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Summary 
Murine thymic T cells depleted of antigen-presenting cells proliferate poorly in response to 
crosslinking anti-CD3 monoclonal antibodies or conconavalin A when cultured in conventional 
fetal calf serum-containing serum. However, in a serum-free medium formulated to contain, in 
addition to basic ingredients, insulin, transferrin, albumin, linoleic acid (ITLB), and retinol, 
proliferation is vigorous. The presence of retinol is critical, because when omitted, cells do not 
become activated. The subsets of T cells proliferating with the assistance of retinol cofactor are 
both CD4 + and CD8 § thymic T cells, and CD4 + peripheral T cells. Mature CD8 + T cells 
of lymph nodes can also be activated in ITLB medium plus retinol, provided that interleukin 
2 (I1.,2) is added. Retinol needs to be present at the time when T cell receptor triggering is 
initiated, suggesting that early activation events (Go to G1 transition) are dependent on retinol. 
It is currently less clear whether or not subsequent events associated with G1 to S phase 
transition also require the presence of retinol. 14-hydroxy-retroretinol (14HRR) is a metabolic 
product of retinol in lymphocytes, and this retinoid effectively supports T cell activation in 
conjunction with a mitogen in lieu of retinol. Thus, while retinol and its intracellular product, 
14HRR, are unable to activate T cells on their own, they are important cofactors. The requirement 
for retinol in CD3-mediated T cell activation cannot be satisfied by retinoic acid or ILs-1, 2, 
4, and 6, and tumor necrosis factor-or whereas interferon 3' can substitute for retinol. Our 
experiments are compatible with the idea that retinol, in the course of cellular activation, is 
converted to 14HRR, which is needed as intracellular messenger. If substantiated by molecular 
studies now underway, our data should lead to the description of a new signal pathway distinct 
from the retinoic acid signal pathway observed in nonlymphoid cells, but perhaps functioning 
by a similar mechanism, i.e., ligand-assisted transcriptional regulation. 

T he activation of resting T cells is initiated by interaction 
of the TCR with antigen peptide bound to MHC on 

APCs. Pairs of ligand receptor structures on the interacting 
cells contribute secondary signals (for review see references 
1 and 2). Although these molecular interactions have been 
described in considerable detail, the intracellular events en- 
suing are still poorly understood. However, the emerging 
overall picture presents multiple, interactive signal cascades 
that converge on the nucleus to effect transcriptional activa- 
tion. As a general rule, these events are mediated by two 
different chemical classes of molecules, proteins and small 
lipophilic molecules, that shuttle to the nucleus to regulate 
transcription. For example, the protein products of the rel 
gene family (e.g., NF-kB) translocate upon activation from 
the cytoplasm to the nudeus and regulate transcription (3). 
Small lipophilic molecules including the steroids, vitamin D, 
thyroid hormone, and several forms of retinoic acids, bind 
to and activate their specific receptors belonging to the su- 

perfamily of steroid receptors for transcriptional activation 
(3-5). 

To study the requirements of T cell activation, cellular im- 
munologists customarily use culture media supplemented with 
FCS. Because FCS contains a number of growth factors and 
hormones, including steroids, vitamin D and retinoids, it is 
desirable to reduce this complexity. Several serum compo- 
nents appear to be indispensable while others may be inhibi- 
tory, as documented recently for platelet-derived growth factor 
(6). The essential ones include albumin, thought to play a 
role in the stabilization and transport of fatty acids and pos- 
sibly other lipids, transferrin for regulation of iron metabo- 
lism, and insulin, ostensibly for control of carbohydrate me- 
tabolism (7, 8), Our laboratory has recently described retinol 
as a further serum constituent necessary for the growth of 
B lymphocytes (9). Both human and routine-activated B cells 
perish rapidly in culture when deprived of retinol, and this 
may be related to earlier findings that vitamin A-deficient 
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mammals exhibit severe defects in lymphopoiesis and immune 
function (10-12). The essential role of retinol for the immune 
system has recently been highlighted in epidemiological studies 
where even mild vitamin A deficiency was associated with 
immune dysfunction (13). 

We have hypothesized that retinol serves in lymphocytes 
as a precursor for one or more intracellular retinoid deriva- 
tives that might mediate the retinol effects, possibly through 
participation in signal transduction. The analogy supporting 
this hypothesis is retinoic acid. This molecule is derived from 
retinol, passes into the nucleus of target cells, and binds to 
specific retinoic acid receptors, leading to increased transcrip- 
tion of selected genes. Although this mechanism is well 
documented for a variety of tissues and cell types, it does 
not apply to B lymphocytes. B cells neither produce detect- 
able levels of  retinoic acid, nor respond to it (14). We there- 
fore performed a biochemical analysis of  the intracellular reti- 
noids of B cells and found several known retinoids (e.g., retinol 
and retinyl esters) and at least two hitherto undescribed reti- 
noids. Because one of these, 14-hydroxy-retro-retinol 
(14HKK),  t was capable of supporting the proliferation of 
B cells in the absence of  an external supply of retinol, we 
have speculated that this compound might serve as an intra- 
cellular mediator of retinol effects by a pathway distinct from 
that of retinoic acid (15). T lymphocytes also synthesize 
14HKK (as indeed many other cell types studied by us), and 
we were therefore led to study whether T cell activation is 
critically dependent on 14HRR or its precursor molecule, 
retinol. The  results reported here support this assumption. 

M a t e r i a h  and  Me thods  

Reagents and Culture Medium. The following antibodies were 
purified by protein A-Sepharose chromatography: Anti-CD3e, clone 
1452Cll (16), anti-I-A d, clone MKD6 (17); anti-IE a, clone 13/18 
(19); anti-Lyt2.2, cone 19/178 (20); anti-L3T4, clone GK1.5 (21) 
used as ascites fluid; and anti-Ib4M, done 11Bll (18). 
Fluorochrome-labeled antibodies were from commercial sources: 
anti-CD4 PE (Becton Dickinson & Co., San Jose, CA); anti-CD8 
FITC (Boehringer Mannheim, Indianapolis, IN); and normal rat 
IgG FITC and normal rat IgG PE for controls (Southern Biotech- 
nology, Birmingham, AL). 

Retinoids. All-trans retinol, aU-trans retinal, and all-trans retinoic 
acid were purchased from Sigma Chemical Co. (St. Louis, MO). 
The retinoids were dissolved at a concentration of 3 x 10-2 M 
in methanol or DMSO with 10 .4 M butylated hydroxytoluene 
(Sigma Chemical Co.) added and stored in the dark at -20~ in 
a nitrogen atmosphere. Immediately before use, the stock solutions 
were diluted in serum-free medium. 14HRK was isolated from the 
pellets of HeLa cells fed with retinol by using a series of reversed 
phased HPLC columns as described (15). 14HRR was pure ac- 
cording to the retention time on an analytical Cls reversed phase 
column and the typieal UV absorption spectrum. 

1 Abbreviations used in this paper: CRBP, cellular retinol-binding protein; 
14HRR, 14-hydroxy-retro-retinol; RBP, retinol-binding protein; TTR, 
transthyretin. 

lnterleukins and Growth Factors. Human rlL-lc~ was a gift from 
Hoffmann LaRoche Co. (Nutley, NJ); hrlb2 and hrlb6 were pur- 
chased from Boehringer Mannheim; murine rib4 was purchased 
from R&D Systems, Inc. (Minneapolis, MN); rTNF-c~ was donated 
by Genentech, Inc. (San Francisco, CA); mouse rlFN-3~ was pur- 
chased from Genzyme Corp. (Cambridge, MA). Bovine insulin 
and human transferrin were purchased from Collaborative Research 
(Bedford, MA). Delipidated bovine albumin, all-trans retinol, linoleic 
acid, and Con A were bought from Sigma Chemical Co. 

Mice. BALB/c mice of either sex were bred and housed in the 
Sloan-Kettering Laboratory Animal Facility. Our institution 
guarantees compliance with regulations promulgated by the An- 
imal Welfare Act. 

Preparation of Cells. Thymuses of 3-6-wk-old BALB/c mice were 
teased in serum-free RPMI medium supplemented with 1% BSA, 
10 -6 M linoleic acid, and antibiotics. Depletion of accessory cells 
was achieved by two cycles of complement-dependent lysis with 
a mixture of anti-IA d (5 #g/ml) and anti-IE d (1:500 diluted ascites 
fluid). Briefly, cells were incubated on ice for 30 rain with Ia anti- 
bodies, spun down, resuspended in 1:40 diluted rabbit complement, 
and incubated at 37~ for 45 min. Incubations and two subse- 
quent washes were carried out with RPMI medium containing 
1% BSA. Cell viability was evaluated by trypan blue dye exclusion. 
To determine the extent of depletion of accessory cells, samples 
were stained with FITC-conjugated anti-Fc receptor antibody and 
analyzed by flow cytometry on a FACScan | instrument (Becton 
Dickinson & Co.). No FcR-bearing cells were detected by this pro- 
cedure. 

Mature T cells were obtained from pooled intestinal, axillary, 
inguinal, and submandibular lymph nodes of 4-10-week-old BALB/c 
mice. To fractionate cells into CD4 and CD8 subsets and at the 
same time remove APC, a combination of adherence and comple- 
ment lysis was used as follows: The cell suspension in a 2 ml-vol. 
was applied to a nylon wool column (22) (0.6 g of washed nylon 
fibers in the barrel of a 10-ml syringe) and incubated at 37~ for 
40 min. The nonadherent cells were recovered by washing with 
warm serum-free medium at a flow rate of 1 ml/min. The cells 
were then spun down and treated as described for thymocytes with 
two cycles of complement lysis, using either a mixture of MKD6, 
13/18, and 19/178 (to obtain CD4-enriched T cells), or MKD6, 
13/18, and GK1.5 (to obtain CD8-enriched T cells). The success 
of the enrichment procedures was monitored cytofluorimetrically 
using FITC-conjugated anti-CD8 and PE-conjugated anti-CD4. 
In either case, the T cell subsets were over 95% homogeneous. 
Analysis with FITC-conjugated anti-mouse IgG(k) revealed <2% 
contamination by B cells. 

Proliferation Assays. Cells were cultured in serum-free medium, 
referred to as ITLB, containing RPMI 1640 supplemented with 
8 x 10 .7 M insulin (5 #g/ml), 7 x 10 -s M transferrin (5 #g/ml), 
2 x 10 .6 M linoleic acid, 2 x 10 -6 M delipidated BSA (0.12 
mg/ml), 2 mM t-glutamine, 1 mM sodium pyruvate, and antibi- 
otics. They were seeded into 96-well flat-bottomed plates at varying 
cellular densities in a final volume of 100 #1. In control experi- 
ments, cells were cultured in medium containing 10% FCS or 3% 
human serum and 5 x 10 -5 M 2-ME. T cells and thymocytes 
were activated with immobilized, purified mAb anti-CD3e, or by 
the addition of Con A in the presence or absence of different con- 
centrations of retinoids. Unless indicated otherwise, retinoids were 
replenished every 12 h to maintain a reasonably constant concen- 
tration of these labile compounds in culture. The optimal concen- 
tration for stimulation of T cells was determined for each batch 
of anti-CD3 mAb and Con A. The optimal range of Con A was 
particularly narrow in serum-free medium (0.5-0.2 #g/ml) and 
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Figure 1. Retinoids are required cofactors for proliferation ofanti-CD3~ 
activated thym~:ytes at low cellular density. (.4) Pudfied I~LB/c thymo- 
cytes were activated with immobilized anti-CD3E antibody and cultivated 

varied with the cell density used. To assess the costimulatory ac- 
tivities of retinoids with other lymphokines, various concentra- 
tions of Ib l ,  -2, -4, -6, IFN-3' and TNF-a  were added to cuhures. 
Cultures were carried out in duplicate. Plates were incubated at 
37~ in a humidified 5% CO2 atmosphere. Cellular proliferation 
was determined by [3H]thymidine uptake (0.5 #Ci/well; New En- 
gland Nuclear, Boston, MA) after the incubation times indicated 
for each experiment with a 4-h labeling pulse. Ceils were harvested 
onto glass filters and [3H]TdR incorporation was determined by 
liquid scintillation counting. The data presented are the means of 
duplicate or six replicate cultures. The restriction to duplicate mea- 
surements was necessary to conserve scarce 14HRR. They were 
within 20% of each other. Each experiment was repeated at least 
twice. 

Flow Cytome~. To determine the phenotype ofbhst cells gener- 
ated in the thymocyte cultures stimulated with immobilized anti- 
CD3 antibody and retinoids, as well as the purity of CD4 and CD8 
subsets isolated from pooled mouse lymph nodes, cells (10s-106 
calls/sample), stained with FITC-conjugated anti-CD4 antibody 
and PE-conjugated anti-CD8 antibody, were analyzed by two-color 
flow cytometry with a FACScan| Dickinson & Co.). Dead 
cells were eliminated by forward low-angle scatter. Isotype con- 
trois were included in all experiments. To determine the pheno- 
types of activated thymocytes, only blast cells were gated for col- 
lection and analysis. 

Resul t s  

Stimulation of Thymocytes with Anti-CD3e in Serum-free 
Medium is Dependent on the Presence of Retinoids. Thymocytes 
depleted of APC did not proliferate appreciably in response 
to crosslinking anti-CD3 mAb as the sole induction stimulus 
when cultured in FCS-containing medium (Fig. 1 A). They 
also failed to proliferate in serum-free medium ITLB in the 
absence of retinoids, unless very high doses of  anti-CD3 an- 
tibody (in excess of 2/~g/ml) were employed (Fig. 1 B). How- 
ever, in the presence of  retinol at 3 x 10-6 M concentra- 
tion or 14HRtL at 6 x 10-7 M concentration, vigorous 
responses were dicited. These responses were positively cor- 
related with  cell density, but were independent over a wide 
dose range of the anti-CD3 concentration used to coat the 
plastic culture trays. Addition of 3% human serum also sup- 
ported anti-CD3-initiated thymocyte proliferation, but these 
responses faded rapidly with decreased cell density. Growth  
curves of  thymocyte cultures established by differential counts 
of  cells in the presence of trypan blue showed a selective and 

for 4 d in ITLB medium with or without retinol (3 x 10 -6 M), 14HRR 
(6 x 10 -~ M) (fresh 14HRR was added every 12 h), human serum (3%) 
or FCS (10%) at the cellular densities shown. Proliferation was assayed 
by tritiated thymidine incorporation into cellular DNA. The SDs were 
<20%. (B) BALB/c thymocytes (106/ml) were added to microtiter plates 
coated with titrated amounts of anti-CD3e antibody with 3 x 106 M 
retinol or without, as indicated. Proliferation was measured in hexadupli- 
cats wells on day 3 by [3H]thymidine incorporation assay. (C) BALB/c 
thymocytes (3 x 10~/ml) were activated with anti-CD3e mAb as in A. 
The total number of viable cells was determined by counting trypan blue- 
excluding cells, and those of blast ceUs by counting viable hrge cells in 
six replicate wells. Because of the relatively low cell density required in 
the culture (see A), the numbers reported for blast cells are best estimates. 
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exponential proliferation of blast cells when stimulated with 
anti-CD3e and retinol in combination. Anti-CD3e alone pro- 
duced only a modest and transient blast transformation whereas 
retinol on its own produced no discernible T cell activation 
(Fig. 1 C). When all viable cells were scored, it became evi- 
dent that while the cultures as a whole declined, this decline 
was accelerated by anti-CD3e stimulation (representing per- 
haps the well-known induction of apoptosis). It is surprising 
that retinol by itself appeared to maintain a higher state of 
viability than anti-CD3e "only" stimulation, or omission of 
test reagents altogether. This rescue effect will have to be 
investigated in detail. The phenotypes of blast cells gener- 
ated in the retinol- and 14HI'R-supported cultures were de- 
termined by flow cytometric immunofluorescence as exclu- 
sively single-positive T cells, with the approximate 70% 
CD4 + and 30% CD8 + cells (data not shown). 
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Figure 2. Dose responses dicited by different retinoids. Purified thymo- 
cytes (5 x 10 s cells/well) were stimulated by TCR crosslinking with im- 
mobilized anti-CD3e antibody (A) or 0.4/~g/ml Con A (B) in serum-free 
ITLB medium. The indicated amounts of retinoids were added either once 
at the beginning of the experiment (lx) or every 12 h thereafter (6x). DNA 
synthesis was measured after 72 h by tritiated thymidine uptake as described. 

The proliferative responses of thymocytes were clearly de- 
pendent on the presence of all-trans retinol added at initia- 
tion of culture. Under these conditions, the optimal retinol 
concentration was between 3 and 1 x 10 -6 M (Fig. 2 A). 
Because retinol decays in serum-flee tissue culture medium 
with an estimated half-life of 24 h (14), we have replenished 
retinol twice daily and have found that with repeated feeding, 
five- to tenfold lower retinol concentrations were sufficient 
to sustain cell proliferation over the 3-d culture period (Fig. 
1 A). We have described that retinol is metabolized by lym- 
phocytes to 14HRR, and have hypothesized that this mole- 
cule serves as an intracellular mediator (15). To test this as- 
sumption in T cells, 14HRR was added instead of retinol 
and dose responses were recorded. A single addition of 14HRR 
given at the start was ineffective, probably because of the brief 
half-life of 14HRR of 4 h (data not shown). However, when 
provided at 12-h intervals, 14HRR was as potent as retinol 
in supporting T cell proliferation with a dose optimum of 
5 x 10 -7 M (Fig. 2 A). Among other retinoids tested, 13- 
cis-retinol (data not shown) and all-trans retinal were equally 
effective as all-trans retinoL However, all-trans retinoic acid 
was completely inactive over a wide dose range tested irrespec- 
tively of how often the cultures were fed. 

The growth kinetics of anti-CD3-activated thymocytes in 
serum-free medium revealed exponential growth over a 4-d 
period (Fig. 3) that was totally dependent on the presence 
of either retinol (3 x 10-6 M) or 14HRR (6 x 10-7 M). 
Human serum (3%) was also capable of supporting exponen- 
tial growth, although in the experiment with 10 s cells per 
well shown in Fig. 3 the proliferative indices were only half 
of those obtained with retinoids. Human serum contains 
retinol at 2 x 10 -6 M. Attempts to remove retinol from 
serum by delipidation and subsequently replenish it were un- 
successful. 
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Figure 3. Growth curves of activated thymocytes with serum-containing 
or serum-free medium, and in the presence or absence of retinoids. Purified 
thymocytes (10 s cells/well) were activated with anti-CD3 antibody in 
ITLB medium with or without retinol (3 x 10-6 M), 14HKR (6 x 
10 -7, added every 12 h) or human serum (3%). DNA synthesis was mea- 
sured daily by a 4-h pulse of tritiated thymidine. SDs were <12%. 
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Figure 4. Retinoids are re- 
quired cofactors for anti-CD3 ac- 
tivated peripheral T lymphocytes. 
Growth curves of lymph node T 
cells depleted of antigen-present- 
ing cells (A) with and without 
10-+ M retinoI at 2 x 105 and 5 
x 104 cells/well. (B) Dose-re- 
sponses elicited by different reti- 
noids in cultures of lymph node 
T cells depleted of antigen-pre- 
senting cells. Also shown are the 
growth curves of CD4 + (C) and 
CD8 + T lymphocytes (D) in the 
presence of either retinol, 
14HRR, human serum, or in 
their absence. T lymphocytes, 
purified as described, 5 x 
104/well, were activated with im- 
mobilized anti-CD3 antibody in 
ITLB medium. The indicated 
amounts of retinoids or human 
serum were added at initiation of 
cultures. Culture medium of 
CD8 + T cells was supplemented 
with II.-2 (2 U/ml). 14HRR was 
added every 12 h. DNA synthesis 
was measured by a 4-h pulse with 
tritiated thymidine. SDs were 
g17%. 

Tab le  1. Growth-stimulating Effect of Retinol on Thymocytes in the Presence of Different Interleukins 

Growth-stimulating effect with or w / o  retinol 

Stimulating agent Dose No retinol 10 +6 M retinol 

U/ml cpm 
[L-1 10 959 + 30 118,924 _+ 3,051 

IL-2 2 458 + 156 77,343 _+ 11,739 

IL-4 5 991 • 105 115,849 _+ 20,630 

IL-6 5 1,005 • 815 130,590 _+ 25,803 

IFN-3, 40 81,876 + 11,868 220,359 _+ 27,726 

TNF-ot 12 464 • 95 122,905 • 11,577 

IL-2 + IL-4 2/5 1,081 _+ 103 103,025 _+ 5,280 

none - 585 _+ 207 79,247 _+ 17,567 

Proliferation of activated thymocytes in response to interleukins in presence and absence of retinol. Purified thymocytes (5 x 105 cells/well) were 
activated with immobilized anti-CD3 antibody in serum-free medium in the presence or absence of interleukins and retinol (3 x 10-6 M). Prolifer- 
ation was assayed after 3 d by tritiated thymidine incorporation. 
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To test whether or not activation through the TCR is 
unique or whether other modes of stimulation lead to prolifer- 
ation sustained by retinol, we have used Con A at the op- 
timal concentration of 0.5/zg/ml in serum-free ITLB medium. 
Thymocyte proliferation was entirely retinol dependent, the 
cultures with 3 • 10 -6 M retinol growing exponentially, 
and those without retinol perishing rapidly (Fig. 2 B). 

Stimulation of Pe@heral Lymphocyte Subsets Is Also Retinol 
Dependent. Because the phenotype analysis had implicated 
mature T cells among the thymocytes responsive to anti-CD3 
activation in the presence of retinoid, we tested whether this 
finding also held true for peripheral T cells. Fig. 4 indicates 
that stimulation of lymph node T cells was dependent on 
the presence of retinol although at high cell density (2 x 
106/ml) the dependence was less pronounced than at low 
density (5 x 10S/ml or below) (Fig. 4 A). The dose-re- 
sponse curves for lymph node T cells were very similar to 
those for thymocytes (compare Figs. 2 and 4 B). Further- 
more, 14HRR is effective over the same dose range as ob- 
served for thymocytes, whereas retinoic acid is nearly inert, 
except for a very modest stimulatory activity elicited at 
10 -5 M concentration. 

Because a proportion of lymph node T cells proliferated 
upon activation by anti-CD3 independently of retinol, we 
tested whether these cells might belong to a particular subset. 
However, when CD4 + and CD8 § subsets were purified by 
negative immunoselection, and tested for proliferation in the 
presence or absence of retinol, they behaved no differently 
from unseparated cells, i.e., each subset responded to the ac- 
tivating signal (anti-CD3 for CD4 + cells; anti-CD3 plus 
Ilo-2 for CD8 + cells) only if retinol or 14HRR were present 
(Fig. 4, C and D). 

Retinot Is Required at Onset of Cuttur~ We have determined 
the kinetics of requirement of retinol by thymocytes and have 
found that the highest responses were elicited when retinol 
was supplied together with the activation signal. When delayed 
by 12 h, retinol still produced a growth supporting effect 
but this trailed behind by a margin of 4:1. A delay of 24 h 
caused complete failure of activation (Fig. 5). 

Retinot Cannot Be Replaced by Interleukins. We have inves- 
tigated whether lymphokines or cytokines known to impact 
on T cell activation can substitute for retinol or modulate 
its effect in anti-CD3-activated thymocytes. None of the four 
interleukins, IL-1, -2, -4, or -6, was capable of overcoming 
the requirement for retinol. However, among cytokines, 
interferon-7 can sustain thymocyte proliferation in the ab- 
sence of retinol, whereas TNF-c~ does not. When testing 
for synergy between retinol and lymphokines, we found all 
except II.-2 to moderately enhance proliferation of thymo- 
cytes. Interferon- 7 showed a clear additive effect with retinol 
(Table 1). 

Discussion 

Our results indicate that retinoids play a key role in the 
activation of murine T cells. Using minimal culture medium 
consisting of RPMI 1640 supplemented with insulin, trans- 

ferrin, linoleic acid, delipidated serum albumin and all-tram 
retinol, activation of thymic and lymph node T cells is highly 
effective, whether these cells are stimulated by TCR cross- 
linking or unphysiologically by the lectin Con A. Retinol 
is not absolutely required because proliferation is initiated 
in its absence when the anti-CD3 density is very high, but 
even then proliferation reaches only one quarter the level of 
comparable cultures with retinol (Fig. 1 B). Thus it appears 
that a very strong TCR signal suffices to activate some T 
cells whereas retinol facilitates the activation of a much larger 
population. Retinol is needed at the initiation of culture and 
cannot be withheld for longer than a few hours without loss 
of proliferation capacity (Fig. 5). It is unclear from present 
experiments whether once activated, continued proliferation 
of normal T cells is also critically dependent on retinol in 
the culture medium. This issue is under investigation. 13-cis- 
retinol and retinal but not all-trans retinoic acid can substi- 
tute for retinol. A new retinoid, 14HRR recently discovered 
by us (15) was also capable of supporting activation and sus- 
taining proliferation ofT cells, provided that it was replenished 
twice daily to compensate for its rapid decay. Our experi- 
ments do not distinguish between defined stages in the acti- 
vation process of resting T cells beyond a broad requirement 
during early and late events. The impact on early events is 
implied by the observation that a 12-h delay in retinol addi- 
tion leads to stagnation, whereas the requirement for late events 
follows from the observation that a single addition of 14HRR 
does not enable sustained proliferation. Although retinol ap- 
pears to be an important cofactor, its presence may not be 
absolutely required in situations where potent alternate second 
signals are given. For instance, interferon- 7 proved quite 
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Figure 5. Retinol is required at the time of activation. Thymocytes (5 
x 104/well) were activated by immobilized anti-CD3 mAb in medium 
ITLB. Retinol (2 x 10 -6 M) was added at initiation of culture, or delayed 
by 12 and 24 h, respectively, or omitted altogether, pH]thymidine pulses 
of 4 h were used to measure DNA synthesis of hexaduplicate wells. (SDs 
were ~20%). 

114 l~tinoids in T Cell Activation 



efficient in anti-CD3-mediated activation in the absence of 
retinol (Table 1). 

Retinol, an essential vitamin, circulates in blood as a stable 
complex with retinol-binding protein (RBP) and transthyretin 
(TTR) (23). Its concentration in plasma is closely regulated 
at 1-2 x 10 -6 M, whereas intracellular concentrations vary 
between tissues and appear to depend on the extant concen- 
tration of cellular retinol-binding protein (CRBP) (24). Be- 
cause the tissue distribution of CRBP is nearly universal (25), 
it is inferred that retinol is present ubiquitously as well (26). 
A general physiological purpose of retinol itself has not been 
discerned, but there is agreement that retinol is used as a meta- 
bolic precursor of other retinoids, including ll-c/s-retinal func- 
tioning as the photoreceptor in vision (27), all-tram retinoic 
acid which has been implicated in differentiation (28) and 
morphogenesis (29), and 9-c/s retinoic acid that has been found 
to activate the R X R  receptor (30, 31). 

Pursuing the hypothesis that retinol serves as a precursor 
of intracellular retinoid mediators, we have analyzed the meta- 
bolic products of retinol in B lymphocytes in previous studies 
(14, 15). B lymphocytes did not produce retinoic acids, but 
they synthesized a new class of retinoids, the retro-retinoids, 
hitherto seen in nature only in the form of anhydro-retinol 
(32). Retro-retinoids are characterized by a completely planar 
ring-to-tail configuration, rigidly enforced by the rearrange- 
ment of the carbon double bond system so as to fix the six- 
membered ring by a double bond to the polyene tail. 14- 
hydroxy-retro-retinol is the first naturally occurring retro- 
retinoid to be discovered in mammalian cells, and is 20-40 
times more potent on a concentration basis in preventing 
necrotic cell death in B lymphocytes than its parent mole- 
cule, retinol. 

Our results in this study show that retinol is an essential 
component in serum-free medium, without which T ceils 
can be activated only superficially and T cell proliferation does 
not proceed. Serum is a customary supplement of culture media 
used for in vitro experimentation in cellular immunology, 
and the retinol herein might be part of the secret of why 
it is such an effective ingredient in growth medium. As im- 
plied by our results, however, components of serum other 
than retinol, albumin (as a transport protein of fatty acids), 
transferrin (to regulate iron metabolism), and insulin may 
not be needed for lymphocyte cultures. Indeed, the advan- 
tage of avoiding unknown influences by hormones and growth 
factors (notably PDGF) forms a compelling reason for ex- 
perimentation in defined serum-free medium as discussed in 
detail by Daynes et al. (6). 

In the serum-free medium composition used here, retinol 
is not protected by its physiological serum carrier proteins, 
RBP and TTR,  is therefore labile, and decays with a half-life 
of <24 h in cell culture (14). The optimally effective dose 
of retinol is 2 x 10-6 M, when given once in a 3-d cul- 
ture, or 2 x 10-7 M when provided at 12-h intervals. This 
dose range corresponds to the concentration of retinol in 
normal sera, i.e., 1-2 x 10 -4 M. 

The question of whether retinol mediates its effect on T 
cells through its metabolic product, 14HRR, cannot be an- 

swered definitely by the experiments shown in this study, 
but the arguments that follow support this mechanisms. First, 
14HRR is capable of supporting T cell activation and prolifer- 
ation in the absence of any extraneous source ofretinol. Second, 
the dose-response curves for retinol and 14HRR in T cells 
are very similar, a finding of some concern, because a puta- 
tive downstream mediator (i.e., 14HRR) might have been 
expected to be active at lower concentrations than its precursor. 
However, 14HRR is intrinsically a much more labile mole- 
cule than retinol. Previous analyses with B lymphocytes have 
demonstrated activity for 14HRR at 5 x 10 -9 M concen- 
tration compared with 2 x 10 -7 M for retinol, a 40-fold 
difference (15). Why T cells require higher concentrations 
of 14HRR is unclear. Third, 14HRR is a metabolic product 
of retinol on the basis of isotope-labeling experiments and 
because of the fact that 14HRR is an optically active com- 
pound, and therefore enzymatically derived (15). Fourth, 
14HRR (in contrast to retinal) does not revert to retinol (our 
unpublished observations). Fifth, it is noteworthy that T lym- 
phocytes neither respond to externally provided retinoic acid 
nor synthesize appreciable amounts of it 0. Buck and U. H~m- 
merling, unpublished results). Thus, 14HRR does not ap- 
pear to be an intermediary compound in retinoic acid syn- 
thesis, an unlikely possibility on structural considerations, 
anyway. 

Although these considerations leave unanswered the ques- 
tion whether 14HRR might be the intracellular mediator 
itself, they strongly suggest a regulatory retinol pathway dis- 
tinct from that of retinoic acid observed in nonlymphoid cells. 
Retinoic acid has frequently been referred to as the active 
mediator of retinol effects, but our findings suggest alterna- 
tive mediators and pathways. Having dismissed retinoic acid 
as an actual mediator in lymphocytes, it might be useful to 
recall the mechanism of retinoic acid action as a possible 
analogy by which 14HRR (or its active derivative) might 
function. Retinoic acid appears to be synthesized locally by 
unspecified regulatory cells and to pass into target cells where 
it is bound by a class of specific cytoplasmic retinoic acid 
binding proteins. The function of these cytoplasmic com- 
plexes is unknown. Retinoic acid then translocates to the nu- 
cleus and binds to one of three known specific nuclear receptor 
proteins, RAR-o~, -3 or -y (33-36). Binding of the ligand, 
all-trans retinoic acid or 9-cis retinoic acid confers regulatory 
changes to the transcription of the respective gene(s) that 
bind PAR.  The same principle governs gene activation by 
interaction of 9-c/s retinoic acid with RXR (30, 31). Moreover, 
ligand-assisted transcriptional regulation is also the mecha- 
nism by which steroids function. Indeed, because retinoids 
and steroids are biochemically related as members of the same 
isoprenoid superfamily, it becomes increasingly clear that a 
large system of ligands has evolved from this chemical family 
to fulfill the demands of differential gene usage in complex 
organisms (37). The discovery of a parallel large family of 
genetically homologous and structurally related nuclear 
receptors emphasizes this point (38). By analogy, 14HRR 
might also be involved in ligand-assisted transcription. 
Whereas we have no direct evidence for this, in work to be 
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published elsewhere, we have observed that 14HKK facili- 
tates the expression of immediate early genes in fibroblasts. 
If substantiated for T cells, this finding would handsomely 
explain the requirement for retinoids in T cell activation. 

Throughout our work we have been concerned that our 
results might violate the precept of dual signaling in T cell 
activation (39, and for review see reference 40). According 
to this hypothesis, TCK occupancy must be accompanied by 
a second signal emanating under physiological conditions from 
an as yet undefined accessory cell/T cell interaction. The 
B7/CD28 pair of intereaction molecules might fulfill that 
function (41). Our findings, however, imply that the acces- 
sory signal, regardless of whether this is given by B7 or 
through another mechanism, is not obligatory because we 
obtained maximal activation of thymocytes and T cells in 
the absence of accessory cells by immobilized anti-CD3e mAb 
or Con A alone. This finding runs counter to expectation, 
and must be ascribed to the unusual culture conditions em- 
ployed by us, notably the addition of the retinol cofactor. 
In commonly used FCS-containing medium we find indeed 
no activation in the absence of APC, whether or not addi- 
tional retinol is supplied. The dramatic difference in T cell 
stimulation in serum-free ITLB medium supplemented with 
retinol implies that FCS imparts inhibitory signals to T cells 
as suggested by Daynes et al. (6). On the other hand, we 
have not used protein-free conditions and cannot rule out 
the possibility that transferrin or insulin impart to T cells 
mitogenic signals that mimic a requisite secondary signal. 
The important question in our continuing investigation is 
now to determine how retinol and its metabolic product, 

14HRR, are to be integrated into the intracellular signaling 
events alongside the other known biochemical consequences 
of TCK triggering: IP3 and DAG production. 

We have attempted to determine whether retinol is required 
during the activation phase, Go to Gt, during the progres- 
sion through S phase, or during both phases. Our results 
support the notion that retinol is needed for initial activa- 
tion, because a delay in addition of retinol after the TCK 
signal was given caused a marked decrease in proliferation. 
The answer to the second question is less clear as retinol, 
once given to cells, cannot easily be removed by washing be- 
cause of its lipid nature. However, a single dose of 14HRR 
given at initiation of culture, and decaying with a half-life 
of"o4 h, was insufficient to drive T cell proliferation, speaking 
for a continuous requirement of retinol also for transition 
to S phase. Supporting this notion is also our published record 
concerning continuously growing lymphoid tissue culture 
lines that are dependent on retinol (9). 

To complement the study of activation requirements in 
serum-free medium we have inquired into the role of exoge- 
nous lympho- and cytokines. The salient points of these ex- 
periments are that none of the interleukins tested (IL-1, -2, 
-4, and -6) nor TNF-ol are substitutes for retinol. They are 
in agreement with the assumption that retinol needs to be 
physically present as a source for further metabolic mod- 
ifications. However, this argument is partly negated by the 
observation that IFN-'y can circumvent the retinol require- 
ment and initiate durable proliferation in the absence of retinol 
or 14HKK, whereas strong additive effects were seen when 
retinoids were present simultaneously with IFN-'t. 
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