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Abstract. The length and spatial organization of thin 
filaments in skeletal muscle sarcomeres are precisely 
maintained and are essential for efficient muscle con- 
traction. While the major structural components of 
skeletal muscle sarcomeres have been well character- 
ized, the mechanisms that regulate thin filament length 
and spatial organization are not well understood. 
Tropomodulin is a new, 40.6-kD tropomyosin-binding 
protein from the human erythrocyte membrane skele- 
ton that binds to one end of erythrocyte tropomyosin 
and blocks head-to-tail association of tropomyosin 
molecules along actin filaments. Here we show that rat 
psoas skeletal muscle contains tropomodulin based on 
immunoreactivity, identical apparent mobility on SDS 
gels, and ability to bind muscle tropomyosin. Results 
from immunofluorescence labeling of isolated 
myofibrils at resting and stretched lengths using anti- 
erythrocyte tropomodulin antibodies indicate that 

tropomodulin is localized at or near the free (pointed) 
ends of the thin filaments; this localization is not de- 
pendent on the presence of myosin thick filaments. Im- 
munoblotting of supernatants and pellets obtained after 
extraction of myosin from myofibrils also indicates that 
tropomodulin remains associated with the thin illa- 
ments. 1.2-1.6 copies of muscle tropomodutin are 
present per thin filament in myofibrils, supporting the 
possibility that one or two tropomodulin molecules 
may be associated with the two terminal tropomyosin 
molecules at the pointed end of each thin filament. Al- 
though a number of proteins are associated with the 
barbed ends of the thin filaments at the Z disc, 
tropomodulin is the first protein to be specifically lo- 
cated at or near the pointed ends of the thin filaments. 
We propose that tropomodulin may cap the tropomyo- 
sin polymers at the pointed end of the thin filament 
and play a role in regulating thin filament length. 

TIN filament length and spatial organization in skeletal 
muscle sarcomeres are precisely regulated and are 
essential for efficient contraction (Huxley, 1960). 

The actin filaments (thin filaments) are all ,,ol.0/zm long and 
are polarized with their fast growing (barbed) ends located 
at the Z disc and their slow growing (pointed) ends at the A 
band, where they interdigitate with myosin thick filaments. 
At the Z disc, the thin filaments are crosslinked and anchored 
by tx-actinin into regular arrays (I-Z-I brushes) extending 
with opposite polarity away from each side of the Z disc. 
Rodlike tropomyosin molecules are associated head-to-tail 
along each thin filament, forming two polymers, one on each 
side of the actin filament. Both the barbed and pointed ends 
of thin filaments in skeletal muscle appear to be capped, 
based on the inability of exogenous actin to elongate from 
the filaments at either end when added to isolated myofibril 
preparations (Sanger et al., 1984; Ishiwata and Funatsu, 
1985; Peng and Fischman, 1991). Elongation of actin fila- 
ments at the barbed end is thought to be blocked by Cap Z, 
a high affinity barbed end capping protein from skeletal mus- 
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cle that is localized at the Z disc (Casella et al., 1987). 
B-Actinin once appeared to be a good candidate for a pointed 
end capping protein in skeletal muscle, but its sequence was 
recently shown to be identical to that of Cap Z (Maruyama 
et al., 1990). In nonmuscle cells, acumentin was originally 
thought to be a pointed end capping protein (Southwick and 
Hartwig, 1982), but was determined later to be identical 
to human L-plastin (Southwick, E S., personal communica- 
tion), a protein homologous to the F-actin bundling protein, 
fimbrin (de Arruda et al., 1990). Thus, the identity of the 
protein(s) responsible for preventing actin filament elonga- 
tion from the pointed end remains unknown. 

The length and spatial organization of actin filaments are 
also precisely regulated in the erythrocyte membrane skele- 
ton, where they are all 33-37 nm long and are crosslinked 
by long, flexible spectrin molecules into a hexagonal network 
on the cytoplasmic surface of the plasma membrane (Byers 
and Branton, 1985; Shen et al., 1986; for a review see Ben- 
nett, 1989). Each short actin filament is thought to be as- 
sociated with two erythrocyte tropomyosin molecules 
(33-34 nm long), one in each groove of the filament (Fowler 
and Bennett, 1984; Fowler, 1990). The close similarity in 
length between erythrocyte tropomyosin and erythrocyte ac- 
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tin filaments has led to speculations that tropomyosin both 
stabilizes the short actin filaments (Fowler and Bennett, 
1984) and determines their lengths (Shen et al., 1986). How- 
ever, purified tropomyosins from both muscle and nonmus- 
cle cells stabilize actin filaments and reduce actin depoly- 
merization, but do not block actin filament elongation (Weg- 
ner, 1982; Lal and Korn, 1986; Hitchcock-DeGregori et al., 
1988; Broschat et al., 1989; Broschat, 1990). 

Tropomodulin is a recently described 40.6-kD tropomyo- 
sin-binding protein from the human erythrocyte membrane 
skeleton that exhibits isoform-specific binding to one of the 
ends of erythrocyte tropomyosin and blocks tropomyosin 
head-to-tail association along the actin filament (Fowler, 
1987, 1990; Sussman and Fowler, 1992). The cDNA-derived 
amino acid sequence of tropomodulin has no significant 
homology to any other proteins, including tropomyosin- 
binding proteins such as actin, caldesmon, troponin I, and 
troponin T (Sung et al., 1992). Tropomodulin is present in 
the erythrocyte membrane skeleton in approximately equi- 
molar amounts with respect to tropomyosin (tropomodu- 
lin/tropomyosin = 1.4:1; Fowler, V. M., unpublished 
data) ~. Since each short actin filament is only just as long 
as a tropomyosin molecule, two tropomodulin molecules 
would be expected to be situated at one end of each actin fila- 
ment, assuming that tropomodulin binds to the end of 
tropomyosin in situ as it does in vitro (Fowler, 1990). How- 
ever, the short length of the erythrocyte actin filaments and 
their isotropic orientation in the spectrin-actin network makes 
it difficult to test this prediction. In contrast, the length and 
parallel orientation of the thin filaments in skeletal muscle 
provide an ideal system to determine whether tropomodulin 
is located at one or the other end of a tropomyosin-coated 
actin filament. 

Here we show that tropomodulin is present in rat psoas 
skeletal muscle and is located at or near the pointed ends of 
the thin filaments. Between 1.2 and 1.6 copies of tropomodu- 
lin are present per thin filament in myofibrils, consistent with 
the possibility that one or two tropomodulin molecules are 
associated with the two terminal tropomyosin molecules at 
the pointed end of each thin filament. We propose that 
tropomodulin plays a role in limiting thin filament length by 
blocking tropomyosin head-to-tail association at the pointed 
end, thus preventing binding of additional tropomyosin mol- 
ecules. Alternatively, tropomodulin may play a role in cross- 
linking and organizing the thin filament lattice at the pointed 
end. 

Materials and Methods 

Isolation and Extraction of Myofibrils 
Fresh psoas major muscles were dissected from adult rats, held at resting 
length by tying to the plunger of a 5-cm s plastic syringe, and incubaWxl 
overnight at 0*C in an EGTA-Ringer's solution as described by Knight and 
Trinick (1982), except for the addition of 2.5 mM diisopropylfluorophos- 
phate to inhibit proteases. After mincing and removal of tendons and con- 
nective tissue, the muscle was homogenized with a Polytron at medium 
speed for 1-2 rain in 10 vol (vol/wet wt) of a rigor buffer (Knight and Tri- 
nick, 1982) containing 1 mM DTT, 100 #g/ml each of tosyl-L-lysyl chlo- 

1. The ratio of tropomodulin to tropomyosin in erythrocyte membranes, 
prepared by hemolysis in the presence of Mg 2+ (Fowler and Bennett, 
1984), was determined by quantitative immunoblotting using purified 
erythrocyte tropomyosin and tropomodulin to construct standard curves. 

romethyl ketone and PMSE 5 ~g/mi each of leupeptin and pepstatin A, and 
1 #g/ml aprotinin. The extent of homogenization was monitored by phase 
microscopy. Myofibrils were collected by low speed centrifugefion at 1,500 g 
(4"C) and then washed four times in 10 vol of ice-cold rigor buffer to remove 
trapped cytosol and muscle membranes, each time centrifuging at 1,500 g. 
For biochemical experiments, myofibrils were stored frozen at -80"C in 
small aliquots. 

To extract myosin, myofibril pellets were resuspended by sonication with 
a microprobe sonicator (Heat Systems Incorporated, Farmingdale, NY) in 
10 vol of 0.5 M KCI buffer (Ishiwata and Funatsu, 1985) with the protease 
inhibitors listed above and incubated for 10 min at 0*C. The myosin- 
extracted myofibrils (I-Z-I brushes) were then collected by centrifugation 
for 10 rain at 15,000 g in a microfuge (Eppendorf Inc., Fremont, CA) at 
40C. The 15,000 g supernatant was then recentrifuged at 100,000 g in a ro- 
tor (model TLA100.3; Beckman Instruments, Inc., Fullerton, CA) at 4~ 
to pellet thin filaments that had broken off and separated from the I-Z-I 
brushes. Pellets were solubilized directly in SDS-gel sample buffer by soni- 
cation and boiling, and supernatants were precipitated with ice-cold, 25 % 
TCA to remove salts before solubilizing in SDS-sample buffer and boiling 
(Fowler and Bennett, 1984). 

Antibodies 
Antibodies to human erythrocyte tropomodulin were generated in rabbits 
(Fowler, 1990) and affinity-purified over a column of purified erythrocyte 
tropomodulin coupled to cyanogen-bromide-activated Sepharose (el) 4B 
(Pharmacia LKB Biotechnology Inc., Piscataway, NJ) by standard proce- 
dures, eluting with 0.2 M glycine-HC1, pH 2.8. Antibodies specific for two 
15 amino acid tropomodulin peptides (amino acids 35-49 and amino acids 
297-311) were generated in rabbits and affinity-purified over an erythrocyte 
tropmodulin-Sepharose column as described (Sussman et al., 1990; Sung 
et al., 1992). Nonimmune antibody was purified from nonimmune serum 
by affinity chromatography on protein A-agarose (Pierce Chemical Co., 
Rockford, IL). A monoclonal antibody to the TI2 epitope of titin was kindly 
provided by Dr. Dieter Ffirst, Max-Planck Institute for Biophysical Chemis- 
try, Gtttingen, FRG) (Fiirst et al., 1988). 

Iramunoprecipitation and Electrophoresis Procedures 
Myofibril pellets were resuspended by sonication in 10 vol of ice-cold im- 
munoprecipitation buffer containing 0.3 M NaCl, 20 mM NaF, l0 mM so- 
dium pyrophosphate, 5 mM EGTA, 2 mM EDTA, l0 mM sodium phos- 
phate, pH 7.5, and the protease inhibitors listed above, and then treated with 
2.5 mM diisopropylfluorophosphate for 30 min at 0~ An equal volume 
of the same buffer containing 0.8% SDS was added, samples were boiled 
for 5 min and cooled to room temperature, and Triton X-100 was added 
to a final concentration of 2 %. Insoluble material was removed by centri- 
fugation for 20 min at 100,000 g (4~ and the supernatant was added to 
protein A-Trisacryl beads (Pierce Chemical Co.) to which afffinity-purified 
anti-erythrocyte tropomodulin antibodies or nonimmune IgG had been 
preadsorbed. In a titration experiment, we determined that '~50 #g of anti- 
erythrocyte tropomodulin IgG/mg myofibrils was required to immuno- 
precipitate all of the tropomodulin. This was determined by sequential 
immunoprecipitations followed by SDS-gel electrophoresis and silver stain- 
ing of the immunoprecipitates and by immunoblot analysis of the extracts 
before and after incubation with antibody (data not shown). After incuba- 
tion overnight at 4~ on an end-over-end rotator, beads were washed four 
times in immunoprecipitation buffer containing 0.4% SDS, 2.0% Triton 
X-100, and 1 mg/ml BSA (Fraction V [ICN Biomedicals, Costa Mesa, CA]), 
one time in the same solution without the BSA, two times in 50 mM Tris- 
HCI, pH 7.5, and then solubilized in SDS-sample buffer (Laemmli, 1970). 

Samples were electrophoresed on 7.5-15% linear gradient SDS-POly- 
acrylamide gels with a 5% stacking gel (Laemmli, 1970), except that the 
pH of the gradient gel was 8.6 (Fowler, 1990). After electrophoresis, gels 
were stained for protein with Coomassie brilliant blue R250 or with silver 
(Rabillond et al., 1988), depending on the amount of protein that was immu- 
noprecipitated. Molecular weight markers were from Bio-Rad Laboratories 
(Richmond, CA), with the addition of actin (Mr 42,000). Electrophoretic 
transfer of polypeptides from gels to nitrocellulose paper (0.2 /xm; 
Schleicher & Schuell, Inc., Keene, NH) was as previously described 
(Fowler, 1987). Transfers were labeled with affinity-purified antibodies 
(2-4 #g/ml) followed by 125I-protein A as described (Fowler, 1990). La- 
beled polypeptides were visualized by exposure to x-ray film at -800C 
(XAR-5; Eastman Kodak Co., Rochester, NY). In some experiments, the 
relative amount of t251-protein A bound to the immunoreactive muscle 
tropomodulin polypeptide was quantitated by cutting out the labeled bands 
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and counting in a gamma counter. This was corrected for nonspecific bind- 
ing by subtracting the counts associated with a similar-sized piece of 
nitrocoUulose excised from a blank portion of the same lane. 

~SI-Muscle Tropomyosin Blot-Binding to 
Muscle Tropomodulin 
Skeletal muscle tropomyosin was purified from rabbit back and leg muscles 
by standard procedures (Bailey, 1948) and labeled with 125I-Bolton and 
Hunter reagent (New England Nuclear, Boston, MA) to a specific activity 
of ,,ol x 106 cpm/#g as previously described (Fowler, 1987). Muscle 
tropomodulin was isolated by immunoprecipitation from extracts of rat 
psoas myofibrils, electrophoresed on SDS gels, and transferred to nitrocel- 
lulose as described above. 12~I-Muscle tropomyosin was incubated over- 
night at 4"C with nitrocellulose strips in the presence or absence of excess, 
unlabeled muscle or erythrocyte tropomyosins or erythrocyte tropomodu- 
lin, washed extensively, dried, and exposed to x-ray film to detect labeled 
polypeptides (Fowler, 1987). The relative amount of t2~l-tropomyosin 
bound to the immunoprecipitated muscle tropomodulin polypeptide was de- 
termined by cutting out and counting the labeled band in a gamma counter. 
This was corrected for nonspecific binding as described above. Human 
erythrocyte tropomyosin and tropomodulin were purified as previously de- 
scribed (Fowler and Bennett, 1984; Fowler, 1990). 

lmmunofluorescence Staining of Myofibrils 
Myofibrils for immunofluorescence staining experiments were isolated 
from a small piece (,,o8 nun 3) of fresh rat psoas muscle as described by 
Knight and Trinick (1982). Myofibrils were adsorbed to glass coverslips and 
fixed with 4% paraformaidehyde for 15 min at room temperature in rigor 
buffer (Knight and Trinick, 1982), washed three times with PBS, and in- 
cubated 10 min with PBS containing 10% goat serum and 1% BSA. Cover- 
slips were then incubated for 1 h at room temperature with afffinity-purified 
antibodies to human erythrocyte tropomodulin (10 #g/ml) and a monoclonal 
antibody to the T12 epitope of titin (hybridoma conditioned medium diluted 
1:2) in PBS containing 1% BSA, and then washed four times in the same 
buffer before incubation with a 1:400 dilution of FITC-conjugated goat 
anti-rabbit IgG (Miles Scientific, Naperville, IL) and a 1:500 dilution 
of tetramethylrhodamine isothiocyanate-conjugated goat anti-mouse IgG 
(BCA/Cappel Products, Organon Teknika, Durham, NC) in the same 
buffer. After washing out unbound antibodies, the coverslips were mounted, 
viewed, and photographed with epifluorescence and phase contrast optics 
as described (Daniels, 1990). Myofibrils were stretched according to Hux- 
ley and Hanson (1954) with modifications as follows. Myofibrils were sus- 
pended 5-10 min in a Ca2+-free relaxing buffer containing ATP (Ishiwata 
and Funatsu, 1985) and adsorbed to a coverslip, which was then inverted 
on a slide. Most of the buffer was withdrawn to leave a thin film, and the 
coverslip was pushed laterally <1 mm and floated off of the slide with fixa- 
tive, leaving stretched myofibrils attached to either surface. To remove myo- 
sin, adsorbed myofibrils were extracted with 0.5 M KCI, 2 mM MgC12, 
10 mM sodium pyrophosphate, 1 mM EGTA, and 10 mM Tris-HCl, pH 
6.8 (modified after Ishiwata and Fonatsu, 1985), at 4~ for 5 min before 
fixation. 

Results 

Identification of Tropomodulin in Rat Psoas Muscle 
Affinity-purified antibodies to human erythrocyte tropomod- 
ulin immunoprecipitate a 44,000-M~ polypeptide from iso- 
lated rat psoas muscle myofibrils that is not immunoprecipi- 
tated by nonimmune IgG (Fig. 1, cf. lanes 3 and 4). 
Electrophoresis of purified erythrocyte tropomodulin in an 
adjacent lane demonstrates that the muscle polypeptide 
comigrates with purified erythrocyte tropomodulin (Fig. 1, 
cf. lanes 2 and 3). 2 Other polypeptides visible in the silver- 

2. Like erythrocyte tropomodulin, this immunoprecipitated muscle poly- 
peptide exhibits anomalous mobility on SDS gels, migrating slower than ac- 
tin when electrophoresed at pH 8.6 (Mr 44,000) (Fig. 1), comigrating with 
actin when electrophoresed at pH 8.8 (Mr 42,000), and migrating faster 
than actin when electrophoresed at pH 9.1 (Mr 39,000) (data not shown; 
see Fowler, 1987, 1990). The basis for this pH-dependent mobility shift is 
not known. 

Figure 1. Identification of tropomodulin (Tmod) in myofibrils from 
rat psoas skeletal muscle by immunoprecipitation with ant i -human 
erythrocyte tropomodulin antibodies. (A) Silver-stained gel of rat 
psoas myofibrils (,05 #g; lane 1), purified human erythrocyte tro- 
pomodulin (100 ng; lane 2), anti-erythrocyte tropomodulin immu- 
noprecipitate from rat psoas myofibrils (lane 3), and nonimmune 
immunoprecipitate from rat psoas myofibrils (lane 4). Note that 
a-helical proteins like myosin and tropomyosin do not stain well 
with silver. (B) Anti-tropomodulin-labeled nitrocellulose blot of 
anti-tropomodulin immunoprecipitate as in lane 3. In addition to 
the 44,000-Mr polypeptide, a minor, faster-migrating polypeptide 
is also labeled on the blot. This minor component was not always 
present in the immunoprecipitates and is probably a proteolytic 
fragment of the major 44,000-Mr polypeptide (e.g., compare 
lanes 3 and 5). The migration positions of tropomodulin (Tmod) 
and the antibody heavy and light chains (HC and LC, respectively) 
are indicated. Positions of molecular weight markers are indicated 
on the left. 

stained gels of the immunoprecipitates are the antibody 
heavy chains and light chains, as well as various polypep- 
tides nonspecificaily immunoprecipitated by both the im- 
mune and nonimmune antibodies (Fig. 1, lanes 3 and 4). In 
a separate experiment, we determined that only the 44,000- 
Mr polypeptide is labeled by anti-tropomodulin antibodies 
on nitrocellulose blots of the immunoprecipitates (Fig. 1, 
lane 5). 

Both erythrocyte tropomodulin and the 44,000-M, im- 
munoreactive muscle polypeptide are also recognized by 
anti-peptide antibodies prepared against synthetic peptides 
derived from either the NH~-terminai portion (residues 
35--49) (Fig. 2, lanes 2 and 5) or the COOH-terminal portion 
(residues 297-311) (Fig. 2, lanes 3 and 6) of the erythrocyte 
tropomodulin sequence (Sung et al., 1992). Competition 
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Figure 2. Identification of tropomodu- 
lin (Tmod) on immunoblots of human 
erythrocyte membranes and of myofi- 
brils from rat psoas skeletal muscle, 
using affinity-purified antibodies to 
human erythrocyte tropomodulin 
(Tnwd) (lanes 1 and 4) or anti-peptide 
antibodies specific for tropomodniin 
residues 35-49 (lanes 2 and 5) or 
tropomodniin residues 297-311 (lanes 
3 and 6). (A) Coomassie blue-stained 
gel of erythrocyte membranes (80/~g) 
and myofibrils (50/~g). (B) Anti-tropo- 
modulin-labeled nitrocellulose blots of 
erythrocyte membranes (8 tLg) (lanes 
1-3) and myofibrils (50 t~g) (lanes 
4-6). Tropomodulin is the major la- 
beled polypeptide at Mr 44,000. The 
crossreactive Mr 22,000 polypeptide 
marked with an arrowhead is troponin 
I (see text). 

with the appropriate peptides demonstrates that the anti- 
peptide antibodies are specific for the correct sequences 
(data not shown; see Sussman et al., 1990). Taken together, 
these experiments indicate that the immunoreactive 44,000- 
M, polypeptide in rat psoas muscle is skeletal muscle 
tropomodulin. 

As shown previously for rat diaphragm and rabbit skeletal 
muscle (Fowler, 1990), anti-tropomodulin antibodies also 
crossreact with troponin I on nitrocellulose blots of rat psoas 
muscle myofibrils (Fig. 2, lane 4, arrowhead). However, we 
are confident that crossreaction with troponin I is not a factor 
in our results because anti-erythrocyte tropomodulin anti- 
bodies appear to recognize only an epitope of troponin I that 
is exposed on nitrocellulose blots. This conclusion is sup- 
ported by the following experiments. (1) Troponin I is not 
immunoprecipitated from myofibril extracts by anti-tropo- 
modulin antibodies, as demonstrated by the absence of a 
22,000-214, band in the silver-stained gels (Fig. 1, lane 3) or 
in the anti-tropomodulin-labeled blots of the immunopreci- 
prates (Fig. 1, lane 5). Anti-troponin I labeling of blots of 

the tropomodulin immunoprecipitates is also negative (data 
not shown). (2) Immunofluorescence staining of myofibrils 
with anti-tropomodulin antibodies does not stain the I band 
as would be expected for antibodies to troponin I (see below, 
Fig. 5). (3) Preadsorption of erythrocyte tropomodulin an- 
tisera by passage through a troponin I affinity column has no 
effect on anti-tropomodulin staining of myofibrils or on 
labeling of the 44,000-Mr muscle tropomodulin polypep- 
tide on blots, while completely eliminating labeling of tropo- 
nin I on blots (data not shown). 

Muscle Tropomodulin Is Associated Exclusively 
with Myofibrils 
To determine whether the tropomodulin in rat psoas muscle 
is associated exclusively with myofibrils, we used immuno- 
blotting to compare the amount of tropomodulin in whole 
muscle homogenates with the amount of tropomodulin in the 
initial supernatant obtained after sedimentation of myofibrils 
at 1,500 g, and in the isolated, washed myofibrils obtained 
after several cycles of resuspension and sedimentation 
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Figure 4. Binding of ~I-skeletal muscle tropomyosin to rat psoas 
muscle tropomodulin. Tropomodulin (Tmod) was immunoprecipi- 
tated from extracts of rat psoas muscle, electrophoresed on an SDS 
gel, transferred to nitrocellulose, and incubated with 2.3 t~g/ml 
~25I-Bolton and Hunter labeled skeletal muscle tropomyosin (TM) 
in the absence or presence of a 20-fold molar excess of cold, unla- 
beled muscle tropomyosin, erythrocyte tropomyosin, or purified 
erythrocyte tropomodulin. The number at the bottom of each lane 
indicates the relative amount of ~I-muscle tropomyosin bound to 
each immunoprecipitated band, and was determined as described 
(see Materials and Methods). Approximately 63 ng of immunopre- 
cipitated muscle tropomodulin was loaded in each lane (determined 
as described in Table I). 

Figure 3. Comparison of the amount of tropomodulin (Tmod) pres- 
ent in equivalent amounts of whole muscle homogenate (Muscle), 
initial low speed supernatant obtained after collection of myofibrils 
(Low Speed Sup.) and isolated, washed myofibrils (Myofibrils). (A) 
Coomassie blue-stained gel. (B) Anti-tropomodulin-labeled nitro- 
cellulose blot of a duplicate gel. 

(Knight and Trinick, 1982; see Materials and Methods). All 
of the myofibrils in the muscle homogenate are recovered by 
this procedure, as demonstrated by SDS-gel electrophoresis 
and Coomassie blue staining, which shows that all of the ac- 
tin and myosin is in the low speed pellet and none is in the 
low speed supernatant (Fig. 3 A). (Note that the polypeptide 
remaining in the low speed supernatant [Fig. 3, lane 2] mi- 
grates slightly faster than actin [Mr 42,000]; this polypep- 
tide can be well resolved from actin after longer electropho- 
resis times [not shown].) Immunoblots of these samples 
show that >90% of the muscle tropomodulin is associated 
with the isolated, washed myofibrils, while <10% remains in 
the low speed supernatant (Fig. 3 B). Since the low speed 

supernatant contains muscle membrane vesicles in addition 
to cytosol, muscle tropomodulin appears not to be asso- 
ciated with membranes. This experiment also shows that the 
44,000-Mr polypeptide associated with myofibrils is the 
only immunoreactive tropomodulin polypeptide detected in 
rat muscle (other than troponln I; see above). 

l~I-Tropomyosin Binding to Muscle Tropomodulin 

To determine whether rat skeletal muscle tropomodulin 
binds skeletal muscle tropomyosin, we performed a ~zsI- 
tropomyosin blot-overlay experiment on the immunoprecipi- 
tated material. This method was used previously to charac- 
terize erythrocyte tropomyosin binding to erythrocyte tropo- 
modulin and is both sensitive and specific (Fowler, 1987). 
Fig. 4 shows that ~2SI-skeletal muscle tropomyosin binds to 
muscle tropomodulin on a nitrocellulose blot. No other 
polypeptides in the immune or nonimmune immunoprecipi- 
tates are labeled by ~25I-muscle tropomyosin (data not 
shown). Binding is specific since it is competitively inhibited 
by a 20-fold molar excess of cold, unlabeled muscle 
tropomyosin. However, erythrocyte tropomyosin is consid- 
erably less effective at competing for ~25I-muscle tropomyo- 
sin binding to muscle tropomodulin. Cutting out the bands 
and counting in a gamma counter indicates that competition 
with muscle tropomyosin reduces binding by 90%, while 
competition with erythrocyte tropomyosin reduces binding 
by only 50%. Binding of ~25I-muscle tropomyosin to muscle 
tropomodulin is also inhibited by a 20-fold molar excess of 
purified erythrocyte tropomodulin, presumably due to bind- 
ing of erythrocyte tropomodulin to the ~2SI-muscle tropo- 
myosin. (~z~I-Erythrocyte tropomodulin does not bind to it- 
self on blot overlays [data not shown].) These experiments 
demonstrate qualitatively that muscle tropomodulin is a 
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Figure 5. Immunofluorescence localization of tropomodulin in rat 
psoas myofibrils. Double staining of resting length myofibrils for 
tropomodulin (A) and for the T-12 epitope of titin (B). C is the cor- 
responding phase mierograph. The vertical white lines indicate the 
locations of four adjacent tropomodulin-stained bands; the horizon- 
tal line connects two of the tropomodulin bands across the Z line, 
which is indicated by the arrow. Tropomodulin staining of myo- 
fbrils stretched to 125% resting length (D and E) and 230% of rest- 
ing length (Fand G). In Eand Gthe phase contrast and fluorescence 
images were photographed simultaneously (by balancing the illu- 
mination), allowing direct visualization of tropomodulin's position 
in the sarcomere. Tropomodulin staining of a myofibril extracted 
with 0.5 M KC1 to remove myosin is shown in H; I is the corre- 
sponding phase micrograph. An additional minor component of 
tropomodulin labeling is visible in some of the unextracted 
myofibrils at the A-I junction (A). This labeling is much fainter than 
the major pair of tropomodulin bands and is more evident in resting 
length (A) or contracted myofibrils (not shown) than in stretched 
myofibrils (D and b'). The significance of this variable, minor stain- 
ing component is uncertain. Bars, 5 #m. 

tropomyosin-binding protein which interacts preferentially 
with muscle as compared with erythrocyte tropomyosin. 

Immunofluorescence Localization of Tropomodulin in 
Isolated Myofibrils 
Immunofluorescence labeling of resting length, isolated myo- 
fibrils from rat psoas muscle with anti-erythrocyte tropo- 
modulin antibodies localizes tropomodulin to a pair of nar- 
row bands within the A band of each sarcomere (Fig. 5 A; 
compare with phase contrast micrograph in Fig. 5 C). This 
is also demonstrated by comparison of tropomodulin stain- 
ing (Fig. 5 A) with staining for the titin TI2 epitope which 
is localized in a pair of narrow bands, one on each side of 
the Z line (Fig. 5 B) (Fiirst et al., 1988). Double labeling 
of myofibrils with rhodamine-phalloidin and anti-tropomod- 
ulin antibodies shows that the tropomodulin staining is lo- 
cated at the edges of the phalloidin-stained I bands (data not 
shown). Immunofluorescence staining of myofibrils with the 
anti-peptide antibodies used in Fig. 1 and with anti-tropo- 
modulin antibodies preadsorbed against troponin I also 
stains the same pair of narrow bands within the A band (data 
not shown). 

When the myofibrils are stretched to 125 % of their resting 
length, the distance between tropomodulin bands measured 
across the A band increases, while the distance between 
tropomodulin bands measured across the Z line remains con- 
stant (,o2.2 #m) (compare Fig. 5 D with Fig. 5 A). In hyper- 
stretched myofibrils that have been stretched to 230 % of their 
resting length so that the thin and thick filaments no longer 
overlap, the tropomodulin-stained bands are now completely 
outside the A band but still remain a constant distance from 
the Z line (Fig. 5, Fand G). The distance of each tropomod- 
ulin band from the Z line fits well with the reported length 
of sarcomeric actin filaments in psoas muscle (1.1 #m; Page 
and Huxley, 1963; Traeger and Goldstein, 1983; Kruger et 
al., 1991) and indicates that the tropomodulin-stained bands 
are located at or near the free (pointed) ends of the thin fila- 
ments. A diagram depicting the position of the tropomod- 
ulin-stained bands with respect to the thin and thick fila- 
ments in resting and stretched myofibrils is shown in Fig. 6. 

Association of Tropomodulin with Myofibrils Is 
Independent of Myosin 
To determine whether the association of tropomodulin with 
myofibrils depends on the presence of myosin thick fila- 
ments, we localized tropomodulin in myofibrils that had been 
treated with 0.5 M KCI to solubilize myosin (Huxley and 
Hanson, 1954; Ishiwata and Funatsu, 1985). Although the 
linear organization of these myosin-extracted myofibrils (I-Z-I 
brushes) is somewhat distorted, immunofluorescence stain- 
ing shows clearly that tropomodulin is localized at the edges 
of the phase-dense I band (Fig. 5, H and I). Staining with 
rhodamine-phalloidin confirms that the phase-dense bands 
correspond to the actin filament-containing I bands (data not 
shown; see Ishiwata and Funatsu, 1985). 

In independent experiments, we determined by SDS-gel 
electrophoresis and immunoblotting that ,o50% of the tro- 
pomodulin remains associated with the extracted myofibrils 
after sedimentation at 15,000 g (Fig. 7 B; compare lanes 
a-c). However, when the 15,000-g supernatant is recen- 
trifuged at 100,000 g (to pellet thin filaments that had broken 
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Figure 6. Diagram illustrating the location of tropomodulin staining 
with respect to the thick and thin filaments in muscle sareomeres 
at resting and stretched lengths. Tropomodulin staining is indicated 
by the hatched area at the free (pointed) ends of the thin filaments. 

off and separated from the I-Z-I brushes), essentially all of 
the remaining tropomodulin cosediments with the actin (Fig. 
7 B; compare lanes d and e). Under these conditions, >90% 
of the myosin is solubilized and remains in the 100,000-g su- 
pernatant (Fig. 7 A). These experiments demonstrate that 
tropomodulin is associated with thin filaments and that this 
association is not dependent on intact myosin thick fila- 
ments. 

Stoichiometry of Tropomodulin/Thin Filament 

If tropomodulin is associated with the pointed ends of thin 
filaments, we might expect that the amount of tropomodulin 
in myofibrils would be stoichiometric with respect to the 
number of thin filaments. To test this prediction, we deter- 
mined the ratio of tropomodulin to actin in isolated myofi- 
brils by quantitatively immunoprecipitating tropomodulin 
from myofibrils and determining the micrograms of tropo- 
modulin immunoprecipitated per milligram of actin present 
in the myofibril preparations. In three separate preparations 
of myofibrils, we found that the molar ratio of actin to 
tropomodulin varied between 236 and 323 (Table I). Since 
there are 13 actin monomers per 37 nm of filament and the 
thin filaments in psoas muscle are •1.1 #m long (Page and 
Huxley, 1963; Traeger and Goldstein, 1983; Kruger et al., 
1991), there are '~386 actin monomers per thin filament. 
Therefore, we calculate that there are between 1.2 and 1.6 
tropomodulin molecules per thin filament (Table I). This low 
number further indicates that tropomodulin is likely to be as- 
sociated with the end rather than along the length of the thin 
filaments. 

Discussion 

We report here the identification of tropomodulin in rat 
skeletal muscle, and show by immunofluorescence staining 
of isolated myofibrils at resting and stretched lengths that it 
is located at or near the pointed ends of the thin filaments. 
Tropomodulin localization is not dependent on the presence 

Figure 7. Etfect of 0.5 M KC1 extraction on association of tropo- 
modulin with rat psoas myofibrils. (,4) Coomassie blue-stained gel 
of unextracted myofibrils (Myofibrils, lane a), supernatant (15K 
Sup., lane b), and pellet (15K Pellet, lane c) obtained after 0.5 M 
KCI extraction and centrifugation at 15,000 g. Supernatant (lOOK 
Sup., lane d) and pellet (lOOK Pellet, lane d) were obtained by 
recentrifugation of the 15,000-g supernatant at 100,000 g. (B) Anti- 
tropomodulin (Tmod) labeled nitrocellulose blot of a duplicate gel. 
The numbers below the blot represent the relative amount of 
tropomodulin in each sample, determined as described in Materials 
and Methods. The sum of the counts in the 15,000-g supernatant 
and pellet combined was used a s  the 100% value for these calcula- 
tions. 
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Table L Number of Tropomodulin Molecules per 
Thin Filament in Rat Psoas Myofibrils 

#g Tmod* #g actin$ mol actinw Tmodll 

mg protein mg protein mol Tmod Thin filament 

Expt. 1 0.536 160 289 1.33 
Expt. 2 0.437 146 323 1.20 
Expt. 3 0.512 125 236 1.62 

* 0.5-1.5 #g of tropemodulin (Tmod) was quantitatively immunoprecipitated 
from SDS-solubilized rat psoas myofibrils under conditions of antibody excess, 
and electrophoresed on SDS gels as described in Materials and Methods. The 
amount (micrograms) of tropomodulin in the immanoprecipitates was deter- 
mined by laser scanning densitometry of Coomassie blue-stained gels with 
reference to a standard curve constructed with purified erythrocyte tropomodu- 
lin. The #g tropomodulin/mg of total protein in the myofibril extract was cor- 
rected for the percentage of tropomodulin immunoprecipitated, which was 
determined by immunoblotting of extracts before and after immunoprecipita- 
tion. In all cases, 80-90% of the total tropomodulin was immunoprecipitated. 
The milligrams of myofibrillar protein in the extract was determined by the 
BCA assay (Pierce Chemical Co.). The #g tropomodulin/mg protein listed for 
each experiment are the averages of duplicate immunoprecipitations; dupli- 
cates were within 10% of one another. 
~: The #g actin/mg myofibrillar protein was calculated from the percentage of 
protein that was actin, determined by scanning densitometry of Coomassie 
blue-stained gels of myofibrils. 
w The molar ratio of actin to tropomodulin was calculated using molecular 
weights of 42,000 for actin and 40,600 for tropomodulin (calculated from the 

( redicted amino acid sequence; see Sung et al., 1992). 
The number of tropomodulin molecules per thin filament was calculated as- 

suming each thin filament contains 386 actin monomers (see text). 

of myosin thick filaments, and immunoblotting analysis 
shows that all of the tropomodulin remains associated with 
the thin filaments after extraction of myosin. These data, to- 
gether with the low number of tropomodulin molecules we 
determined per thin filament (1.2-1.6), strongly supports the 
possibility that tropomodulin is associated with the pointed 
end of each thin filament. 

We further propose that tropomodulin is likely to be as- 
sociated directly with the NH2-terminal ends of the two ter- 
minal tropomyosin molecules at the pointed end of the thin 
filament (Fig. 8). This model is based on the following ob- 
servations: (1) tropomyosin molecules are polarized with 
their NH2-terminal ends oriented toward the pointed end of 
the thin filament (Ohtsuki, 1979), (2) the NH2-terminal 
ends of the terminal tropomyosin molecules are expected to 
be available for binding since they are not associated with the 
COOH terminus of a neighboring tropomyosin molecule or 
with the T1 domain of troponin T (Zot and Potter, 1987), (3) 
erythrocyte tropomodulin binds to only one of the ends of 
tropomyosin (Fowler, 1990), and (4) holo-troponin (which 
interacts principally with the COOH-terminal one-third of 
tropomyosin [Zot and Potter, 1987]) does not inhibit eryth- 
rocyte tropomyosin-tropomodulin interactions (Fowler, 1987). 

Head-to-tail associations of tropomyosin molecules along 
the length of the thin filament might serve to restrict muscle 
tropomodulin binding to the free tropomyosin NH2-termini 
at the pointed end of the thin filament. If so, head-to-tail in- 
teractions of muscle tropomyosin along the thin filament 
might be expected to be stronger than the interaction of mus- 
cle tropomodulin with the end of muscle tropomyosin. In 
contrast, the ability of erythrocyte tropomodulin to abolish 
cooperative binding of erythrocyte tropomyosin to F-actin 
suggests that erythrocyte tropomodulin-tropomyosin inter- 
actions are stronger than head-to-tail interactions of erythro- 
cyte tropomyosin (Fowler, 1990). This could partly explain 
the absence of long, tropomyosin-coated actin filaments in 

TN-I Troponins 
Tropomodulln ~ /'~' ~TN-C. 

[ Pointed End J A c t l n  Tropomyosln [ Barbed End I 

Figure 8. Molecular model for the association oftropomodulin with 
tropomyosin at the pointed end of a muscle thin filament. Attach- 
ment of tropomodulin to tropomyosin via a short tail reflects the 
actual appearance of erythrocyte tropomodulin-tropomyosin com- 
plexes as visualized by rotary shadowing electron microscopy 
(Fowler, 1990). This tail also leaves room for additional mole- 
cule(s) which could interact directly with actin at the pointed end 
of the thin filament. Troponin I (TN-/), troponin T (TN-T), and 
troponin C (TN-C) molecules are drawn as in Flicker et at. (1982). 

the erythrocyte membrane skeleton (Fowler and Bennett, 
1984; Shen et at., 1986). Sequence differences at the NH2- 
terminal ends of skeletal muscle vs. nonmuscle tropomyo- 
sins (Lees-Miller and Helfman, 1991) may partly account for 
differences in head-to-tail association between tropomyosins 
(Cote, 1983; Mak et al., 1987). Conversely, sequence differ- 
ences between erythrocyte and skeletal muscle tropomodu- 
lins would be expected to determine the isoform specificity 
and affinity of these tropomodulins for tropomyosins (Fig. 4; 
see Sussman and Fowler, 1992). Recently, we have isolated 
a chicken skeletal muscle eDNA clone for tropomodulin that 
codes for a 40.4-kD polypeptide whose amino acid sequence 
is 86% identical to that of erythrocyte tropomodulin. 3 We 
are currently mapping the tropomyosin-binding domains of 
muscle and erythrocyte tropomodulins and investigating 
their effects on tropomyosins' self-association in the presence 
and absence of actin filaments. 

The number of tropomodulin molecules that we deter- 
mined per thin filament (1.2-1.6) is consistent with one or 
two tropomodulin molecules associated with the pointed end 
of each thin filament. Two tropomodulin molecules are 
depicted in our model, one bound to each of the two terminal 
tropomyosin molecules at the pointed end of a thin filament 
(Fig. 8). We favor this possibility by analogy with the eryth- 
rocyte membrane, where the ratio of tropomodulin to tropo- 
myosin is 1.4:1,' and there are two tropomyosin molecules 
per short actin filament (Fowler and Bennett, 1984). In this 
study, determination of the percentage of actin in myofibrils 
by scanning of Coomassie blue-stained gels could have led 
to an overestimation of the percentage of actin and thus an 
underestimation of the number of tropomodulin molecules 
per thin filament. 

In vitro, the ratio of erythrocyte tropomodulin to tropo- 
myosin at a saturation determined in a solid phase binding 
assay is two tropomodulins to one tropomyosin (Fowler, 
1987; Sussman and Fowler, 1992). Therefore, if a tropo- 
modulin dimer is required for tropomyosin binding, only one 
of the two tropomyosin molecules at the pointed end of the 
thin filament would be occupied by a tropomodulin dimer. 
Alternatively, a tropomodulin monomer may be sufficient to 
bind tropomyosin in situ at the end of the thin filament and 
half of the tropomodulin molecules may be inaccessible or 

3. Babcock, G. A.,  and V. M. Fowler, unpublished observations; and Suss- 
man, M. A.,  M. Ito, B. E. Flucher, M. P. Daniels, V. M. Fowler, and L. 
Kedes, manuscript submitted for publication. 
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inactivated in our solid phase binding assay in vitro. Further 
experiments to characterize the interaction of tropomodulin 
with tropomyosin in solution and with reconstituted thin fila- 
ments will be required to resolve this discrepancy. In addi- 
tion, immunogold labeling of isolated thin filaments will be 
required to determine whether tropomodulin is indeed situ- 
ated at their extreme pointed ends. 

Tropomodulin Function in Skeletal Muscle 

Although a number of proteins are associated with the 
barbed ends of the thin filaments in skeletal muscle (Chow- 
rashi and Pepe, 1982; Maher et al., 1985; Casella et al., 
1987; Saide et al., 1989), tropomodulin is the only protein 
that is likely to be specifically associated with the pointed 
ends of the thin filaments. There are a number of functions 
that such a protein could perform. For example, tropomodu- 
lin could regulate thin filament length by blocking head-to- 
tail association of tropomyosin at the pointed end of the actin 
filament, thus capping the tropomyosin polymers and 
preventing additional tropomyosin molecules from binding 
to the distal portion of the actin filament (Wegner, 1979; 
Fowler, 1990). This would be expected to indirectly reduce 
the extent of actin filament elongation from the pointed end 
because naked actin filaments are more susceptible to spon- 
taneous fragmentation (Wegner, 1982), depolymerization 
(Broschat et al., 1989; Broschat, 1990; Weigt et al., 1990), 
as well as disassembly and severing by actin-binding proteins 
(Bonder and Mooseker, 1983; Nishida et al., 1985; Pruli~re 
et al., 1986; Ishikawa et al., 1989). On its own, tropomyosin 
is not sufficient to terminate filament elongation because 
purified muscle tropomyosin blocks depolymerization but 
has no effect on elongation (Broschat, 1990; Hitchcock- 
DeGregori et al., 1988). Since we have not detected any 
direct interaction of erythrocyte tropomodulin with actin 
(Fowler, 1990), it is probable that another protein (a tropo- 
modulin-associated component?) binds to actin and directly 
caps the pointed end, preventing elongation of the actin illa- 
ments (Ishiwata and Funatsu, 1985; Sanger et al., 1984). 

Specification and stabilization of thin filament length in 
skeletal muscle is likely to require multiple interacting com- 
ponents. For example, nebulin is a giant protein found in 
skeletal muscle that is coextensive with the thin filaments 
and is proposed to function as a length-regulating template 
for the thin filaments (Jin and Wang, 1991; Kruger et al., 
1991; Labeit et al., 1991). Perhaps nebulin functions to 
specify the minimum length of the thin filaments and 
tropomyosin stabilizes the filaments, while tropomodulin 
and associated proteins at the pointed end (and Cap Z at the 
barbed end) terminate growth and restrict the length of the 
thin filaments. Alternatively, tropomodulin may be a compo- 
nent of a structural lattice that links thin filaments to one an- 
other at the pointed end. At least in the erythrocyte, addi- 
tional tropomodulin binding components are expected to 
exist since tropomodulin remains tightly associated with the 
membrane skeleton even after all of the tropomyosin has 
been extracted (Fowler, 1987). 

Tropomodulin Function in Nonmuscle Cells 

The pointed ends of certain actin filaments found in nonmus- 
cle cells have been reported to be capped and unavailable for 
elongation, including the actin filaments in the mature hair 

cells of the cochlea of birds (discussed in Tdney et al., 1992), 
the actin filaments in the comet-like tail of Listeria mono- 
cytogenes in macrophages (Tilney et ai., 1992), and under 
some conditions, the short actin filaments in the erythrocyte 
membrane skeleton (Matsuzaki et al., 1985; Pinder et al., 
1986). Results presented in this paper, together with the ratio 
of tropomodulin/tropomyosin/short actin filament (2.8:2:1) 
(Fowler and Bennett, 1984), 1 indicates that tropomodulin is 
likely to be situated at the pointed end of the short, 
tropomyosin-coated actin filaments in the erythrocyte mem- 
brane skeleton. Tropomyosin is also associated with the ac- 
tin filaments in the cuticular plate and circumferential band 
in the cochlear hair cells (Drenckhahn et al., 1991) and with 
the actin filaments in the Listeria tail (Dabiri et al., 1990). 
Although the predicted amino acid sequence of erythrocyte 
or muscle tropomodulin is not homologous to any other pro- 
teins (Sung et al., 1992), 3 immunoreactive tropomodulin 
polypeptides are present in a variety of other ceils and tissues 
(Fowler, 1990). We speculate that tropomodulin could be a 
representative of a new family of tropomyosin-binding pro- 
teins that are associated with the pointed ends of 
tropomyosin-coated actin filaments in nonmuscle as well as 
muscle cells. These proteins could function to regulate actin 
filament length and/or play a role in actin filament organi- 
zation. 
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