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Summ~ary 
During human immunodeficiency virus (HIV) infection there is a profound and selective decrease 
in the CD4 + population of T lymphocytes. The mechanism of this depletion is not understood, 
as only a small fraction of all CD4 + cells appear to be productively infected with HIV-1 in 
seropositive individuals. In the present study, crosslinking of bound gp120 on human CD4 + 
T cells followed by signaling through the T cell receptor for antigen was found to result in 
activation-dependent cell death by a form of cell suicide termed apoptosis, or programmed cell 
death. The data indicate that even picomolar concentrations of gp120 prime T cells for activation- 
induced cell death, suggesting a mechanism for CD4 + T cell depletion in acquired immune 
deficiency syndrome (AIDS), particularly in the face of concurrent infection and antigenic challenge 
with other organisms. These results also provide an explanation for the enhancement of infection 
by certain antibodies against HIV, and for the paradox that HIV appears to cause AIDS after 
the onset of antiviral immunity. 

T he immunodeficiency that defines AIDS is due primarily 
to a progressive decline in the number and function of 

CD4 + T cells. The mechanism of this decline is debated, 
though lyric infection of cells targeted by interaction of CD4 
with the envelope glycoprotein of the HIV virion, gp120, 
is an obvious model (1-4), and recent data suggest an apop- 
totic mechanism of cell death after HIV infection (5). How- 
ever, previous studies have found that only 1 in 1-10 x 104 
PBMC actively express HIV-1 in patients with AIDS (6-10), 
and immune dysfunction is seen early in infection, before a 
significant proportion of CD4 + cells has been eliminated 
(11-15). Thus, it is likely that mechanisms other than direct 
viral destruction contribute to CD4 + T cell loss and to the 
anergy associated with CD4 + T cell-dependent immune re- 
sponses. 

Mouse splenic T cells pretreated with anti-CD4 antibodies 
die by apoptosis when stimulated through the oL/~ TCR (16). 
Apoptosis is an active form of physiologic cell death, requiring 
RNA and protein synthesis, which is characterized by the 
activation of endogenous endonucleases that cleave chromatin 
DNA between nucleosomes (17, 18). Here we report that 
crosslinking of gp120 on human CD4 + T cells followed by 

signaling through the TCR results in activation-induced cell 
death. This cell death has the characteristic features of apopto- 
sis, including the histologic changes of nuclear and cytoplasmic 
condensation and DNA fragmentation into nucleosome-sized 
multimers of 200 bp. Our data provide a mechanism for the 
recent observation that CD4 + T cells from HIV-infected in- 
dividuals are primed in vivo for suicide by apoptosis, upon 
TCR activation by both superantigen and MHC class II-re- 
stricted antigens (19). 

Materials and Methods 
lsola~'on ofCD4 + T Cells. Human T ceils were separated from 

Ficoll-Hypaque-isolated PBMC by rosetting with 2-aminoethyl- 
isothio-uronium bromide hydrobromide (AET)-treated SRBC, as 
described (20). CD4 + calls were isolated by incubation of the 
rosetted cells with affinity-purified anti-CD8 antibody (OKTS, 20 
#g/ml, CRL 8014; American Type Culture Collection, Rockville, 
MD), followed by negative selection on goat anti-mouse (GAM) 1 
Ig-coated panning plates (100 #g/ml; Jackson Immunoresearch, 
Westgrove, PA) (21). Isolated cells were ,,090% CD4 + by flow 

1 Abbreviation used in this paper: GAM, goat anti-mouse. 
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cytometric analysis (89.52 • 1.65%, n = 5). The 10% non- 
CD4 § cells were shown by FACS | analysis (Becton Dickinson & 
Co., Mountain View, CA) to be ,o6% CD8 + T cells, 2% NK 
ceils, and 2% B cells. Results were similar using CD4 § T cells 
isolated entirely by negative selection using monosized super- 
paramagnetic beads with covalently bound sheep anti-mouse Ig 
(Dynal Inc., Great Neck, NY), to bind cells incubated with a cocktail 
of mAbs directed against CD8 (OKT8, 20/~g/ml), Ia (HB 55, 
20 #g/ml), and CD16 (3G8, 20 #g/ml; the generous gift of Dr. 
J. C. Unkeless, Mount Sinai School of Medicine, New York) (data 
not shown). Similar results were also obtained using antigen-specific 
CD4 + T cell clones (data not shown), suggesting that the con- 
taminating non-CD4 § cells are not required for the induction of 
apoptosis. 

Priming and Induction of Apoptosis. CD4 + T lymphocytes (4 x 
106 cellsAample) were isolated, as described above, and irradiated 
with 500 rad )'-irradiation or incubated on ice with or without 
the primary antibodies anti-CD4 (Leu-3a, 20/zg/ml; the generous 
gift of the Sloan-Kettering Institute, New York) or the HIV sur- 
face glycoprotein, gpl20, in a balanced salts solution. Two gpl20 
preparations were tested in separate experiments. Recombinant 
gpl20 (rgpl20sF2, 40 #g/ml; references 22-24) crosslinked with 
polyclonal anti-gpl20 (anti-env 2-3sF2, 40 #g/ml; reference 25) and 
recombinant gpl20-HSV chimeric protein (gp120-HSV; 10 #g/ml; 
reference 26) crosslinked with anti-gpl20-HSV mAb (5B6, 10 
/xg/ml; reference 26) were bound at uniform, high-density levels, 
comparable to the binding of the ligand, CD4, by Leu-3a, an anti- 
body that binds the same epitope as gpl20 (27). Crosslinking of 
the mAbs Leu-3a and 5B6 was achieved using GAMIg (100 #g/ml) 
incubated at 37~ for 30 min. Though the priming signal through 
CD4 does not decay for at least 8 h (data not shown), in all experi- 
ments shown, the anti-TCK antibody (BMA-031, 100 #g/ml; ref- 
erence 28) was added immediately after CD4 crosslinking and was 
incubated with cells on ice for 45 min. To allow crosslinking and, 
hence, activation through the TCK, cells were incubated in IMDM 
with 5% inactivated FCS in 24-well plates (106 cells in 1.5 ml per 
well; Costar, Cambridge, MA) precoated with GAMIg. Unless 
otherwise noted, cells were harvested and analyzed after 72 h of 
incubation. Long-term culture of human T cells was required to 
see optimal induction of double-stranded DNA breaks to produce 
the ladder characteristic of nucleosome-sized DNA fragments (data 
not shown; and Fig. 3). Cell aliquots were stained with 0.2% trypan 
blue and counted. 500 cells were counted per sample per time point. 

DNA Fragmentation. Three methods were adopted for anal- 
ysis of the DNA laddering characteristic of apoptotic cell death: 
one analyzing low molecular weight DNA (Fig. 1), a second 
analyzing total DNA by ethidium bromide staining of DNA sepa- 
rated by agarose gel electrophoresis (Figs. 2 and 4, top), and a third 
analyzing total DNA by Southern blotting after size separation 
(Figs. 2 and 4, bottom). Isolated low molecular weight DNA frag- 
mentation was determined as previously described (18) with minor 
modifications. Briefly, the cell pellet was lysed in 0.5 ml hypotonic 
buffer, pH 8.0 (5 mM Tris-HCL, 20 mM EDTA, 0.5% Triton 
X-100), and centrifuged at 27,000 g for 10 min. Fragmented DNA 
in the supernatant was precipitated overnight at -20~ in 650 #1 
isopropanol and 100 #15 M sodium chloride. After centrifugation 
at 27,000 g for 15 min, the precipitates were collected, air dried, 
and resuspended in 10 mM "Iris, 1 mM EDTA, pH 7.4, 0.5% SDS, 
and kept at 37~ for 24 h. 8 #1 of 5 mg/ml KNase A DNase-free 
was added to each sample and incubated at 37~ for 30 min. Elec- 
trophoresis was carried out in a 0.75% agarose gel for 3 h at 90 
V. DNA fragmentation in total DNA was determined as previ- 
ously described (29). Briefly, cells were lysed in 20/zl of 10 mM 

EDTA, 50 mM Tris-HC1 (pH 8.0) containing 0.5 mg/ml proteinase 
K, and incubated at 50~ for 1 h. 10 #10.5 mg/ml KNase A was 
then added to each sample and incubated at 50~ for 1 h. Samples 
were heated to 65~ for 10 min before loading onto dry wells of 
a 2% agarose gel. Total DNA was analyzed by Southern blotting 
after size separation on agarose gels (30, 31). The gel was trans- 
ferred to nitrocellulose in 0.4 M NaOH in order to hydrolyze any 
contaminating KNA. The membrane-bound DNA was probed with 
32p-labeled human placental DNA. 

Quantitation of DNA Fragmentation. DNA fragmentation was 
quantitated by a modification (18) of the method originally described 
by Wylhe (17). This method has been shown to be highly specific 
for DNA (e.g., with 1,000-fold lower sensitivity for KNA) and 
sensitive to microgram quantities of DNA (32). Briefly, cell pellets 
were lysed with 0.5 ml hypotonic buffer (5 mM Tris-HC1, 20 mM 
EDTA, 0.5% Triton X-100, pH 8.0). Lysates were kept on ice for 
15 min, then centrifuged at 27,000 g to separate intact chromatin 
(pellet) from low molecular weight DNA fragments (supernatant). 
The pellet was resuspended in 0.5 ml hypotonic buffer. Pellet and 
supernatant were separately precipitated overnight at 4~ in 12.5% 
TCA. The precipitates were collected after centrifugation at 27,000 g 
for 15 rain, and resuspended in 480 #1 TCA, followed by hydrol- 
ysis at 90~ for 10 min. DNA in both pellet and supernatant was 
assayed colorimetrically (570 nm) using the diphenylamine (DPA) 
reagent, as previously described (32). 

Results and Discussion 

We first asked if human peripheral T cells undergo apop- 
tosis in response to crosslinking of CD4 followed by activa- 
tion through the TCK. Induction of apoptosis may be demon- 
strated by visualization of nucleosome-sized DNA multimers 
of 180-200 bp to form the characteristic "step ladder" ap- 
pearance after size separation on agarose gels, as seen in 
y-irradiated cells (Fig. 1, lane 6) (16--18). As previously reported 
for murine immature thymocytes (33) and mature splenic T 
cells (16), the culture of human T cells bearing the CD4 an- 
tigen with anti-CD4 antibodies under crosslinking condi- 
tions, in the absence of subsequent stimulation, failed to in- 
duce DNA fragmentation over background levels in isolated 
low molecular weight DNA (Fig. 1, lanes 1 and 2). Cross- 
linking of anti-TCK antibody, or simultaneous exposure to 
anti-TCR and anti-CD4 antibodies, also failed to induce frag- 
mentation over background (Fig. 1, lanes 3 and 4, and Fig. 
2, lane 1), arguing against proliferation-induced lymphokine 
depletion as the mechanism of cell death (34). The bands 
observed at 1.0 and 0.2 kb in Fig. 1 are R N A  species that 
are resistant to RNase under these extraction conditions (see 
legend to Fig. 2). In contrast, when cells were pretreated with 
anti-CD4 antibody under crosslinking conditions and then 
activated by incubation with anti-TCK antibody, DNA frag- 
mentation increased over background, and a nucleosomal pat- 
tern of degradation was seen in isolated low molecular weight 
DNA (Fig. 1, lane 5) (18), and confirmed in analyses of total 
DNA (Fig. 2, lane 2) (29), and by quantitation of DNA frag- 
mentation (Fig. 3 A) (32). This priming for activation-induced 
apoptosis by anti-CD4 antibody may in part explain why these 
antibodies produce antigen-specific and transplantation toler- 
ance in vivo (35). 

We then asked if crosslinking of CD4 by gp120 would 
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Figure 1. Activation-induced apoptosis in human CD4 § peripheral T 
cells after CD4 ligation by anti-CD4 antibody or by gp120. Agarose gel 
electrophoresis of DNA fragments isolated from human CD4 + T cells 
after treatment of the cells with: lane I, untreated; lane 2, anti-CD4 anti- 
body; lane 3, anti-TCK antibody; lane 4, simultaneous anti-CD4 and anti- 
TCK; lane 5, anti-CD4 crosslinked with GAMIg, then incubated with 
anti-TCR; lane 6, 500 tad 3~-irradiation; lane 7, gp120-HSV plus anti- 
gp120-HSV mAb, crosslinked with GAMIg, then incubated with anti- 
TCR; lane 8, gp120-HSV, then simultaneous incubation with anti-TCK 
and crosslinking anti-gp120-HSV. Cells were then cultured for 72 h on 
plates coated with GAMIg. DNA fragments (oligonucleosomal fragments) 
appear as a DNA ladder, with the molecular sizes approximate multiples 
of 200 bp. The bands observed at 1.0 and 0.2 kb are tLNA species that 
are resistant to KNase under these extraction conditions (see legend to 
Fig. 2). Data are representative of four experiments performed using pe- 
ripheral T cells from four different uninfected donors. 

Figure 2. Crosslinking CD4 by anti- 
CD4 antibody primes T cells for acti- 
vation-induced apoptosis. Agarose gel 
electrophoresis of total DNA (top) and 
Southern blotting of the gel, probed 
with 32p-labeled human placental DNA 
(bottom) after treatment of cells with: lane 
I, simultaneous anti-CD4 and anti-TCR; 
lane 2, anti-CD4 crosslinked with GAMIg, 
then incubated with anti-TCR; lane 3, 
500 rad ',/-irradiation. Cells were then cul- 
tured for 72 h on plates coated with 
GAMIg. The bands observed <0.2 kb 
(top, lanes I and 2) are RNA species that 
are resistant to RNase, as suggested by 
the absence of these bands (bottom) after 
Southern blotting under alkaline con- 
ditions. 
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prime T cells for activation-induced apoptosis. Crosslinking 
of recombinant gp120 (22-24) by polyclonal anti-gp120 an- 
tibody (25) did not result in increased DNA fragmentation 
over background levels in analyses of total DNA (Fig. 4, lane 
5). This was confirmed using a second gp120/anti-gp120 prep- 
aration, gp120-HSV crosslinked with anti-gp120-HSV mAb 
(26) (data not shown). Ligation of TCR after binding of 
gp120-HSV to CD4, but before crosslinking with anti-gp120- 
HSV antibody, also failed to induce fragmentation over back- 
ground (Fig. 1, lane 8). In contrast, when cells were pretreated 
with gp120-HSV plus anti-gp120-HSV antibody, under cross- 
linking conditions, and then activated by incubation with 
anti-TCR antibody, DNA fragmentation was increased over 
background, with a nucleosomal pattern of DNA degrada- 
tion seen in isolated low molecular weight DNA (Fig. 1, 
lane 7). The induction of DNA fragmentation was also seen 
with cellular activation through TCR, after pretreatment with 
recombinant gp120 and polyclonal anti-gp120 antibody, in 
analyses of total DNA (Fig. 4, lane 3). 

Apoptosis was confirmed histologically by the character- 
istic and definitive changes of nuclear and cytoplasmic con- 
densation (data not shown) (17). Apoptosis was measured 
quantitatively by assessing the proportion of fragmented DNA 
(Fig. 3) (32). Less than 5% of total DNA was fragmented 
under control conditions, despite prolonged in vitro culture 
(data not shown). Crosslinking of bound gp120 or TCR alone 
did not significantly increase this percentage (Fig. 3 A). In 
contrast, crosslinking of CD4 with gp120, followed by acti- 
vation through the TCR, resulted in DNA fragmentation 
four times that of background levels, a level equivalent to 
that seen after pretreatment with anti-CD4 antibody. 
Significant levels (23.19 _+ 4.02%) of DNA fragmentation 
were seen as early as 12 h after activation in cells primed by 
CD4 ligation, increasing over at least the next 60 h to ,030% 
of total DNA (30.80 + 1.18%) (Fig. 3, B and C). Studies 
have shown that in a single cell the process of DNA frag- 
mentation is all-or-nothing; cells that are half-apoptotic are 
not seen (36). That these apoptotic cells actually go on to 
die was confirmed by trypan blue uptake in gp120-primed 
and irradiated CD4 § peripheral T cells (Fig. 3 C) and in 
gp120-primed antigen-specific CD4 + T cell clones (data not 
shown). Thus, some human peripheral CD4 + T cells 
pretreated with gp120 and anti-gp120 antibody (20-30% 
under these assay conditions) die by apoptosis when activated 
through the TCR. 

Does this in vitro priming for apoptosis by gp120 have 
any in vivo relevance? Recent work of Groux et al. (19) 
describes activation-induced apoptosis of CD4 § T cells from 
HIV-infected asymptomatic individuals. How might priming 
occur in vivo? Though not addressed in this study, recir- 
culating CD4 + T cells could be directly primed and cross- 
linked by gp120 expressed on viral particles or infected cells 
(37). Alternatively, it is possible that circulating gp120 and 
anti-gp120 prime in vivo as they do in vitro. The presence 
of anti-gp120 antibodies in HIV-infected patients has been 
well documented (38-48), as is the formation of a popula- 
tion of antibodies that has a promoting rather than an in- 
hibiting or neutralizing effect on virus pathogenicity, in vitro 
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Figure 3. Quantitation of DNA fragmentation in response to activation through the TCR after ligation of CD4 by gp120. (A) Quantitation of 
fragmented DNA. CD4 + T lymphocytes were isolated from peripheral blood of healthy human donors, as described in Materials and Methods, and 
incubated with: (P~) gp120 plus anti-gp120 antibody; (D) anti-TCR antibody (BMA-031); (ll)  gp120 crosslinked with anti-gp120 antibody, then in- 
cubated with anti-TCR; (g~) anti-CD4 antibody (Leu-3a) crosslinked with GAMIg, then incubated with anti-TCR. Cells were then cultured for 72 h 
on plates coated with GAMIg. DNA fragmentation was quantitated as described in Materials and Methods. Results are shown as percent DNA fragmen- 
tation: DNA~ul~rnatant/DNA,,p~matant + DNApelkt, relative to the irradiated control. Data are expressed as E - U/I  - U, where E = experimental, 
U = untreated, and I = irradiated contro ! (66). Actual values are as follows: untreated, 5.22 _+ 0.67%; gp120 + anti-gpl20, 7.45 _+ 1.24%; anti-TCR, 
7.38 _+ 0.40070; gpl20 + anti-gp120 + anti-TCR, 12.25 _+ 1.21~ anti-CD4 + anti-TCR, 11.43 _+ 0.75070; irradiated, 46.33 _+ 5.8707o. Percent 
DNA fragmentation of the anti-TCR, gpl20-pretreated sample (m) was significantly different from the gpl20 (IRA) and anti-TCR (F'l)-treated samples 
(p = 0.02 and 0.01, respectively, by a univariate repeated measures analysis of variance; reference 67). In addition, percent DNA fragmentation of 
the anti-TCR, gp120-pretreated sample (m) was significantly different from the sum of the gp120 ([~]) and anti-TCR (F'l)-treated samples (p =0.04 
by a paired t test), suggesting that the effect of priming is not merely additive with that of activation. Percent DNA fragmentation of the gp120 
(F~) and anti-TCR (F'l)-treated samples was not significantly different from the untreated sample. (13) Kinetics of DNA fragmentation in response 
to T cell activation after priming by CD4 ligation. CD4 + T lymphocytes were isolated and incubated with anti-TCR antibody (BMA-031) ([-q) or 
with gp120 crosslinked with anti-gpl20 antibody, then incubated with anti-TCR (ll). Data are expressed as in A. Actual values are as follows: 12-h 
incubation: untreated, 2.37 _+ 0.47070; anti-TCR, 3.45 _+ 0.51070; gp120 + anti-gp120 + anti-TCR, 5.48 _+ 0.5407o; irradiated, 15.82 _+ 0.84%. 
24-h incubation: untreated, 2.51 _+ 0.28070; anti-TCR, 3.17 _+ 1.007o; gp120 + anti-gpl20 + anti-TCR, 7.18 _+ 0.51070; irradiated, 19.05 _+ 0.36070. 
72-h incubation: untreated, 6.67 _+ 0.82070; anti-TCR, 8.32 _+ 1.2807o; gp120 + anti-gp120 + anti-TCR, 14.43 _+ 0.28070; irradiated, 32.9 _+ 2.29070. 
(C) Comparison of the kinetics of DNA fragmentation and cell death, as measured by trypan blue uptake, in response to irradiation or to T cell activation 
after priming by CD4 ligation. CD4 + T lymphocytes were isolated and irradiated with 500 rad 'y-irradiation (D), or incubated with anti-TCR anti- 
body (BMA-031) (I-q) or with gpl20 crosslinked with anti-gpl20 antibody, then incubated with anti-TCR (m). Data are expressed relative to the 
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Figure 4. Crosslinking CD4 by HIV gp120 primes T cells for activation- 
induced apoptosis. Agarose gel electrophoresis of total DNA (top) and 
Southern blotting of the gel probed as Fig. 2 (bottom) after treatment of 
cells with: lane 1, untreated; lane 2, anti-TCR; lane 3, gp120 crosslinked 
with polyclonal anti-gp120 antibody, then incubated with anti-TCR; lane 
4, 500 rad 3,-irradiation; lane 5, gp120 crosslinked with polyclonal anti- 
gp120. Cells were then cultured for 72 h on plates coated with GAMIg. 
Though not quantitative, the loading of DNA in all lanes appeared to 
be equivalent, as confirmed by densitometric scanning (data not shown), 
suggesting equivalent cell numbers and recovery of DNA from all samples. 
Data are representative of three experiments performed using peripheral 
T cells from three different uninfected donors. These three donors were 
different from the four used in the experiments detailed in Fig. 1. 

(49-51). Such enhancing antibodies may act in part by cross- 
linking bound gp120 (52, 53), thus priming cells for apop- 
tosis in the presence of an activating antigen or infectious 
agent. There is evidence that gp120 is shed from HW-infected 
cells in vitro (54, 55) and in vivo (56), and, in recent work, 
gp120 has been measured in the blood of patients with AIDS 
at levels of 12-92 ng/ml (57). In the in vitro system reported 
here, as little as 10 ng/ml (10 -9 M) gp120 primed CD4 + 

T cells for activation-induced apoptosis (data not shown). 
This level of gp120 is equal to the dissociation constant of 
the gp120-CD4 interaction (10 -9 M) (14) and represents 
binding of m10% of CD4 on the cell surface. Thus, even 
picomolar concentrations of 81o120 in vivo could prime T 
cells for activation-induced apoptosis. 

One of the major contributing factors to the pathogenicity 
of HIV infection is the ability of the virus to suppress im- 
munologic function (11, 15). This immune suppression renders 
the host susceptible to a myriad of secondary infections, which 
are frequently directly responsible for morbidity and mor- 
tality. The primary mechanism by which HIV compromises 
immunity is by subversion of the immune system so that it 
eliminates CD4 § T cells. Interestingly, this may not be pre- 
dominantly due to direct viral infection, since only m 1 in 
1-10 x 104 PBMC are productively infected in HIV-sero- 
positive individuals (6-10). Alternatively, in vitro systems have 
demonstrated antibody-dependent cell-mediated cytotoxicity 
via recognition of CD4-bound gp120 (58). Similarly, cyto- 
toxic T cells, specific for viral peptides, mediate in vitro elimi- 
nation of cells that have internalized gp120 or virus via CD4 
(59). While these mechanisms may delete CD4 + T cells, it 
has been suggested that they in fact serve to protect against 
viral spread. Here, we have identified a mechanism by which 
"innocent bystander" T cells, bound with circulating or cell 
surface gp120,may self-destruct upon initiation of an appro- 
priate response to the pathogens that coinfect AIDS patients, 
or to the superantigens that may be expressed either by these 
pathogens (60), or by HIV itself (61-63). Our observation 
that this priming for apoptosis requires crosslinking of bound 
gp120 by anti-gp120 antibody may in part explain the paradox 
that HIV appears to cause AIDS after the onset of antiviral 
immunity (64, 65). Though this study does not address the 
question of apoptotic cell death in HIV-infected individuals, 
our observation that even picomolar concentrations of gp120 
prime for activation-induced apoptosis suggests that this mech- 
anism of cell death may be active in vivo. In addition, our 
data provide a mechanism for the recent observation that 
CD4 § T cells from HIVoinfected asymptomatic individuals 
and AIDS patients are primed, in vivo, for suicide by apop- 
tosis, upon TCR activation by both superantigen and MHC 
class II-restricted antigen (19). This work suggests that de- 
letion of CD4 § T cells upon activation may contribute to 
the progressive depletion of CD4 + T cells in AIDS. Impor- 
tantly, the active nature of the apoptotic process suggests that 
this mechanism of cell death in AIDS may potentially be sup- 
pressed. 

irradiated control values after 72 h of incubation (E - U/Iy2 - U) in order to show the relative increases in DNA fragmentation and trypan blue 
uptake with time. Data for percent DNA fragmentation were as noted in B. Data for trypan blue uptake: 12-h incubation: untreated, 5.81 _+ 0.06%; 
anti-TCK, 7.19 _+ 0.72%; gp120 + anti-gp120 + anti-TCR, 12.84 _+ 1.17%; irradiated, 18.70 _+ 2.17%. 24-h incubation: untreated, 9.07 _+ 
0.73%; anti-TCR, 9.59 _+ 1.12%; gp120 + anti-gp120 + anti-TCR, 15.15 + 1.66%; irradiated, 25.51 _+ 1.05%. 72-h incubation: untreated, 
13.73 + 1.78%; anti-TCR, 14.3 _+ 1.36%; gp120 + anti-gp120 + anti-TCR, 24.39 _+ 2.67%; irradiated, 46.55 • 2.51%. Levels of DNA fragmenta- 
tion and trypan blue uptake at 0 h (i.e., immediately after CD4 + T cell isolation) were 1.19 • 0.14% and 4.84 • 0.07%, respectively. Data shown 
in A are from replicates of four independent experiments using four different uninfected donors. Data shown in B and C are representative of three 
independent experiments. 
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