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Summary 
One problem associated with the use of synthetic peptides as antigens in vivo is their susceptibility 
to inactivation by proteolytic degradation. A situation is described in which a serum protease, 
angiotensin-converting enzyme (ACE), is actually responsible for the class I binding activity 
of a commonly used influenza antigen, nucleoprotein (NP)(147-158R-). This peptide has been 
reported to be a highly efficient class I antigen. Evidence is presented that demonstrates that 
the peptide is inactive until cleaved by ACE, which is a normal constituent of serum. The enzyme 
removes a COOH-terminal dipeptide resulting in the sequence NP(147-155), which is identical 
to the naturally processed peptide. Such extracellular processing of peptides and proteins may 
occur for a variety of antigens both in vitro and in vivo, and could have important implications 
for the design of proteolytically resistant vaccines. 

C lass I molecules bind peptide antigens derived by pro- 
cessing of endogenously synthesized cellular proteins 

and present these for recognition by CTL (1-6). Recent studies 
in which peptides have been extracted from the antigen binding 
grooves of class I molecules have revealed that most endoge- 
nous peptides are eight to nine residues in length (7-11). Cell 
surface class I molecules can also bind synthetic peptides that 
contain appropriate T cell determinants, and such peptides 
have been used successfully in the identification of numerous 
CTL epitopes (1-6, 12). Recent studies from this laboratory 
and others indicated that only unoccupied class I molecules 
on the cell surface are receptive to binding of exogenous 
peptides (13-17). The number of such empty molecules is 
increased in the presence of an exogenous source of B2-micro- 
globulin (/32m) 1 such as serum. This significantly increases 
class I uptake of exogenous peptides as monitored by target 
cell lysis by antigen-specific CTL. In the course of these studies 
it was observed that in addition to ~2m, there appeared to 
be another component present in serum that greatly increased 
the ability of the influenza antigen nudeoprotein (NP) 
(147-158K-) to bind the K a molecule (13). This particular 
peptide represents an altered form of residues 147-158 of the 
influenza NP in which the arginine at position 156 is deleted. 
It had been reported that this alteration resulted in an in- 
crease of three orders of magnitude in the ability of the pep- 
tide to be recognized by CTL (12). Our results explain this 
paradox and could have important implications for previous 
studies in which T cell determinants have been identified 
through the use of synthetic peptides. 

1 Abbreviations used in this paper: ACE, angiotensin-converting enzyme; 
3zm, B2-microglobulin; NP, nucleoprotein; SF, serum free. 

Materials and Methods 

Animals. Mice used as a source of APC for stimulation of CTL 
clones included C57BL/6 and B10.D2, both of which were ob- 
tained from the breeding colony of The Scripps Research Institute. 

Cell Lines. Cell lines used as targets for SICr release assays in- 
cluded EL4, P815, or 439.4.2 (13). Cells were maintained in RPMI 
1640 supplemented with 5 x 10-s M, 2-ME, and 2 mM t-glu- 
tamine (culture media), and either 10% FCS (HyClone Laborato- 
ries, Logan, UT) or 1% serum-free (SF) media (Nutridoma; 
Boehringer Mannheim, Indianapolis, IN). 

CTL Clones. CTL lines and clones used in these studies in- 
clude clone 9 specific for NP(147-158) (13); clone 34 specific for 
NP(365-380) (13); the OVA (253-276)-specific clone GA4 (18), 
and a VSV-N(47-63)-specific line (18). These were maintained by 
weekly stimulation with irradiated syngeneic spleen cells that had 
been pulsed with the relevant peptide antigens as described previ- 
ously (13, 18). Culture media was supplemented with 10% rat Con 
A supernatant and 10% FCS. 

CTL Assays. Cytotoxicity was assessed in a standard SlCr 
release assay. Target cells (106) were labeled in 0.15 mC Na 51Chro- 
mate (DuPont Co., Wilmington, DE) in a final volume of 0.25 ml 
containing RPMI 1640 and the indicated additions. Unless stated 
otherwise, target cells were not exposed to media containing serum 
until washed free of unbound SlCr and peptide. Labeled target cells 
(104) plus the indicated number of CTL effectors were incubated 
at 37~ in round-bottomed microtiter plates containing 0.2 ml 
per well final volume of culture media containing 5% FCS. Cul- 
ture supernatants were harvested after 4 h. 

Peptides. Peptides used in these studies were synthesized by solid 
phase synthesis on an ABI 430-A automated synthesizer (Applied 
Biosystems, Inc., Foster City, CA). 

Affinity Chromatography of Serum Activity. Human serum was 
depleted of/32m and albumin by affinity chromatography on 
sepharose conjugated with the/32m-specific mAb BBM.1 (19) ob- 
tained from the American Type Culture Collection (Rockville, MD), 
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followed by Affi-Gel blue (Bio-Rad Laboratories, Richmond, CA). 
0.4 ml of sera was diluted fourfold in 10 mM phosphate buffer, 
pH 7.5, and applied to a Mono-Q HK5/5 column (Pharmacia/LKB, 
Alameda, CA). Protein was eluted with a continuous gradient of 
0-0.5 M NaC1 in this same buffer over a period of 50 rain at a 
flow rate of 1.0 ml/min. 

5 ~1 of each column fraction was assayed by incubation for 1 h 
at 37~ with 104 SlCr-labeled P815 (H-2 d) tumor cells in 15 #1 
SF media containing 1 pg/ml NP(147-158R-) before addition of 
clone 9 effector cells in SF media (final volume 0.2 ml). Incubation 
was continued for an additional 4 h and lytic activity assessed. 

HPLC Analysis of Peptides. 50 pg of the NP(147-158R-) syn- 
thetic peptide purified by reverse phase HPLC using a Brownlee 
Aquapore RP300 column (Applied Biosystems, Inc.) was incubated 
with 100/~1 of material obtained by further purification of Mono 
Q fractions 18-23 (see Fig. 2) by gel filtration chromatography on 
Toyo Soda TSK-3000SW (Beckman Instruments, Inc., Palo Alto, 
CA). After 3 h at 37~ the low molecular weight material was 
recovered by spinning through a centricon 30 filter (Amicon Corp., 
Danvers, MA), and analyzed on a Brownlee Aquapore RP300 
column, equilibrated with 0.1% TFA developed with a continuous 
gradient of 0-40% acetonitrile containing 0.08% TFA over a period 
of 20 min followed by 40-80% over the next 7.5 rain with a flow 
rate of 300 pl/min. Amino acid analysis was performed on the in- 
dicated peaks. The hydrolyzed samples were analyzed using a high 
performance analyzer (6300; Beckman Instruments, Inc.). Based 
on this composition analysis, the molar ratio of material in peaks 
I, II, and III in Fig. 3 was approximately 6:1:1, respectively, and 
therefore, the absorbance at 215 nm of peak III does not reflect 
the relative concentration of the dipeptide. 

Inhibition of Serura Activity or Purified Angiotensin-converting En- 
zyme (ACE) with ACE Inhibitor or Anti-ACE. ACE (EC 3.4.15.2 
peptidyl/dipeptide hydrolase) from rabbit lung was purchased from 
Sigma Chemical Co. (St. Louis, MO), as was ACE inhibitor. An 
mAb specific for human ACE was obtained from Dr. M. Rohr- 
bach (Mayo Clinic, Rochester, MN) and used as culture supematant 
(20). This antibody is known to inhibit the activity of human ACE. 

Assays using ACE inhibitor were performed as follows. The in- 
dicated concentration of rabbit ACE or a pool of fractions 18-23 
from the Mono Q-purified human serum were incubated in 15 pl 
SF media containing 0.8/xg/ml of HPLC-purified NP(147-158R-), 
70/~g/ml ACE inhibitor, and 104 51Cr-labeled P815 target cells in 
wells of a U-bottomed microtiter place. After incubation for 1 h 
at 37~ 105 effector cells (done 9) were added in a volume of 
185/zl SF media, and incubation was continued for 4 h. 

In assays using anti-ACE, the serum fraction and the indicated 
mAb were incubated for 40 min at 37~ before addition of target 
cells and peptide, mAbs were 10 pl of culture supernatant prepared 
by growing the indicated hybridoma (either the anti-ACE line 124.10 
[20] or the anti-K b monoclonal Y3 [13]) in SF media to avoid con- 
tamination by ACE from serum. 

Results and Discussion 
It was previously reported by this laboratory (13, 17) and 

others (14-16) that class I molecules on cells grown and pulsed 
with peptide in SF media bind peptide poorly as compared 
with cells pulsed in media supplemented with FCS, and that 
the efficiency of peptide binding in SF media could be in- 
creased significantly by the addition of the serum compo- 
nent 32m. This was observed to be true for each of four 
different peptides examined, including influenza NP(365-380), 
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Figure 1. Peptide binding by cell surface class I molecules in serum 
depleted of/32m. Target cells (106) maintained in SF media (Nutridoma; 
Boehringer Mannheim) were labeled 1-1.5 h with slCr in a final volume 
of 0.25/xl in the absence (A) or presence (O) of peptide, or peptide plus 
the following additions: 3/~g/ml/3~n (human; Sigma Chemical Co.) (e); 
3% human sera depleted of ~2m (I--1); 3% human sera depleted of B2m 
plus 3 pg/ml B2m (&); sera obtained from Bzm-deficient transgenic mice 
(11). The indicated peptide antigens were present at the following 
concentrations: OVA(253-276), 10 #g/ml; VSV-N(47-63), 3 /~g/ml; 
NP(365-380), 10 #g/ml; NP(147-158R.-), 10/~g/ml. Target cells were 
either EL4 (a-c) or the B cell lymphoma 439.4.2 (d), which expresses both 
H-2 b and H-2 d antigens. Effector cells used in these assays were the ap- 
propriate antigen-specific CTL described in Materials and Methods. It should 
be noted that unless indicated otherwise, target cells were not exposed 
to media containing serum until washed flee of unbound slCr and peptide. 

NP(147-158R-) ,  OVA (253-276), and a peptide from the 
vesicular stomatitis virus nucleoprotein, VSV-N (47-63) (Fig. 
1). It was therefore anticipated that the component in serum 
that enhanced peptide binding to class I was B2m. To test 
this hypothesis, human serum was depleted of B2m by af- 
finity chromatography and then tested for its affect on pep- 
tide binding. As anticipated, the amount of peptide in the 
B2m-depleted serum was similar to that obtained in SF 
media for VSV-N (47-63), and OVA (253-276), thus con- 
firming that B2m was required for optimal peptide binding 
(Fig. 1). In contrast, removal of/~2m did not reduce the 
ability of serum to facilitate class I binding of either NP(365- 
380) or NP(147-158R-)  (Fig. 1). 

Considering the/32m-depleted serum retained ' - 5 %  of its 
B2m, it was possible this residual material could foster 
binding by some peptides. We therefore obtained sera from 
transgenic mice that have disrupted/32m genes and thus 
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Figure 2. Fractionation of the serum activity responsible for class I 
binding by NP(147-158R-) by ion-exchange chromatography. (a) The 
serum activity was partially purified by ion-exchange chromatography on 
a Mono-Q column. (b) 5/zl of each fraction was assayed for its ability 
to enhance recognition of NP(147-158R-) by clone 9 as described in 
Materials and Methods. 

could not express fl2m (21). Again, it was observed that the 
NP peptides bound class I efficiently in such B2m-negative 
sera (Fig. 1). Taken together, these results suggested the pres- 
ence in sera of a factor (different from B2m) that was capable 
of enhancing peptide binding by some but not all peptides 
above the level observed in SF media. 

In view of the complexity of serum, the relevant compo- 
nent was partially purified before attempting to define its 
mechanism of activity. Serum depleted of fl2m and albumin 
by affinity chromatography was subjected to fractionation on 
an ion exchange column, and fractions were tested for their 
affect on peptide binding by P815 cells in SF media. A major 
peak of activity was identified, which was utilized for fur- 
ther characterization (Fig. 2). Gel filtration analysis revealed 
it migrated with a molecular weight in excess of 100,000 (data 
not shown). 

Considering that the serum activity enhanced T cell rec- 
ognition for some peptides but not others, it was considered 
likely that it recognized the peptide rather than the class I 
molecule or the cell. One type of mechanism that could ex- 
plain these results would be cleavage of the relevant peptide 
into a form with higher affinity for class I or that was recog- 
nized more efficiently by the TCR. To test this possibility, 
peptide was incubated with the partially purified serum ac- 
tivity and the peptide separated from high molecular weight 
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material by centrifugation through a filter that excludes ma- 
terial with a molecular weight >30,000, and thus would ex- 
clude the serum component. When compared with the un- 
treated peptide, an equal volume of the recovered peptide was 
>100-fold more efficient in sensitizing cells for lysis, sug- 
gesting that the serum activity had in some way altered the 
peptide (data not shown). 

To prove that proteolytic cleavage was indeed responsible 
for this increased activity, NP(147-158R-) was first purified 
by HPLC to remove minor contaminants. Surprisingly, the 
major peak, which was confirmed to be NP(147-158R-) by 
amino acid composition analysis, was unable to sensitize targets 
for lysis by NP-specific CTL, suggesting minor contaminants 
were responsible for the low activity originally observed using 
this synthetic peptide (data not shown). This purified mate- 
rial was next incubated with the partially purified serum ac- 
tivity and then rechromatographed by HPLC. As compared 
with chromatograms of NP(147-158R-) (which migrates at 
the position of peak I) and the serum fraction, two new peaks 
were observed (peaks II and III). Based on the mass of recov- 
ered material (as determined by amino acid analysis), peak 
II proved to be at least 1,000-fold more active than the original 
synthetic peptide, and peaks I and III had no detectable ac- 
tivity (Fig. 3). Amino acid analysis confirmed that peak I 
was NP(147-158K-). The active peak (peak II) was missing 
two COOH-terminal residues, thr and gly. Peak III was found 
to contain this missing dipeptide. The identity of peak II 
was further confirmed by comparison of its position of migra- 
tion with that of the synthetic peptide NP(147-155), which 
is indicated by the arrow in Fig. 3 a. Thus, the proteolytic 
activity was a COOH-terminal dipeptidase that cleaved 
NP(147-158K-) into a sequence with high affinity for K d 
identical to the one recently reported as the endogenously 
processed product in H-2 a influenza-infected cells, NP(147- 
155) (7). In agreement with published reports (22), we ob- 
served that the synthetic peptide corresponding to the en- 
dogenously processed antigenic peptide, NP(147-155), is active 
in sensitizing targets at concentrations as low as 10-tt M. 

COOH-terminal dipeptidases are rare and the only one 
known to exist in serum is ACE. This enzyme (mol wt, 
170,000) converts angiotensin I into angiotensin II by removal 
of a COOH-terminal dipeptide (23). Its specificity has been 
studied extensively and it is known to be inhibitable by pep- 
tides that contain a penultimate proline. We therefore tested 
the ability of the active component from serum to be inhibited 
by an ACE inhibitor containing this sequence and also tested 
the effect of purified ACE on class I binding by NP(147- 
158R-). As indicated by the data in Table 1 (Exp. 1), the 
serum component was completely inhibited by ACE inhib- 
itor, and purified ACE was able to enhance binding by 
NP(147-158R-) (Table 1). Further evidence that the active 
component was indeed ACE was obtained through the use 
of a mAb that is specific for ACE and blocks its enzymatic 
activity (20). Incubation of the serum fraction with this mAb 
prevented it from producing an active form of the peptide 
(Table 1, Exp. 2). Taken together, these data strongly sug- 
gested that the active material was ACE. 

As demonstrated in Fig. 1, serum also contained a factor 
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Figure 3. The serum component activates NP(147-158K- ) by release of a COOH-terminal dipeptide. (a) HPLC analysis of 50 #g of NP(147-158R- ) 
after incubation with the partially purified serum activity. Arrow denotes position of migration of the synthetic peptide NP(147-155) as determined 
in a separate experiment. (b) A portion (10%) of the material in the indicated peaks was lyophilized and reconstituted in 50 #1 of PBS. slCr-labeled 
P815 cells were pulsed for 1 h with 6 #1 from each peak or 0.6 #g of the unpurified synthetic peptide NP(147-158K-) (A) in a volume of 100 #1 
SF media. Targets were washed twice and then tested for recognition by clone 9. 

capable of increasing the effidency of binding of NP(365-380). 
ACE was tested for its ability to increase binding of NP(365- 
380) by appropriate target cells. No increase was observed, 
suggesting that a different serum component, presumably 
a different protease, was responsible for this activity (data not 
shown). 

Our observations concerning the impact of serum pepti- 
dase on class I-peptide interactions is of significance with 

T a b l e  1. 

respect to identification of antigenic peptides. These results 
caution that in some cases the active form of peptide that 
actually binds to class I may differ significantly from the pre- 
dominant synthetic peptide added to cultured cells, as recently 
reported (9, 10). Further processing may occur resulting in 
the observed class I-peptide interaction. This is certainly true 
of NP(147-158R-) and may be the case with NP(365-380). 
As a result, this can lead to identification ofpeptide sequences 

Inhibition of Processing of NP(147-158R-) by ACE Inhibitor 

Percent specific lysis 

Exp. Addition - + ACE inhibitor 

- 0 0 

0.75% serum 70 16 

Serum fraction 54 9 

ACE (.002 U/ml)  80 30 

ACE (.006 U/ml)  91 70 

+ Anti-ACE + Anti-K k 

2 - 7 - - 

Serum fraction 52 16 49 

Recognition by clone 9 of stCr-labeled P815 cells pulsed with NP(147-158R.-) preincubated with the indicated additions as described in Materials 
and Methods. 
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that contain an antigenic sequence, yet may themselves have 
no or only low affinity for class I. Attempts to use such subop- 
timal peptides as vaccines could prove ineffective, as was the 
case for NP(147-158R-) (24, 25). This may help explain 
some of the controversy currently in the field concerning the 
efficacy of soluble peptide, or peptide-coated cells, as im- 
munogens (24, 26, 27). For a peptide to be an effective im- 
munogen it may need to bind large numbers of class I mole- 
cules with high efficiency. Thus, only those peptides that 
efficiently bind may prove effective as vaccines. 

The stability of a peptide in vivo may also be an important 
factor for effective immunization. A great deal is known con- 
cerning the ability of ACE to cleave certain sequences (23). 
It is likely that ACE contributes significantly to peptide degra- 
dation in vivo. It may be possible to fashion peptides that 
withstand such enzymatic breakdown yet retain antigenic ac- 
tivity. 

Our results present the possibility that ACE, either alone 
or in conjunction with other serum or cell-bound peptidases, 
may serve a role in antigen processing in vivo. It has been 
speculated that a specialized cell exists that has the ability 
to present exogenous antigen in association with class I 
(28-30). In this regard, it has been demonstrated that acti- 
vated monocytes produce high levels of ACE on their surface 
(20, 23, 31). Indeed, it is this source of ACE that is respon- 
sible for the elevated levels of serum ACE that occur in as- 
sociation with certain diseases (23, 31). The mechanism of 
cleavage by this dipeptidase makes it an excellent candidate 
for an antigen processing enzyme, as it removes COOH-  
terminal dipeptides in a nonprocessive manner (32). Thus, 
there should be ample opportunity for successive products 
to attempt binding to cell surface class I. A role of ACE, 
or any extracellular enzyme, in antigen processing awaits 
verification that such a pathway is indeed utilized in vivo. 
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