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Summary 
Human activated T lymphocytes expressing dass II molecules are able to present only complex 
antigens that bind to their own surface receptors, and thus can be captured, internalized, and 
processed through the class II major histocompatibility complex processing pathway. We have 
used the antigen-presenting T cell system to identify the viral receptor used by hepatitis B virus 
(HBV) to enter cells, as well as the sequence of HB envelope antigen (HBenvAg) involved in 
this interaction. Results show that both CD4 + and CD8 + T clones can process and present 
HBenvAg to class II-restricted cytotoxic T lymphocytes and that the CD71 transferrin receptor 
(TfR) is involved in efficient HBenvAg uptake by T cells. Moreover, we provide evidence that 
the HBenvAg sequence interacting with the T cell surface is contained within the pre-S2 region. 
Since TfR is also expressed on hepatocytes, it might represent a portal of cellular entry for HBV 
infection. This system of antigen presentation by T cells may serve as a model to study both 
lymphocyte receptors used by lymphocytotropic viruses and viral proteins critical to bind them. 

C D4 T lymphocytes recognize exogenous antigens as 
peptides bound to class II MHC molecules expressed 

on the surface of APC, generally represented by macrophages, 
dendritic cells, and B cells (1, 2). APC internalize these an- 
tigens, process them into endosomal compartments, and then 
expresson their membrane short peptides in association with 
class II antigens (3). 

Unlike mouse T cells, human activated T lymphocytes ex- 
press class II molecules and have been shown to efficiently 
present only denatured antigens or peptides not requiring 
processing (4-7). In contrast, they usually fail to present com- 
plex antigens that need processing unless they capture an- 
tigens by their membrane molecules (8), as in the case of 
HIV gp120, which binds monovalently to the CD4 receptor 
(9, 10). In this manner, T cells can efficiently internalize an- 
tigens, process them through a class II processing pathway, 
and present their fragments to class II-restricted T lympho- 
cytes, as specific B cells do via their Ig receptors (11-14). 

In this study, we demonstrate that both CD4 + and 
CD8 + T cell clones can process and efficiently present hep- 

atitis B envelope antigen (HBenvAg) t to class II-restricted 
CTL, which in turn kill the presenting T cells, and that the 
CD71 transferrin receptor (Tflk) is involved in the uptake 
of HBenvAg by T cells. Moreover, we have identified the 
HBenvAg region involved in this interaction. 

Materials and Methods 
Reagents. Plasma-derived (native) HBenvAg (Sorin, Saluggia, 

Italy), containing all three (pre-S1, pre-S2, S) hepatitis B virus (HBV) 
envelope proteins, was purified from patients with chronic HBV 
infection as described (15). This antigen preparation contains high 
levels of pre-S1, pre-S2, and S reactivity as shown by solid phase 
ELISA (15). Recombinant (r) particles containing the entire sur- 
face protein ofHBV (pre-S1, pre-S2, S) expressed in yeast (16) were 
a gift from P. J. Kniskern (Merck Sharp and Dohme Research 
Laboratories, West Point, PA). A deleted rHBenvAg form containing 
only the 12-52 sequence of the pre-S1 domain, the 133-145 se- 
quence of the pre-S2 domain, and the entire S domain (S,L antigen 
[17]), a recombinant protein displaying antigenic determinants en- 

A part of this work has appeared in abstract form (]. Cell. Biochera. 15:241a 
[Abstr.] 1991). 

1 Abbreviations used in thispaper: HBenvAg, hepatitis B envelope antigen; 
HBV, hepatitis B virus; i, irradiated; TfR, transferrin receptor; TT, tetanus 
toxoid. 
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coded by pre-S2 and S regions (pre-S2, S), and a recombinant pro- 
tein containing only the S region (S), all expressed in yeast (17), 
were kindly donated by P. Hanser andJ. Petre (SmithKline Biolog- 
icals, Rixensart, Belgium). Another r(pre-S2, S) protein expressed 
in CHO cells (18) was provided by P. Adamowicz (Pasteur Vac- 
cines, Marnes-La Coquette, France). Purified native tetanus toxoid 
(TT) was obtained from Institut Merieux (Marcy-12Etoile, France). 
The synthetic peptide analogues of pre-S1, pre-S2, and S regions 
were purchased from American Peptide Company, Inc. (Santa Clara, 
CA). Soluble Tf was purchased from Calbiochem-Behring Corp. 
(San Diego, CA). 

OKTll  (anti-CD2), OKT3 (anti-CD3), OKT4A (anti-CD4), 
OKT8 (anti-CDS), OKT1 (anti-CD5), OKT26a (anti-CD25), 
OKT10 (anti-CD38), and OKT9 (anti-CD71) mAbs were purchased 
from Ortho Pharmaceutical (Raritan, NJ). Anti-Leu-M5 (anti- 
CD18/LFA-1 fl chain) and anti-Leu-19 (anti-CD56) mAbs were 
purchased from Becton Dickinson & Co. (Mountain View, CA); 
anti-CD54 (anti-ICAM-1) mAb was from Immunotech (Marseille, 
France); anti-CD58 (anti-LFA-3; TS 2/9 clone) was obtained from 
T. A. Springer (Harvard Medical School, Boston, MA). The anti- 
CD71 mAbs (42/6, B3/25, T56/14, 43/31) were kindly donated 
by I. S. Trowbridge (Salk Institute, San Diego, CA). These anti- 
CD71 mAbs recognize different epitopes of the TfR; i.e., 42/6 
and 43/31 mAbs inhibit Tf binding to its receptor, whereas the 
B3/25 and T56/14 mAbs, as well as OKT9, interact with a TfR 
epitope not involved in Tf binding (19, 20). The W6/32 mAb to 
monomorphic determinants of class I Ag was purchased from Cappel 
Laboratories (Malvern, PA). The Q5/13 mAb to framework deter- 
minants of HLA-DR was kindly provided by P. Giacomini (Re- 
gina Elena Cancer Institute, Rome, Italy). Anti-HLA-DQ and anti- 
HLA-DP were purchased from Becton Dickinson & Co. The pur- 
chased anti-MHC molecule mAbs were used after dialysis. 

Antigen-specific T Cell Clones. Antigen-specific T cell clones were 
derived from PBL of two HB vaccine (HEVAC-B; Pasteur Institut, 
Paris, France) recipients, whose HLA-DR typings were DR5 and 
DR2,3, respectively. Briefly, PBL were plated (10 s per well) in 96- 
well flat-bottomed plates (Falcon Labware, Oxnard, CA) in the 
presence of 10 #g/ml HBenvAg, and 20 U/ml rib2 (Hoffmann-La 
Roche, Basel, Switzerland) were added after 5 d. After an addi- 
tional 5-6 d, growing cultures were expanded with IL-2, and a 
15-d cycle of restimulation with antigen plus autologous irradiated 
(i)PBL was used as APC. Cultures chosen for their capacity to 
proliferate in response to HBenvAg in the presence of autologous 
iAPC were cloned by limiting dilution at 0.3 cells per well with 
1/~g/ml PHA (Wellcome, Dartford, UK), rib2, and allogeneic 
iAPC, as described (14, 15). Table I shows antigen specificity and 
HLA restriction of the selected T clones. Random T clones, ob- 
tained by cloning autologous or aUogeneic PBL with PHA and 
HLA-incompatible feeder cells, or EBV-transformed B (EBV-B) cells 
were used as APC. 

Cytotoxicity Assay. S~Cr-labeled EBV-B cells or T clones (target 
cells) were pulsed at 37~ (4 h) with increasing concentrations 
of entire HBenvAg (native or recombinant) or synthetic peptides. 
In specific cytotoxicity inhibition experiments, S~Cr-labeled target 
cells were incubated with 2/~g/ml of various mAbs for 1 h at 37~ 
before or after pulsing with either antigen or peptide. In some ex- 
periments, labeled target cells were treated with increasing con- 
centrations of Tf for 2 h at 37~ washed, and pulsed with HBenvAg 
or TT for another 2 h at 37~ Viability of target cells before and 
after incubations with mAbs or Tf was 100%. 

Target cells were washed, and cultured (5 x 103) for 4 h with 
antigen-specific T clones, at a 10:1 E/T ratio into 96-weU round- 
bottomed plates in triplicate. Plates were then centrifuged, cell- 

free supernatants were collected from each well, and SlCr release 
was evaluated in a gamma counter. Percent specific lysis is expressed 
as the mean of triplicate determinations and is calculated as follows: 
100x (experimental release - spontaneous release)/(maximal re- 
lease - spontaneous release). 

uSI-Tf uSI-HBenvAg, and Competitive Binding Assays. Purified 
human Tf (>99%) was conjugated with lzsI by the solid-phase lac- 
toperoxidase system (New England Nuclear, Boston, MA). The 
binding reactions were performed in 12 x 75-mm polypropylene 
tubes in RPMI 1640 containing 0.2% BSA (Fraction V; Sigma 
Chemical Co., St. Louis, MO). Cell concentration was 5 x 106 
cells/ml; labeled Tf, 500 ng/ml; and unlabeled Tf at different con- 
centrations (0-500 #g/ml). In some experiments, unlabeled Tf was 
replaced by different molecular constructs of HBenvAg added at 
a final concentration ranging from 0 to 200 #g/ml. The cells were 
incubated for 120 min at 4~ and unbound ligand was removed 
by passaging cells through a density cushion, as described (21). After 
incubation, 200-/zl aliquots of the cell suspension, layered over 150 
#1 of a mixture of dibutyl phthalate (Merck, Darmstadt, Germany) 
up to a final density of 1.025 in 400-#1 plastic microfuge tubes, 
were centrifuged in a microfuge (Jouan Inc., Winchester, VA) 
(10,000g, 2 rain). The resulting supernatant and most of the phtha- 
late oil cushion were aspirated. The tips of the vials containing 

Table 1. MHC Class II Restriction of Antigen-specific 
Cytotoxic CD4 § T Clones 

Percent specific lysis 

B41 VB26 VB27 

mAbs 
None 
Anti-DR 
Anti-DQ 
Anti-DP 
Anti-ABC 

Target cells 
Allog. EBV-B 

100.0 78.5 63.7 
2.1 0.2 -0 .1  

88.4 75.3 62.9 
90.2 64.1 76.8 

100.0 78.6 60.3 

(DR1) 1.6 -0 .3  0.4 
(DR2) 2.6 61.3 52.3 
(DR3) 0.3 0.0 0.4 
(DR4) -0 .1  0.1 0.7 
(DR5) 110.0 0.2 - 0.5 
(DR6) - 0.3 - 0.1 - 0.2 
(DR7) -0 .5  2.1 0.0 
(DR8) ND 0.0 0.6 
(DR9) ND 2.2 0.0 

slCr-hbeled autologous target EBV-B cells pulsed or not with 50 ~g/ml 
HBenvAg at 37~ (4 h) were washed and then incubated with the respec- 
tive cloned T cells (4 h), used as effector cells at an E/T ratio of 10:1, 
in the presence or absence of anti-MHC mAb. Percent specific lysis is 
expressed as the mean of triplicate determinations, slCr-labeled aUogeneic 
target EBV-B cells pulsed with antigen at 37~ (4 h) were washed and 
then incubated with cloned T cells (4 h) at an E/T ratio of 10:1 for the 
CTL assay. Percent specific lysis is expressed as the mean of triplicate 
determinations. 
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the cell pellet were severed with a scalpel and transferred into plastic 
vials, and the radioactivity was measured in a gamma counter. '~I- 
HBenvAg binding was performed under similar experimental con- 
ditions, except for labeled ligand concentration (1.25/~g/ml). After 
incubation, cells were processed for '~I-Tf binding assay. 

Results 
T Lymphocytes Process and Present HBenvAg. Fig. 1 shows 

that random CD4 + and CD8 + T clones, used as APC, were 
able to present HBenvAg to class II-restricted specific cyto- 
toxic T clones. The specific CTL used in these experiments 
were a DRS-restricted T clone (B41) and two DR2-restricted 
T clones (VB26 and VB27) recognizing the synthetic 1-21 
peptide (MGGWSSKPRKGMGTNLSVPNP) of the pre-S1 
region, the 120-130 (MQWNSTAFHQT) of pre-S2 region, 
and the 193-207 (FFLLTRILTIPQSLD) of S region, respec- 
tively (Table 2). Lysis of presenting T cells was observed with 
a significantly lower concentration of antigen than that needed 
to induce a comparable level of EBV-B killing (Fig. 1). T cell 
clones, selected for presenting HBenvAg, were isolated and 
stimulated with PHA using aUogeneic iPBL as feeders, which 
lacked the appropriate class II molecules, to exclude the pres- 
ence of HLA-restricted conventional APC. These CD4 + and 
CD8 + clones were cytotoxic in a lectin-dependent cell- 
mediated cytotoxicity (LDCC) assay (data not shown). In 
some experiments, the HBenvAg-specific CD4 + T clone, 
used as source of APC, was able to present HBenvAg to it- 
self (data not shown). In this case, to exclude the presence 
of autologous conventional APC, the T clone was restimu- 
lated with PHA using allogeneic iPBL as feeders as described 
above. HBenvAg presentation by T cells required processing 
since cold pulsing resulted in a drastic inhibition of their APC 

capacity (Table 3). This ability was restored after at least 60 
rain of incubation at 37~ except for T cells incubated in 
the presence of the lysosomotropic agent chloroquine (100 
#M) (Sigma Chemical Co.), which inhibits the class II en- 
dosomal processing pathway (22) (Table 3). In contrast, rec- 
ognition of 1-21 peptide, which presumably directly binds 
class II molecules without processing (23), was not affected 
by either cold or chloroquine treatments. 

mAb to TfR Inhibits HBenvAg Cas and Presentation by 
T Cells. To define the putative receptor used by HBenvAg 
to interact with T cells, we attempted to inhibit specific lysis 
of presenting T lymphocytes by treatment with various ran- 
domly selected mAbs to lymphocyte surface molecules. Target 
cells were incubated with each mAb for 1 h at 37~ either 
before or after antigen pulsing. We assumed that the blocking 
of the HBenvAg uptake by T lymphocytes should occur only 
when the mAb to the presumed HBenvAg receptor was added 
before antigen pulsing. The B41 T clone was used as effector. 

Results show that only the anti-CD71/TfR mAb (OKTg) 
was able to inhibit HBenvAg capture by T cells: indeed, only 
this mAb blocked specific lysis when added before, but not 
after, antigen pulsing (Table 4). Moreover, OKT9 also blocked, 
to a lesser degree, the specific lysis of EBV-B cells when added 
before HBenvAg pulsing (Table 5). In contrast, anti-TfR mAb 
did not inhibit either presentation of 1-21 peptide by T or 
EBV-B cells (Table 4 and 5), or the presentation of an un- 
related antigen, the TT, by EBV-B cells to a TT-specific T 
line (Table 5). 

An inhibitory effect was also obtained with adhesion mol- 
ecule mAbs (anti-CD2, anti-ICAM-1, anti-LFA-1, anti-LFA-3) 
(24) (Tables 4 and 5). These mAbs showed an inhibitory effect 
both before and after HBenvAg pulsing of APC. They also 
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Figure 1. Cytotoxic activity of class II-restricted T cell 
clones against EBV-B or T cells presenting HBenvAg. Au- 
tologous or HI.A-unrestricted target T clones were used 
for each experiment, slCr-labeled target cells pulsed with 
increasing concentrations of entire HBenvAg at 37~ (4 h) 
were washed and incubated (4 h) with cloned T cells (in- 
dicated in parenthesis) at an E/T ratio of 10:1 for CTL 
assay. Percent specific lysis is expressed as mean of tripli- 
cate determinations. 
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Table 2. Fine Specificity of Cytotoxic CD4 ~ T Clones 

Percent specific lysis 

B41 VB26 VB27 

Recombinant antigens 
r(pre-S1, pre-S2, S) 100.0 70.3 82.0 
r(pre-S2,S) 0.0 82.2 61.3 
r(S) 0.2 0.3 72.4 

Synthetic peptides 
Pre-S1 peptide pool 94.6 -0.3 0.2 

1-21 pre-S1 101.2 
21-32 pre-S1 2.8 
32-53 pre-S1 -0,2 
74-94 pre-S1 0.0 

95-119 pre-S1 0.6 

pre-S2 peptide pool 0.0 82.2 0.2 
120-130 pre-S2 76.4 
130-140 pre-S2 1.2 
141-174 pre-S2 2.1 

S peptide pool 0.5 1.9 83.2 
172-184 pre-S2/S 0.3 0.0 
193-207 S 81.3 
289-304 S 0.0 
374-389 S 0.2 

slCr-labeled autologous target EBV-B cells pulsed with 50 #g/ml anti- 
gen or 10/~g/ml peptide at 37~ (4 h) were washed and then incubated 
with cloned T cells (4 h) at an E/T ratio of 10:1 for the CTL assay. 
Each peptide pool consisted of a mixture of single peptides (5 #g/ml) 
of pre-S1, pre-S2, and S proteins, respectively. The pre-S2/S peptide in- 
cluded the 172-175 sequence of pre-S2 protein and the 176-184 of S pro- 
tein. Percent specific lysis is expressed as the mean of triplicate 
determinations. 

inhibited presentation of the 1-21 peptide and the unrelated 
TT antigen. 

Soluble Tf  Blocks HBenvAg Uptake and Presentation by T Lym- 
phocytes. To further clarify the role of TfK in HBenvAg up- 
take by T cells, we tested the effect of soluble Tf on specific 
lysis of presenting T and EBV-B cells. Incubation of APC 
with Tf for 2 h before antigen pulsing resulted in a drastic 
inhibition of their specific lysis. In control experiments, Tf 
did not block specific lysis of TT-pulsed EBV-B cells by the 
TT-specific T line (Fig. 2). 

The HBenvAg Sequence Interacting with the T Cell Surface 
Is Contained in the Pre-S2 Region. To identify the viral enve- 
lope sequence relevant for virus/T cell interaction, we tested 
the ability of both T and EBV-B ceils to present different 
HBV envelope antigen constructs. The VB27 T clone recog- 
nizing the 193-207 of S region, present in all tested proteins, 
was used as effector. 

Table 3. Processing Requirement for HBenvAg Presentation 
by Cells 

CD4 + T cells Time at 37~ StCr release 

Unpulsed 
HBenvAg pulsed 

min ~o 
0 0 

15 0 
30 5 
60 45 

120 100 
240 100 
240 + chloroquine 10 

0 + 1-21 peptide 50 
240 + chloroquine + 1-21 peptide 49 

slCr-labeled target CD4" T clone was pulsed with 1 #g/ml rHBenvAg 
on ice (2 h), washed, and then cultured after different incubation times 
at 37~ with the autologous B41 T clone at an E/T ratio of 10:1. In 
some experiments, prepulsed target cells were incubated at 37~ with 
100 #M chloroquine (Sigma Chemical Co.) in the presence or absence 
of 1-21 peptide. Percent specific lysis is expressed as mean values from 
triplicate determinations. A representative experiment is presented. Equiva- 
lent results were obtained using a slCr-labeled target CD8 + T clone 
(data not shown). 

EBV-B cells presented all HBenvAg preparations tested with 
the same efficiency. T cells presented the entire recombinant 
or native (pre-S1, pre-S2, S) and the r(pre-S2, S) proteins with 
high efficiency (Fig. 3); they presented, to a lesser degree, 
the r(12-21 pre-S1, 133-145 pre-S2, S) S,L protein, and, not 
at all, the r(S) protein. These experiments were performed 
several times with equivalent results. 

CD4* CTL-mediated Lysis Does Not Induce Nonspecific By- 
stander Lysis. In this study, the antigen-specific CD4 + T 
clones killed T cells presenting HBenvAg. To examine whether 
they killed by a contact-dependent mechanism and not 
aspecifically by production of soluble factors (25), bystander 
lysis experiments were performed. 

When unlabeled (cold) HBenvAg-pulsed target T cells were 
mixed with SlCr-labeled (hot) unpulsed T cells, class II-re- 
stricted CTL did not lyse the bystander targets (Table 6). In 
contrast, when pulsed T cells were added as hot targets to 
cold unpulsed T cells, strong lysis of the former was observed, 
thus suggesting that they killed by direct T cell/T cell con- 
tact and did not induce bystander lysis. 

Activated T Lymphocytes Possess High Affinity Receptors for 
HBenvAg. Experiments were performed to evaluate the pos- 
sible presence of high affinity membrane receptors for 
HBenvAg on T cells. Thus, T cells were incubated in the 
presence of a fixed amount of 12SI-HBenvAg (1.25/~g/ml S, 
L construct) and increasing amounts of cold HBenvAg (0-200 
/zg/ml). Scatchard plot of binding data shows that T cells 
possess high affinity receptors for HBenvAg (KD 1.3 x 10-7 
M) (Fig. 4). The binding of lZSIHBenvS,L Ag to T cells was 
inhibited by an excess concentration of some cold HBenv con- 
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Table 4. Effect on the Antigen-specific Lysis by Treatment of Target T Cells with Different mAbs to Lymphocyte Surface Molecules 

Percent specific lysis of target T ceils treated with mAbs 

Before After After 1-21 
mAb Ag pulsing Ag pulsing peptide pulsing 

Anti-CD3 100.0 80.5 98.6 

Anti-CD4 71.2 66.7 76.3 

Anti-CD8 92.8 72.1 100.0 

Anti-CD5 88.6 94.3 ND 

Anti-CD25 91.0 ND 99.4 

Anti-CD38 78.3 ND ND 

Anti-CD56 84.7 73.2 ND 

Anti-CD71 14.7 80.5 100.3 

Anti-CD18 (LFA-1B chain) 0.0 ND ND 

Anti-CD54 (ICAM-1) 35.8 8.._99 8.__33 

Anti-CD2 0.0 6.4 3.2 

Anti-CD58 (LFA-3) 0.0 11.7 14.3 

Anti-class I (A, B, C) 68.7 86.0 64.5 

A SlCr-labcled target CD4 + T clone was incubated with various mAbs either before or after entire HBenvAg pulsing as described in Materials and 
Methods, Target T calls were washed and cultured with the autologous B41 T clone at an E/T ratio of 10:1 for CTL assay. Cytotox/city of B41 
T clone against HBenvAg-pulsed target T cells without mAb treatment was 87%. Values expressing a percent inhibition >50% are underlined. 
Percent specific lysis is expressed as mean of triplicate determinations. Results represent the mean values of four experiments. Equivalent results were 
obtained using a slCr-labeled target CD8 + T clone (data not shown). 

structs, such as native HBenvAg, or S,L, or r(pre-S2, S), but 
not by the form containing only the S protein (data not 
shown). Furthermore, using mI-HBenvAg, the level of 
nonspecific binding (i.e., the binding observed when the cells 
were incubated with labeled antigen and a large excess of cold 
antigen) is high and corresponds to 40-50% of the total 
binding. 

Native form HBenvAg and the recombinant constructs are 
represented by a polymer exhibiting >250-kD formed by di- 
sulfur bridges (26). In light of this, we evaluated whether 
the antigen was still able to bind to cells after monomerisa- 
tion by reducing agents such as DTT. The results dearly show 
that reduced HBenvAg loses its capacity to bind to ceils (data 
not shown). 

Table 5. Effect on Antigen-specific Lysis by Treatment of Target EBV-B Cells with Different mAbs to Lymphocyte Surface Molecules 

Percent specific lysis of target EBV-B ceils treated with mAbs 

Before After After Before After 
mAb HBenvAg pulsing HBenvAg pulsing 1-21pep. pulsing TT pulsing TT pulsing 

Anti-CD3 88.3 67,1 ND ND ND 

Anti-CD71 31.0 70.4 68.9 44.5 51.2 

Anti-CD2 76.2 ND 64.1 35.9 40.0 

Anti-CD58 28.3 17.7 24.2 10.6 8.3 

Anti-CD18 37.1 16.2 36.5 8.8 8.2 

Anti-CD54 19.8 7.4 0.8 1.3 4.0 

stCR-labeled EBV-B cells were incubated with various mAbs either before or after antigen pulsing as described in Materials and Methods. Target 
EBV-B cells were washed and cultured with the autologous B41 T clone for CTL assay. Cytotoxicities of the B41 T clone and the TT-specilic 
T line against the respective antigen-pulsed target EBV-B cells without mAbs treatment were 79% and 40%, respectively. Values expressing percent 
inhibition >50% are underlined. Percent specific lysis is expressed as mean of triplicate determinations. The results represent the mean values of 
four experiments. 
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Figure 2. Dose-rdated inhibition induced by soluble "If (inhibitor) on 
the lysis of CD4 + T ceUs by HBenvAg-spedfic CTL (~), and EBV-B cells 
by either HBenvAg-specific CTL (~7), or by TT-specific CTL (~) .  s~Cr- 
labeled target cells were treated with the indicated concentrations of "If 
for 2 h at 37~ washed, and pulsed with HBenvAg (10/zg/ml) for an- 
other 2 h. Target cells were then washed and cultured with the autologous 
B41 T clone for CTL assay. Percent specific lysis is expressed as mean of 
triplicate determinations. Results are representative of four experiments. 
Percent inhibition was calculated as follows: 100x [percent spedfic release 
(C) - percent specific release (T)]/[percent specific release (C)]. 

Table 6. Lysis of Target T Cells by CD4 § CTL Is Not 
Mediated by Bystander Lysis 

Percent specific lysis 

HBenvAg-pulsed HBenvAg-pulsed 
cold T cells + hot T cells + 

Clone unpulsed hot T c e l l s  unpulsed cold T cells 

B41 - 0.1 88.4 

VB26 0.0 56.6 

VB27 - 0.5 62.0 

Target ceils were pulsed or not with 50/~g/ml I-IBenvAg for 4 h, washed, 
and used as s~Cr-labeled (hot) or unlabeled (cold) targets. Experiments 
were performed in triplicate wells containing 5 x 10 ~ cold targets. Effec- 
tor calls were used at an E/T ratio of 10:1. Percent specific lysis is ex- 
pressed as mean of triplicate determinations. 
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Figure 3. Capacity of EBV-B and T cells to present antigen preparations with different compositions in relation to HBV envelope, slCr-labeled target 
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(4 h) at an E/T ratio of 10:1 for CTL assay. Percent specific lysis is expressed as mean of triplicate determinations. The results are representative of 
four separate experiments. 
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Figure 4. (a) Scatchard plot of 12SI-HBenvAg (S,L construct) binding 
to human activated T cells (CD4 + nonspecific T call clone). T calls were 
incubated in the presence of a fixed amount of nSI-HBenvAg (1.25 #g/ml) 
alone or in the presence of increasing amounts of unlabeled HBenvAg (0--400 
#g/m1). (b) Capacity of different HBenvAg constructs to inhibit mI-Tf 
binding to T cells. T cells were incubated in the presence of nSI-Tf (500 
ng/ml), in the absence or presence of increasing concentrations of HBenvAg 
constructs: plasma-derived native HBenvAg (~7); rHBenvAg only con- 
taining the S region (V1); rHBcuvAg containing the 12-52 pre-S1 sequence, 
133-145 pre-S2 sequence, and the entire S domain (S,L antigen) (@); 
rHBenvAg composed by the entire pre-S2 and S domains (O); soluble 
Tf (v). 

The Binding of HBenvAg to Cells Is Inhibited by Some mAbs 
to TfR. Experiments were performed to evaluate whether 
125I-HBenvAg is able to interact with TfK. Cells were in- 
cubated with a panel of mAbs to human TfRs (42/6, B3/25, 
T9, T56/14, and 43/31), washed to remove excess unbound 
mAb, and then incubated for 120 min at 4~ in the presence 
of nSI-HBenvAg. These experiments showed that: (a) on T 
cells, 43/31 anti-CD71 mAb produced a strong inhibition 
of nSI-HBenvAg binding, whereas the other anti-CD71 
mAbs induced only a slight inhibitory effect; and (b) on EBV-B 
cells, 43/31 mAb elicited a marked inhibition of HBenvAg 
binding, whereas only a moderate decrease of HBenvAg 
binding was observed with the remaining anti-CD71 mAbs 
(Fig. 5). Although OKT9 anti-TfR mAb had little effect in 
binding inhibition experiments performed at 4~ it down- 
regulated surface TfKs when incubated at 37~ with a sub- 
sequent decrease of both t~SI-Tf and nSI-HBenvAg binding 
(after a 60-rain preincubation of T cells with OKT9, the 
binding of Tf and HBenvAg decreased by 60 and 50%, respec- 
tively). 

The Binding of Tf  to Its Receptor Is Partially Inhibited by 
HBenvAg. Competitive binding experiments were carried 
out to directly evaluate the ability of HBenvAg to interact 
with TfR. Recombinant HBenvAg S,L construct competed 
with radiolabeled Tf for TfR binding sites on both T and 
EBV-B cells, though to a significantly lesser extent than Tf 
(Fig. 5). Interestingly, rHBenvAg S,L construct exhibited a 
greater capacity to inhibit the binding of labeled Tf on T 
lymphocytes as compared with EBV-B ceUs (0.25 and 2.5 
mg/ml of HBenvAg S,L construct was required to inhibit 
50% of labeled Tf binding on T and EBV-B cells, respec- 
tively). This finding may explain why T ceils present HBenvAg 
more efficiently than EBV-B lymphocytes. 

Additional studies using different HBenvAg constructs 
provided results in line with those obtained on the capacity 
of T cells to present different forms of HBenvAg. Indeed, 
entire native HBenvAg and r(pre-S2, S) protein were able to 
inhibit Tf binding to TfR to a higher degree than rHBenvAg 
S,L; the S protein alone had no significant effect (Fig. 4). 

Discussion 

Human activated T lymphocytes express class II MHC mol- 
ecules, but they usually fail to function as APC in presenting 
soluble antigens. Since T cells are able to present denatured 
antigens or peptides (4-7), it has been hypothesized that the 
defect was at the level of antigen processing, or alternatively 
at the level of antigen internalization due to the inability of 
T cells to take up antigens aspecifically (27). This last possi- 
bility has recently been supported by studies indicating that 
these cells are unable to present conventional antigens but 
internalize, process, and present antigens that bind to their 
membrane receptors with high efficiency (27). These studies 
show that T cells need receptor-mediated interactions with 
antigens to effectively capture and present them. 

In light of these results, we evaluated whether the system 
of antigen presentation by T cells could be used to identify 
receptors used by lymphocytotropic viruses to enter T cells 
(28). In particular, the possibility was considered that HBV, 
demonstrated to infect T lymphocytes (28, 29), is captured 
by T cells via a receptor-mediated mechanism to be subse- 
quently processed and presented to specific T lymphocytes. 

Our study demonstrates that both CD4 + and CD8 + T 
clones can efficiently present HBenvAg only after processing 
in endosomal compartments, because presentation is inhibited 
by chloroquine. The finding that HBenvAg presentation was 
drastically inhibited when presenting T cells were cold-pulsed 
argues against the possibility that denatured HBenvAg frag- 
ments directly bind MHC molecules without processing and 
indicates that both internalization and processing are required. 
These results suggest that HBenvAg uses a surface receptor 
to enter T cells. Our investigations support the hypothesis 
that TfR represents one of the membrane molecules, which 
play a fundamental role in HBenvAg internalization and pre- 
sentation. Indeed, only the anti-TfR/CD71 (OKTg), from 
a large series of randomly selected mAbs, was able to inhibit 
killing of both CD4 + and CD8 § T cells by specific class 
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Figure 5. (a and b) Competition binding assay between lzSI-Tf and tither unlabeled Tf or HBenvAg (S,L construct). EBV-B cells or T cells (nonspecific 
CD4 + T dones) were incubated for 120 rain at 4~ with a fixed concentration of 12~I-Tf (500 ng/ml) alone or in the presence of either unlabeled 
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of different anti-CD71 mAbs on the binding of 12SI-HBenvAg to EBV-B cells and T cells (nonspecific CD4 + T clones). EBV-B or T cells were prein- 
cubated for 1 h at 4~ in the presence of 10/~g/ml of different purified anti-CD71 mAbs (42/6, B3/25, Tg, T56/14, and 43/31) in the presence 
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II-restricted CTL when added before and not after antigen 
pulsing. This suggests that OKT9 was the only mAb blocking 
the HBenvAg capture by T cells. OKT9 also inhibited an- 
tigen uptake by EBV-B cells, but to a lesser degree than that 
observed with T cells, thereby suggesting that HBenvAg may 
in part use the CD71 receptor to enter B lymphocytes. How- 
ever, B lymphocytes may also capture the HBenvAg either 
aspecificaUy (27) or through interaction with other mem- 
brane structures. 

The anti-TfR mAb selectively interfered with HBenvAg 
uptake by APC, since it did not inhibit the presentation of 
either the 1-21 peptide (which does not need processing) or 
the unrelated TT antigen. Conversely, the aspecific interac- 
tions between APC and T cells, rather than the initial 
HBenvAg uptake, were inhibited by adhesion molecule mAbs 
(24). They indiscriminately inhibited specific lysis when added 
before or after antigen pulsing of APC. These mAbs also 

blocked presentation of both the 1-21 peptide and unrelated 
TT antigen. 

The selective blocking of specific lysis, observed by pulsing 
the presenting T or EBV-B cells with HBenvAg after treat- 
ment with soluble Tf, further suggests that TfK/HBenvAg 
interaction is a crucial, initial step required for antigen pro- 
cessing and presentation. Endocytosis and recycling of the 
TfK with either its ligand or anti-TfK mAbs have been ex- 
tensively analyzed in both lymphoid and nonlymphoid cells 
(30-33). In agreement with these findings, we found that 
OKT9 does not inhibit Tfbinding to its receptors, but down- 
regulates surface Till on T cells when incubated at 37~ 
This is followed by a decrease of iodinated Tf and HBenvAg 
bindings, confirming that this mAb blocked HBenvAg pre- 
sentation by interfering with its internalization (data not 
shown). 

The involvement of TfK in HBenvAg interaction with lyre- 
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phocytes is also supported by binding experiments. In this 
regard, HBenvAg only partially inhibits Tf binding. Further- 
more, among the anti-CD71 mAbs inhibiting the binding 
of Tf to its receptor, only one (43/31 mAb) markedly decreases 
iodinated HBenvAg binding to the cells. This clearly sug- 
gests that the epitope involved in the interaction between 
HBenvAg and Tf receptor is similar but not identical to that 
involved in the binding of Tf. To the best of our knowledge, 
this is the first study indicating that TfR may be involved 
in the binding of a ligand different from Tf. 

We evaluated whether the system of antigen presentation 
by T cells could also be used for identification of the sequence 
relevant for HBenvAg interaction with T cells. Our results 
dearly indicate that this sequence mapped to the pre-S2 re- 
gion, based on the ability of T cells to present both the en- 
tire (pre-S1, pre-S2, S) protein and the protein containing 
pre-S2/S regions without pre-S1 to a S-specific T clone (VB27), 
and on their failure to present the S protein alone to the same 
clone. Moreover, the finding that T cells presented the r(S,L) 
protein, containing the only 133-145 sequence of pre-S2 re- 
gion, to lesser extent than r(pre-S2, S) containing the entire 
pre-S2, suggests that HBenvAg epitope binding to T cells 
overlaps the 133-145 pre-S2 peptide. Comparative analysis 
of the capacity of different HBenvAg molecular constructs 
to inhibit "If binding provided evidence strictly in line with 
results derived from antigen-presentation studies, i.e., the 
HBenvAg sequence interacting with TfR on T cells is con- 
tained in the pre-S2 region. More precise mapping of this 
epitope may be useful for the design of innovative synthetic 
vaccines. Studies on T and B cell recognition of pre-S2 epi- 
topes suggest that the 120-132 and 132-149 peptides are par- 
ticularly crucial for virus neutralization (26, 34, 35). Moreover, 
the pre-S2 domain, as well as the pre-S1 region, have been 
proposed to be involved in attachment of HBV to hepato- 
cytes and to other cells that are susceptible to infection (26). 

It has been hypothesized that antigen presentation by T 
cells plays a role in immunoregulation (36, 37). In our system, 
antigen-specific CD4 + T clones killing presenting T cells 
may participate in generalized immunosuppression by elimi- 
nation of T lymphocytes. In particular, CD71 § cells ex- 
pressing class II molecules, as macrophages or activated T 
cells, could be susceptible to lysis by HBenvAg presentation 
to class II-restricted CTL. 

The in vivo relevance of cytotoxic activity mediated by 
CD4 + T cells is controversial, but the finding that these 
cells act as CTL has been reported for a number of viral in- 
fection models, including HBV, measles, herpes, and 
coronavirus (14, 15, 38-42). In our hands, CD4 + CTL did 
not elicit bystander lysis, indicating that they killed by a di- 
rect target/CTL contact mechanism, and not aspecifically by 
secreted soluble cytotoxic mediators (25, 43). The finding 
that CD4 + CTL are able to lyse both CD4* and CD8 + 
CTL clones in a HLA-restricted manner are in contrast with 
reports suggesting that CTL are resistant to self-mediated 
lysis (44). These studies used murine CTL instead of human 
CD4 + CTL, utilized in the present study, thus, possibly ex- 
plaining this discrepancy (6). Experiments with human class 
II-restricted CTL, specific for the HIV gp120, indicated that 
lysis of gp120-presenting CD4 + T cells represent an im- 
munosuppression mechanism (10, 37). Analogously, class 
II-restricted CTL specific for HBenvAg can lyse themselves 
or other HBenvAg-presenting CD4 + or CD8 + T cells, 
thereby downregnlating the T cell response and posing a selec- 
tive advantage for HBV persistence (45). 

In conclusion, our data indicate that both CD4 § and 
CD8 + activated T cells can process and present HBenvAg 
with high efficiency. More importantly, HBenvAg uptake via 
TfP, seems to be an essential initial step for the presentation 
of this antigen. Human TfR (20) is expressed on a variety 
of cell types, including hepatocytes (21, 46-53), which rep- 
resent the privileged target cells of HBV infection. The wide 
TfP, distribution may thus explain the broad tissue tropism 
of HBV (54). Other pathogens enter cells using the binding 
site for a known physiological ligand (55-58); e.g., HIV uses 
the CD4 receptor, rhinoviruses enter through ICAM-1 mol- 
ecules, herpes simplex virus I through the fibroblast growth 
factor receptor, and Pneumocystis carinii through the mannose 
receptor (59-62). 

The identification of both the receptor used by HBV to 
enter cells and the HBenvAg epitope relevant for this interac- 
tion may have fundamental implications, not only for the 
design of alternative vaccines, but also on therapeutic ap- 
proaches to chronic HBV infection. 
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