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I 
T is seven years since the identification of ZO-1, the first 
protein localized at tight junctions (TJs) t (60). Two years 
later, a second TJ-associated protein, cingulin, was char- 

acterized (9). More recently, two additional proteins, ZO-2 
(26) and 7H6 (68), have been added to the list. All these pro- 
teins belong to the cytoplasmic "plaque" domain of TJs, based 
on morphological and/or biochemical criteria. In epithelial 
polarized cells TJs (zonulae occludentes) (for reviews see 
references 23, 56) represent the apical element of a tripartite 
junctional complex, including the zonula adhaerens and the 
desmosome (16). 

In this issue, Tsukitas's group (32) reports the cloning of a 
220-kD protein, originally identified at the undercoat of cad- 
herin-containing cell-cell contact sites, in nonepithelial cells 
(31) and its characterization as the mouse homologue of ZO-1. 
The occurrence of ZO-1/220-kD protein in nonepithelial tis- 
sues (see also reference 29) casts doubt on its specificity as a 
T J-exclusive marker and emphasizes the importance of classi- 
fying junctions based on their functional properties, composi- 
tion and morphology. The interaction of ZO-1/220-kD protein 
with spectrin (31) and its colocalization with cadherins (31, 
32) raises new questions about the roles of these proteins in TJ 
assembly and function. This mini-review will discuss these 
new perspectives, in the context of past efforts and recent prog- 
ress in understanding the organization of epithelial TJs. 

Tight Junctions and Epithelia: 
A Structure-Function Relationship 

Why are TJs considered one of the most characteristic struc- 
tural markers of the polarized epithelial phenotype? TJs pro- 
vide a continuous seal around the apical region of the lateral 
membranes of adjoining epithelial cells, preventing the free 
passage of molecules and ions across the "paracellular" path- 
way, e.g., the extracellular space between the lateral mem- 
branes of neighboring cells. This "barrier" function of TJs 
distinguishes them from other types of junctions, and defines 
two distinct compartments of the extracellular space, the 
"luminal" (apical) and the "serosal" (basolateral) compart- 
ment, the latter in continuity with the interstitial fluids and, 
ultimately, the blood. The ability of TJs to act as permeability 
barrier is shown by using electron dense tracers and measur- 
ing fluxes of radiolabeled markers and ions across epithelial 
monolayers (7, 14). 
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1. Abbreviation used in this paper: TJ, fight junction. 

A second function attributed to TJs in epithelia is to sep- 
arate apical and basolateral plasma membrane domains, 
which differ in protein and lipid composition and carry out 
specialized functions (reviewed in reference 54). TJs are 
thought to represent the "fence; preventing the free diffusion 
of lipids in the exoplasmic membrane leaflets and the inter- 
mixing of specific apical or basolateral membrane proteins 
(reviewed in reference 52). However, the precise role of TJs 
in establishing lipid and protein polarity of the plasma mem- 
brane is not clear, as shown by studies on epithelial cells (54) 
and by the observation that neurons, which lack intercellu- 
lar TJs, display a functional "fence" to the free diffusion of 
lipids (35). 

The Molecular Composition of TJs: the 
ZO-1/220-kD Protein 

TJs were originally described in epithelial cells by transmis- 
sion EM, as sites of apparent "fusion" between the exoplas- 
mic leaflets of the plasma membrane (16). Freeze-fracture 
EM revealed that these sites correspond to a network of in- 
tramembranous fibrils on the P face of the fractured mem- 
brane and complementary grooves on the E face (21, 58). 
To account for the appearance of TJ fibrils and their sensitiv- 
ity to protein fixatives, several models were debated, accord- 
ing to which the fibrils resulted from specific configurations 
of membrane lipids, proteins, or a combination thereof (27, 
33, 50, 58, 63). However, the observation that lipids could 
not diffuse from one cell to the next via TJs (64) was not con- 
sistent with the hypothesis that TJ fibrils were made of lipids. 
In addition, protein synthesis inhibitors prevent TJ assembly 
in freshly trypsinized cells (22, 28, 51), and TJ fibrils are 
resistant to detergent extraction (59). 

A breakthrough in the biochemical characterization of TJs 
was provided by the work of Stevenson and Goodenough, 
who used a mouse liver TJ-enriched membrane fraction (59) 
to obtain a specific mAb (60). This antibody was shown to 
stain the junctional complex of various rat and mouse epithe- 
lia and cultured MDCK (canine kidney) cells by im- 
munofluorescence, and to label the TJ-enriched fraction by 
immuno EM (60). The antigen, denoted as ZO-1, showed a 
SDS-PAGE mobility corresponding to a polypeptide of 225 
or 210 kD in mouse tissues and canine MDCK cells, respec- 
tively (1, 60). 

In 1991 Itoh et al. (32) reported the characterization of a 
220-kD protein at the undercoat of cadherin-based cell-cell 
adhesion sites, and now this protein is identified as the mouse 
homologue of ZO-1 (32). Cadherins are transmembrane pro- 
teins which were first identified in developing tissues (30, 
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34), and which mediate Ca2+-dependent cell-cell adhesion 
in epithelial and nonepithelial cells (for reviews see 19, 62). 
In some cell types, cadherins are found concentrated at 
specialized junctions such as epithelial zonulae adhaerentes 
(5) and cardiac intercalated discs (20, 65). Other members 
of the cadherin family are found at desmosomes (13, 36, 42, 
66). However, no cadherins have been detected in TJs so far. 

Are the TJ-associated protein ZO-1 and the cadherin- 
associated 220-kD protein purified by Itoh et al. (31) the 
same protein? Itoh et al. showed by rotary-shadowing EM 
that the 220-kD antigen purified from rat brain appears like 
a spherical particle (diameter 25-50 nm) (31). On the other 
hand, Anderson et al. reported that ZO-1 is a monomer with 
an asymmetric shape, based on hydrodynamic analysis of 
3~S-labeled ZO-1, immunoaffinity isolated from MDCK 
cells (1). This discrepancy may not be significant, since it 
may be due to the different techniques used, or to the aggre- 
gation of ZO-1 or its interaction with elongated proteins, in 
the samples analyzed by Anderson et al. (1). It is also possi- 
ble that ZO-1 may exist in different forms of association (31). 
Probes for ZO-I and 220-kD protein hybridize to transcripts 
of similar, if not identical size in epithelial and nonepithelial 
cells (2, 29, 32). The sequence identity between the partial 
amino acid sequence of rat ZO-1 (67) and the corresponding 
region in the mouse 220-kD protein is rather low (77.5%), 
considering that the two clones were obtained from related 
species. On the other hand, human and rat ZO-1, at least in 
the short region reported by Willott et al., are 78% iden- 
tical (67). 

In summary, the evidence from molecular studies, and the 
crossreactivity of anti-ZO-1 mAbs with the 220-kD fusion 
protein (32), strongly favors the idea that ZO-1 and the 220- 
kD protein are very closely related, if not identical. Deter- 
mination of the complete sequence of ZO-1/220-kD protein 
cDNAs from human, rat, and other sources will probably 
confirm this idea, and will be useful to identify functional 
and conserved domains across species. 

Other TJ Proteins in Nonepithelial Cells? 

The notion that ZO-1/220-kD protein is not TJ exclusive is 
demonstrated by the observation that it also occurs in 
nonepithelial tissues, such as cardiac myocytes, fibroblasts 
(31), in astrocytes, Schwann cells, and nonepithelial tumors 
(29), and in epithelial structures devoid of typical TJs, such 
as the slit diaphragms of the glomerular podocytes (55). 
However, the quality of the antibody probes, the expression 
and/or availability of specific epitopes in different cell types, 
and the occurrence of isoforms may complicate the interpre- 
tation of the results obtained. For example, only one of the 
two spliced isoforms of ZO-1/220-kD protein is expressed in 
slit diaphragms (37). 

Are other TJ proteins also localized in nonepithelial cells 
and tissues, or at least in cells lacking "classical" TJs? 

Cingulin (140 kD) was localized in epithelial TJs, by im- 
muno EM of intestinal cells and immunofluorescence of cul- 
tured cells and frozen tissue sections (9, 10). The biophysical 
properties of purified cingulin, its shape in the EM (9, 10) 
and its partial cDNA sequence (Citi, S., J. Kendrick-Jones, 
and D. Shore. 1990. J. CellBiol. 111:409a) show that cingu- 
lin is a coiled-coil dimer. Cingulin is present in the junctional 
regions of epithelial cells, from chicken intestine, kidney, 
liver, pancreas, retina (10), human normal and neoplastic co- 

Ion (12), guinea pig cochlea (53), and rat epididymis (6). 
Cingulin immunofluorescent labeling was detected in the 
nonkeratinizing, stratified epithelia of the chicken esophagus 
and cornea (10), but immunoblotting analysis failed to reveal 
cingulin in human epidermis and metastatic squamous carci- 
nomas (12). Notably, these tissues are not known to contain 
continuous TJs. Cingulin staining is absent from chicken 
kidney glomeruli (10), and anti-cingulin antibodies do not 
stain the slit diaphragms of the glomerular epithelium (M. 
Farquhar, personal communication). Therefore ZO-1, but 
not cingulin is present in this type of epithelium. During 
mouse pre-implantation development cingulin reactivity is 
detected throughout oogenesis and early embryogenesis, un- 
like ZO-1, but similarly to uvomorulin/E-cadherin (17). Em- 
bryonic cingulin is assembled at junctional sites at a later 
stage with respect to ZO-1 (17, 18), probably reflecting se- 
quential roles of the two proteins in the de novo formation 
of the TJ. Thus, direct comparison of cingulin and ZO-1/220- 
kD protein distribution during development and in glomeru- 
lar podocytes has revealed some differences. 

In nonepithelial tissues such as chicken smooth muscle 
and heart, clear cingulin labeling was detected only along 
capillary endothelial junctions (10). Cingulin labeling was 
absent from chicken lens cells, which are rich in gap junc- 
tions, and in vinculin- and A-CAM/N-cadherin-containing 
adherens junctions (10). Cingulin was not detected by immu- 
noblot in human nonepithelial tumors (12). In conclusion, 
the present evidence indicates that in adult polarized epithe- 
lial cells both cingulin and ZO-1/220-kD protein are good TJ 
markers, but unlike ZO-1/220-kD protein, cingulin has not 
so far been detected in adherens junctions of fibroblasts and 
cardiac myocytes. 

The available data for ZO-2 and the 7H6 antigen are not 
sufficient to draw conclusions on their exclusive association 
with TJs. ZO-2 was identified as a 160-kD protein found in 
ZO-1 immunoprecipitates (26). Recently antibodies have 
been developed against ZO-2, and immuno EM reveals that 
the protein is associated with TJs of isolated MDCK plasma 
membranes (L. Jesaitis and D. Goodenough, personal com- 
munication). 7H6 is a 155-kD protein which was recently 
localized by immuno EM in the cytoplasmic domain of rat 
liver TJs and by immunofluorescence in the epithelial junc- 
tions of liver, intestine, lung, and kidney (68). The distribu- 
tions of ZO-2 and 7H6 in nonepithelial cells and tissues have 
not been determined. 

A Model for the Architecture of  Epithelial TJs 

The diagram shown in Fig. 1 presents a hypothetical model 
for the organization of TJs. The nature of the intramembrane 
particles seen in freeze-fractured TJs in unknown, although 
it can be speculated that they are proteinaceous, and might 
form a selective channel for the passage of molecules through 
the paracellular pathway. 

Measurements of the distance of the immunogold label 
from the plasma membrane in EM micrographs indicates 
that ZO-1/220-kD protein is the closest to the TJ membrane 
(15-25 nm) (61; see also reference 31), followed by 7H6 (40 
nm) (68) and cingulin (40-60 nm) (9, 10, 61). Apart from 
the association of ZO-1 with ZO-2 (26), no other pro- 
rein-protein interaction between TJ proteins has been dem- 
onstrated. Similarly, it is not known whether any TJ protein 
interacts with F-actin or with actin-binding proteins, al- 
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Figure 1. A schematic illustra- 
tion of the organization of TJs 
in epithelial cells. The api- 
cal regions of the lateral mem- 
branes of adjoining cells are 
represented, with a putative 
transmembrane TJ protein lo- 
cated at the points of fusion. 
ZO-1 is depicted as a sphere, 
interacting with the cytoplas- 
mic domain of the putative 
membrane TJ protein and ZO-2 
(bottom), and with spectrin 
(top). Cingulin is depicted as 
a helical dimer, possibly inter- 
acting with actin-containing 
microfdaments (?). The shapes 
of ZO-2 and 7H6 are purely 
speculative, and the scale is 
approximate. Other membrane 
and cytoskeletal proteins are 
omitted for clarity. See text 
also. 

though cingulin is structurally similar to the rod portions of 
myosins, and it was speculated that it may interact with the 
actin cytoskeleton (10). F-actin is localized within the 
filamentous material underlying the TJ membrane (15, 38), 
and its functional role in the maintenance of TJs is shown by 
several studies with microfilament-active drugs, such as 
cytochalasins (reviewed in reference 39). 

Since spectrin tetramers bind to ZO-1/220 kD (31), spec- 
trin could play a role in the architecture of TJs (Fig. 1). In- 
terestingly, ZO-1/220-kD protein shows size and isoelectric 
focusing properties similar to ankyrin (4), although it is im- 
munologically (31) and structurally distinct (32) from it. The 
role of spectrin and ankyrin in organizing the submembrane 
cytoskeleton in polarized epithelial cells (44, 46, 47) and the 
recent isolation of complexes containing Na÷,K+-ATPase, 
ankyrin, fodrin(spectrin), and E-cadherin from MDCK cells 
(48) raises further questions. Does ZO-1/220 kD define a 
new class of spectrin-binding proteins, and what is its spatial 
relationship with spectrin/fodrin in situ? Could ZO-1 behave 
as ankyrin, and form complexes with E-cadherins, spectrin, 
and Na÷,K÷-ATPase? 

Association o f  Cadherins with ZO-I/220-kD Protein 

A key observation demonstrating the role of E-cadherin in 
the morphogenesis of epithelia was that transfection of non- 
epithelial cells with E-cadherin cDNAs induced them to 
show an epithelial morphology and adhere more tightly (43, 
45). Itoh et al. (31) have now added an exciting new layer to 
this experimental model, by demonstrating that ZO-1/220- 
kD protein colocalizes with N-, P-, and E-cadherin when 
cotransfected into fibroblasts. 

Cadherin-mediated cell-cell adhesion is believed to be 
critical in the establishment and maintenance of TJs and epi- 
thelial cell polarity. Antibodies against the extracellular do- 
main of E-cadherin prevent the assembly of functional TJs 
and disrupt preexisting junctions (3, 24, 25). Transfection of 
fibroblasts with uvomorulin/E-cadherin induces redistribu- 
tion of surface membrane Na÷-K+ATPase (41). Removal of 
extracellular calcium, which disrupts the adhesive functions 

of cadherins (62), leads to the functional opening of TJs, the 
separation of ZO-1 and cingulin from the peripheral mem- 
brane (2, 8, 57), and the loss of cell polarity (23, 25). 

Since ZO-1/220 kD was not localized at adhesion sites in 
transfected fibroblasts unless cadherins were also present, 
cadherins must play a role in promoting the assembly of 
ZO-1 in the adhesion sites. This observation raises intriguing 
questions. 

First, does ZO-1 interact directly with the cytoplasmic do- 
mains of cadherins, or indirectly, for example through cate- 
nins (49)? Studies with purified proteins in vitro and charac- 
terization of immunoprecipitates from these fibroblasts 
should provide answers to these questions. Second, what is 
the role of ZO-1 in nonepithelial cells? The expression of 
ZO-1/220-kD protein in these cells (29, 31) is neither cor- 
related with the presence of TJ intramembranous fibrils, nor 
with established "barrier" or "fence" functions. However 
ZO-1/220-kD protein might participate in the organization of 
the spectrin/fodrin cytoskeleton at cell-cell contacts (see 
above). 

Third, and perhaps most important, why does ZO-1/220- 
kD protein so specifically associate with TJs in epithelial 
ceils that also have cadherin-based adherens junctions? Itoh 
et al. suggest that TJs may contain an unidentified type of 
cadherin, with a higher affinity for ZO-1/220-kD protein 
than E-cadherin. A TJ cadherin might provide TJs with adhe- 
sion properties, and help bring ZO-1/220-kD molecules in 
register in the regions of cell-cell contact. A putative TJ 
cadherin may have an unconventional calcium sensitivity, 
since TJs persist in membrane vesicles in the absence of 
Ca 2+ (59) and cell-cell contact areas with strong ZO-1 and 
cingulin labeling are observed in MDCK cells in the absence 
of extracellular calcium (2, 8, 57). If ZO-1/220-kD protein 
and cadherins are indirectly associated, the selective local- 
ization of ZO-1/220-kD protein in TJs may be due to its 
higher affinity for a cadherin-associated protein. A third pos- 
sibility is that a variable domain in ZO-1/220-kD protein may 
define multiple isoforms of the protein, with different affinity 
constants for proteins of TJs and of cadherin-contalning 
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adherens junctions. Finally, other proteins may "trap" ZO- 
1/220-kD protein in the TJ or competitively prevent the as- 
sociation between cadherin and ZO-1/220-kD protein at the 
zonulae adhaerens. 

Clearly, more work is necessary to identify and character- 
ize the transmembrane protein component(s) of TJs. 
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