65) TCRs that vary only in a CDR3 loop display distinct 
peptide fine specificities. Accordingly, an apparently peptide- 
related VB dominance in the context of otherwise highly di- 
verse TCRs, such as we found in this study, is paradoxical. 
In the other studies, the overall diversity of the TCRs is very 
limited, thus, the V~ dominance might be considered as an 
indirect consequence of a peptide-related constraint acting 
on other parts of the receptor, for example on the conserved 
amino acid in the CDR3 loop thought to be a peptide con- 
tact residue (16, 27, 65). In contrast, the high diversity of 

the TCRs in this study strongly suggests that the VB domi- 
nance in general might result from direct peptide-related con- 
straints imposed by the peptide-MHC complex. Whether 
the VB dominance reflects a direct interaction of the VB seg- 
ment with the peptide or an indirect effect of the bound pep- 
tide on the complex that in turn would favor the interaction 
of the VB segment with the restriction element is unknown. 

What Determines the Size of'the TCR Repertoire? Apart 
from the VB dominance, the extent of diversity of the T cell 
repertoire appears to vary considerably according to the MHC- 
peptide ligand involved. Why the CTL response to a P. ber- 
ghei nonapeptide appears to be more diverse than the other 
reported T cell responses is unknown. It may be significant 
that the latter studies analyzed class II MHC-restricted T helper 
responses. This difference might allow a compensation for 
the apparently lower number of class I-than class II-restricted 
antigenic sites within proteins. 

More likely, the size of the MHC-peptide complex-specific 
repertoire would depend primarily on the overlap between 
epitopes displayed by self peptides and the antigenic peptide 
bound to the same restriction element. This would explain 
why the responses towards polymorphic variants of self pro- 
teins (pcc, SpWMb) are so limited and the autoimmune re- 
sponse against MBP is oligoclonal. Even the XcI peptide, al- 
though of viral origin, has been shown by Gefter and 
colleagues (66) to be homologous to a self peptide able to 
bind the same restriction element. Conversely, responses to 
the viral HA determinant and the parasite CS peptide may 
be more diverse because relatively few self peptides would 
generate overlapping tolerogen epitopes. Although the CTL 
response to the whole P. berghei CS protein in H-2 a mice is 
focused primarily on a single nonapeptide in the context of 
H-2K d, this peptide may be so distant to self that it triggers 
a highly diverse, and presumably highly potent, T cell response. 
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