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Abstract. Null mutants of the Trypanosoma cruzi in- 
sect stage-specific glycoprotein GP72 were created by 
targeted gene replacement. Targeting plasmids were 
constructed in which the neomycin phosphotransferase 
and hygromycin phosphotransferase genes were flanked 
by GP72 sequences. These plasmids were sequentially 
transfected into T. cruzi epimastigotes by electropora- 
tion. Southern blot analyzes indicated that precise 
replacement of the two genes had occurred. No abet- 

rant rearrangements occurred at the GP72 locus and 
no GP72 gene sequences had been translocated else- 
where in the genome. Western blots confirmed that 
GP72 is not expressed in these null mutants. The 
morphology of the mutants is dramatically different 
from wild-type. In both mutant and wild-type para- 
sites, the flagellum emerges from the flagellar pocket. 
In the null mutant the normal attachment of the flagel- 
lum to the cell membrane of the parasite is lost. 

~"~RYPANOSOMA cruzi, a flagellated protozoan, is the 
/ e t i o l o g i c a l  agent of Chagas' disease, which is endemic 
AL in much of South and Central America. It is trans- 
mitted to man in the feces of hematophagous bugs of the 
Reduviid family, which colonize substandard housing and 
emerge at night to feed on sleeping occupants. The life cycle 
of T. cruzi can be divided into four stages in the insect and 
mammalian hosts. Each stage is morphologically distinct, 
especially in relation to the presence of a flagellum, its point 
of emergence and cellular adhesion. The parasite is taken up 
in the bloodmeal of the insect as a trypomastigote, which 
differentiates into the epimastigote form and replicates 
within the bug's gut. In the hind gut, epimastigotes transform 
into infective metacyclic trypomastigotes, which are passed 
out in the feces. In the mammalian host, the trypomastigotes 
invade different cell types and undergo division as amas- 
tigotes, finally emerging from the cell as trypomastigotes 
(Garcia and Azambuja, 1991). 

A 72-kD glycoprotein, GP72, is an apparently develop- 
mentally regulated surface antigen expressed primarily in 
the epimastigote and, to a lesser extent, in the metacyclic 
trypomastigote stages of the life cycle in the insect vector. 
GP72 has an unusual composition and structure (Ferguson 
et al., 1983). 10% by weight of GP72 is made up of phos- 
phate associated with pentose-rich glycans. The total glycan 
content is •50% of the mass of the protein. A mAb, WlC 
29.26, which recognizes a glycan epitope on GP72 (Snary 
et al., 1981), and other independently derived antibodies 
with similar specificities, have shown that GP72 is present 
on all T. cruzi strains tested (Kirchhoff et al., 1984; 
Schechter et al., 1986). 
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We previously characterized the gene that encodes GP72 
(Cooper et al., 1991). The glycoprotein is encoded by a sin- 
gle pair of non-telomeric allelic genes with no obvious ho- 
mology to any sequence in DNA and protein data banks. The 
derived protein sequence is consistent with the biochemical 
properties of GP72 (Ferguson et al., 1983). 

Although there is some evidence that GP72 may play an 
important role in the control of cellular differentiation within 
the insect vector through interaction with gut lectins (Sher 
and Snary, 1982), the function of GP72 remains unclear. 
Functional studies of GP72, and of other genes in T. cruzi 
and related Kinetoplastids, have been hampered by the lack 
of genetic manipulation techniques. Recently, several break- 
throughs in DNA transfection technology in Leptomonas 
seymouri (Beliofatto and Cross, 1989), Leishmania enrietti 
(Laban and Wirth, 1989), and T. brucei (Clayton et al., 
1990; Rudenko et al., 1990; Zomerdijk et al., 1990) (for re- 
view see Bellofatto, 1990) have made these parasites more 
amenable to genetic analyses. In particular, it has become in- 
creasingly evident that stable integrative transformation by 
homologous recombination is a rapid and practical method 
to obtain mutants in these parasites. Strains of parasites with 
single and double gene replacements have been engineered 
in T. brucei and Leishmania (Cruz and Beverley, 1990; Lee 
et al., 1990; ten Asbroek et al., 1990; Cruz et al., 1991; Eid 
and Sollner-Webb, 1991). Transient (Lu and Buck, 1991) 
and, very recently, stable transfection (Otsu et al., 1993; 
Hariharan et al., 1993) has been reported in T. cruzi. 

In this paper we describe the creation of a GP72 null mu- 
tant by targeted gene replacement. The null mutant has an 
unexpected morphology: the flagellum, instead of adhering 
to the cell body after emerging from the flagellar pocket, is 
completely free and the overall shape of the parasite is al- 
tered. 
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Materials and Methods 

Parasites 
Z cruzi Y strain epimastigotcs were grown in liver infusion tryptose 
(LIT) I medium (Nogueira et al., 1981) at 26-28°C without agitation. Two 
Y strains were used in these studies: YNIH has been maintained for several 
years in our laboratory, YLH was obtained from B.E Hall at Yale University 
(New Haven, CT) and was derived from our YNIH strain several years ago. 

Construction of Plasmids Used for Transfection 
A previously described (Cooper et al., 1991) 4.6-kb genomic DNA clone 
(pGP72), which contains the entire protein coding region of GP72 plus 0.8 
and 1.9 kb of 5' and 3' flanking sequence, respectively, was used as a source 
of fragments to construct neomycin phosphotransferase (Neo) (p72neo72) 
and hygromycin phosphotransferase (Hyg) (p72hyg72) hybrid plasmid 
DNAs. The PCR was used to amplify the entire 5' and 3' noncoding regions 
of GP72 from pGP72, and the coding sequences of Neo from pNEO (Phar- 
macia LKB, Piscataway, NJ) and Hyg from pSV2hygAl3 (generously 
provided by David Strehlow, Stanford University, Stanford, CA). All flag- 
ments were amplified using primers with restriction sites at their 5' ends, 
obtained from Oligos Etc. (Wilsonville, OR). Each PCR product was blunt- 
end cloned into EcoRV-digested and -dephosphoryiated pBluescript SKII+ 
(Stratagene, La Jolla, CA) and then excised using the specific restriction en- 
zymes sites within the PCR primers. The fragments were then cloned se- 
quentially into pBluescript SKH+ so as to flank the Neo and Hyg coding 
sequences with the 5' and 3' noncoding sequences from GP'/2 in the correct 
orientation (see Fig. 1, a and b). The use of PCR to generate all fragments 
allowed us to make exact replacements of the GP72 coding region and retain 
the integrity of the 5' and 3' regions. However, to facilitate cloning, in 
p72neo72 a HindHI site was inserted between the 3' end of the upstream 
GP72 noncoding sequence and the start codon of the Neo gene. In addition, 
at the 3' end of the Neo coding sequence three base pairs were inserted (the 
remnants ofa BclI/Baml-II compatible-end ligation). Similarly, in p72hyg72, 
a HindIIl site and a BamHI site were inserted between the 5' and 3' noncod- 
ing GP72 sequences, respectively, and the Hyg start and stop codons. PCR 
reactions were carried out with Amplitaq DNA polymerase (Perldn Elmer 
Cetns, Norwalk, CT) according to the manufacturer's recommendations in 
a Teehne (Princeton, NJ) or GencAmp PCR System 9600 (Perkin Elmer 
Cetns) thermal cycler. All subsequent DNA rnanipniations were carried out 
according to well-established procedures (Ansubel et al., 1990). The final 
constructs were checked by sequencing across the junction of each ligation. 
The plasmid DNA used for the transfections was purified by CsCI gradient 
ultracentrifugation, digested with either SalI or EcoRI (p72neo72) or SalI 
(p'/2hyg72), extracted once with phenol/chloroform, precipitated with etha- 
nol, and washed several times with 70% ethanol. The DNA was then dis- 
solved in sterile water to a concentration of 2 mg/ml and used in the dec- 
troporations. 

Transfection of T. cruzi 
Transfections were carried out using mid-log phase parasites that were 
washed and resnspended to 6 x 107/ml in Zimmerman Fusion Media (Bel- 
lofatto and Cross, 1989). 70 pg of linearized plasmid was mixed with 0.5 
ml of parasites in a 2 mm B'rx cuvette and pulsed twice at room temperature 
using a BTX Electro Cell Manipulator 600 (BTX Corp., San Diego, CA) 
set at 1.5 Kv and 24-ohms resistance timing. The parasites were immedi- 
ately diluted into 5 ml LIT and incubated for 60 h before adding either 500 
~tg/mi G418 (Geneticin, Gibco, Grand Island, NY) or 400 ~tg/ml Hygromy- 
cin B (Calbiochem-Behring Corp., La Jolia, CA). 3 to 4 wk after transfec- 
tion the surviving parasites were cloned by limited dilution in 96-well plates 
containing NNN media (Novy and MacNcal, 1904; Nicolle, 1908) over- 
layed with LIT plus G418, Hygromycin B, or both. After cloning, the para- 
sites were grown without added drug. 

Purification and Analysis of Genomic DNA from 
Transfected Parasites 
10-ml cultures of stably transformed parasites were washed once in PBS and 
then lysed in 1 ml of 10 mM Tris-HCl, pH 8.0, 0.25 M NaC1, 0.5% NP-40 
(Calbiochem-Behring Corp.). After centrifugetion at 15,000 g in a micro- 

1. Abbrevian'ons used in this paper: Hyg, hygromycin phosphotransferase; 
LIT, liver infusion tryptose; Neo, neomycin phosphotransferase. 

centrifuge, the pellets were resuspended gently using a loose fitting Dounce 
homogenizer in 1 ml of l0 mM Tris-HCl, pH 8.0, l0 mM EDTA, l0 mM 
NaC1, 0.5 % SDS. Proteinase K (Boehringer Mannheim Biochemicals, Indi- 
anapelis, IN) was added to 50 ~tg/ml and the lysate incubated at 37"C for 
1 h followed by four extractions with phenol/chloroform (50:50) and three 
extractions with water saturated ether. Southern blots using these genomic 
DNAs and pulsed field gel electrophoresis were carried out as previously 
described (Cooper et al., 1991). 

Electron Microscopy 
For transmission EM the parasites were processed essentially as described 
(Lewengrub et al., 1988). Thin sections were cut using an Ultra Microtome 
(Sorvall Instruments, Newton, CT), stained with uranyl acetate and lead 
citrate and observed using a transmission microscope (EM 300; Phillips 
Electronic Instruments, Inc., Mahwah, NJ). 

Parasites for scanning EM were adjusted to 107 parasites/ml and pro- 
cessed as described (Andrews et al., 1987), except for additional incubation 
of the dehydrated samples for 1 h in hexarnethyldisilazane (Polysciences, 
Warrington, PA), before air drying. The samples were then coated 
with ~100 A of gold/paiadium (60:40) using a Denton Desk lI sputter 
coater (Denville, NJ) and viewed using a scanning electron microscope 
(840; JEOL USA, Peabody, MA). 

Results 

Creation of a GP72 Null Mutant 
The plasmids that transformed Z cruzi to drug resistance 
were essentially identical, in the arrangement of coding and 
noncoding sequence, to a 4.6-kb gcnomic clone, pGP72, wc 
had previously isolated (Cooper et al., 1991). In effect, in 
p72neo72 and p72hyg72 the coding sequence of GP72 was 
replaced by the coding sequences of the drug-resistance 
genes (Fig. 1, a and b). Both recombinant plasmids were lin- 
earized so that one end was homologous to the 5' or 3' non- 
coding regions of GP72 in the genome. The other end was 
vector sequence (Fig. 1 b). Southern blot analysis of 
genomic DNAs from G418-resistant cloned parasites from 
two separate transfections showed that nine out of the 10 
clones analyzed had the Nco gene integrated at the expected 
position in the GP72 locus (data not shown). No vector DNA 
had been integrated. In the tenth clone, integration of vector 
DNA had occurred. This clone was not analyzed further. 

One of the clones with the correct integration, YNIH D5, 
was then transfected with p72hyg72. We analyzed 10 clones 
resistant to both (3418 and Hygromycin B. In contrast to 
the results observed with the initial transfections using 
p72neo72, only one clone (YNII-I D5C3) had the Hyg gcne in- 
tegrated into the expected location. In the other nine clones, 
preliminary data indicated that a single intact GP72 gene 
was still present,and that the Hyg gene had been amplified 
(data not shown). 

After obtaining the first null mutant clone, we generated 
three others either by retransfecting G418-resistant YNm D5 
(clones YNm DSD2 and YNm 13), or by carrying out the 
same sequential transfections using a different Y strain 
(clone YEn 4). In addition, starting with wild-type YNIH, we 
carried out single gane replacements using p72hyg72 (clone 
YNIH D6). 

Diagnostic Southern analysis of the wild-type, single dele- 
tion, and null mutant clones was carried out. The probes and 
anticipated fragment sizes are shown in Figure 1 c. Analysis 
of YNIH D5C3 confirmed that this clone was a true double 
deletion of GP72 and that the coding regions of both GP72 
genes had been replaced by the Nco and Hyg genes. After 
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Figure 1. Construction of 
plasmids used for transfection 
and partial restriction maps of 
the GP72 locus in normal, 
single mutant, and double 
mutant clones. (A) Detail of 
the 5' and 3' junction between 
coding and noncoding se- 
quences of pGP72. (B) Detail 
of the 5' and 3' junction be- 
tween coding and noncoding 
sequences of p72neo72 indi- 
caring the insertion of 6 bp at 
the 5' end and 3 bp at the 3' end 
of the coding sequence of the 
neo gene. Open boxes and the 
boxed sequences indicate 5' 
and 3' noncoding fragments 
from the GP72 locus that re- 
main unchanged in the new 
clones. The coding sequences 
are italicized with the encoded 
amino acid sequence beneath. 
p72hyg72 was constructed in a 
similar way. (C) A partial re- 
striction map of the normal 
GP72 locus (i), the Neo trans- 
formed GP72 locus (ii), and 
the Hyg transformed GP72 lo- 
cus (iii) is shown with the 
probes used and SacI diges- 
tion products diagnostic of the 
correct integration event. 
Open boxes indicate 5' and 
3' noncoding sequences. The 
solid box, stippled box, and 
hatched box indicate the 
GP72, Neo, and Hyg coding 
sequences, respectively. 

SacI cleavage, the two parental GP72 genes appeared as a 
5.5-kb band when probed with GP72t (Fig. 2 a, lane 1 ). In 
clone YNIH DS, the remaining GP72 gene appeared as a 5.5- 
kb band and the new band of 4.4 kb corresponded to the Neo 
gene replacement of the other GP72 gene (Fig. 2 a, lane 2). 
In the single gene deletion clone generated by using 
p72hyg72, YNIn D6, the size of the new band was 4.7 kb, cor- 
responding to the Hyg gene replacement (Fig. 2 a, lane 3). 
In the double-mutant clone, YNIH D5C3, the 5.5-kb band 
was replaced by the two new bands of 4.7 and 4.4 kb (Fig. 
2 a, lanes 4 and 5). In a similar blot using a GP72 coding 
region probe, a 5.5-kb band was visible in either the paren- 

tal, or both single deletion clones (Fig. 2 b, lanes 1-3) but 
not in the double deletion (Fig. 2 b, lanes 4 and 5). Con- 
versely, Neo and Hyg coding sequence probes detected ei- 
ther a 4.4 or a 4.7-kb band with the Neo and Hyg probes, 
respectively, only in the single or double mutant clones (Fig. 
2, c and d, lanes 1-5). The genotype of two independently 
obtained null mutants, YNIH D5D2 and YNm 13, is also 
shown. YNm D5D2 is identical to YNm D5C3 (Fig. 2, a-d, 
lane 6). Yl~m 13 is a true null mutant, as no bands are evi- 
dent when hybridized with the GP72 coding region probe 
(Fig. 2 b, lane 7), but additional bands of smaller than 4.4 
and 4.7 kb are visible when probed with GP72f, Neo and 
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Figure 2. Southern blot analy- 
sis of GP72 null mutant 
clones. Genomic DNA from 
normal, single, and double 
mutant clones were digested 
with SacI, fractionated on 
four identical gels and blotted 
to nitrocellulose. The 32p_ 
labeled probes used were (A) 
GP72t, a 5' flanking probe, 
(B) the GP72 coding se- 
quence, (C) the Neo coding 
sequence, and (D) the Hyg 
coding sequence. Lane 1, 
YNIH; lane 2, YNm D5, a Neo 
single mutant; lane 3, YNIH 
D6, a Hyg single mutant; lane 
4, YNm D5C3, a Neo/Hyg 
double mutant; lane 5, YNm 
D5C3F4, a clone derived 
from YNm D5C3; lane 6, 

YNIH D5D2, and lane 7, YNm 13, two other independently derived Neo/Hyg double mutants. The smaller SacI fragment which should 
hybridize to the GP72t probe in all the clones (See Fig. 1 c) is not visible in this figure. 

Hyg (Fig. 2, a-d, lane 7). We have not investigated the na- 
ture of  these additional bands. 

To confirm the genotype of the GP72 null mutant, the 
chromosomes of the YNIH, YNIH D5, and YNIH D5C3 clones 
were analyzed by pulsed field gel electrophoresis. In YNIH, 
the GP72 genes were located on two allelic chromosomes of 
different size (Fig. 3 b, lane 1 ). In YNIH D5, the smaller of 
the two chromosomes retained a GP72 gene (Fig. 3 b, lane 
2). No chromosomes hybridized to the GP72 coding probe 
in YNm D5C3 (Fig. 3 b, lane 3). Similar blots were hybrid- 
ized with Neo and Hyg probes. No chromosomes hybridized 

to these probes in YNIH (Fig. 3, c, and d, lane 1 ). In YNm 
D5 and YNm D5C3 the GP72 gene in the larger chromosome 
was replaced with the Neo gene, while the gene in the 
smaller chromosome was replaced with the Hyg gene (Fig. 
3, c and d, lanes 2 and 3).  

These analyses indicated that we succeeded in creating a 
GP72 null mutant. In clone YNIH D5C3, no major rearrange- 
ments had occurred at the GP72 locus, other than precise 
replacement of  the genes, and no GP72 gene had been trans- 
located elsewhere in the genome. 

Western Blot Analysis of  the GP72 Null Mutant 

The mAb, WlC 29.26, recognizes a glycan epitope on GP72 
(Ferguson et al., 1983). Western blots of  YNXH epimastigote 
lysates using WlC 29.26 identified a predominant band of 72 

Figure 3. Pulsed field gel electrophoresis of GP72 mutant clones. 
Chromosomes from normal (lane 1), Neo single mutant (lane 2), 
and Neo/Hyg double mutant (lane 3) clones were resolved using 
a rotating agarose gel electrophoresis apparatus. (A) Ethidium bro- 
mide; (B) GP72 coding; (C) Neo coding; (D) Hyg coding. Markers 
(M) are in kilobases. 

Figure 4. Western blot analysis with mAb WIC 29.26 of GP72 mu- 
tants. Equal numbers of parasites were analyzed (5 x 106). Lane 
1, YmH, normal parasites; lane 2, YNm D5, Neo single mutant; 
lane 3, YNIH D6, Hyg single mutant; lane 4, YNIH D5C3F4, 
Neo/Hyg double mutant; lane 5, YNIH D5D2, Neo/Hyg double mu- 
tam; lane 6, Yr~IH 13, Neo/Hyg double mutant; lane 7, YLH, nor- 
mal parasites; lane 8, YLH (35, Neo mutant; lane 9, YLH 4, 
Neo/Hyg double mutant derived from YLH G5. GP72 is indicated 
by the arrow. 
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Figure 5. Scanning electron micrographs of normal (A) and GP72 null mutant (B) T. cruzi epimastigotes. Bars, 10/zm. 
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Figure 6. Transmission elec- 
tron micrographs of normal 
(,4) and GP72 nuU mutant (B) 
Z cruz/epimastigotes. Higher 
magnification cross-sectional 
views of the flageUae are 
shown in the insets. Bars: (,4 
and B) 1/~m; (insets) 0.1/~m. 

kD, a broad area of weaker signal of lower molecular weight, 
and sometimes weak bands larger than GP72 (Fig. 4, lanes 
I and 7). Three independently derived GP72 null mutants 
from the YNIrI strain, and one from the YLH strain, together 
with the parental and single mutant clones were analyzed by 
Western blot using WIC 29.26. No GP72 was evident in any 
of the null mutants (Fig. 4, lanes 4-6, and 9). Similar levels 
of GP72 were present in the parental and single mutant 
clones (Fig. 4, lanes 1-3, 7, and 8). 

We speculated previously that the broad band of lower mo- 
lecular weight present in lysates of YNIH may contain degra- 
dation products or intermediates in the synthesis of GP72. 
However, data from the null mutants refute this hypothesis. 
The broad area of staining of lower molecular weight became 

stronger in the single and null mutants derived from YNIH 
and resolved into two distinct bands (Fig. 4, lanes 2-6). In 
the YLH mutants, these bands lost prominence in the double 
mutant though the area of staining remained (Fig. 4, lane 9). 
In contrast, the bands of a molecular weight higher than 
GP72, visible in the normal and single mutant strains, disap- 
peared in the double mutants (Fig. 4, lanes 4-6, and 9). 
These may be differently processed forms of GP'/2. 

GP72 Null Mutants Have Abnormal 
Flagellar Morphology 

In culturing the parasite clones involved in this study, we no- 
ticed that the null mutant epimastigotes had abnormal mot- 
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phology. Detailed examination by scanning and transmission 
EM revealed that the flagellum was detached from the body 
of the parasite after emerging from the flagellar pocket of the 
null mutants (Fig. 5), and the overall shape of the epi- 
mastigote was altered. The anterior end was much shorter 
and broader. The abnormal flagellar attachment affected the 
mobility of the parasite. In liquid culture, the double mutants 
tended to sink faster than the parental strain. Nevertheless, 
the doubling time and the parasite concentration reached at 
stationary phase were unaffected. Microscopic examination 
of the flagellum, cell membrane, and underlying pellicular 
microtubules revealed no other obvious changes (Fig. 6). 

This unexpected phenotype cannot be attributed to ac- 
cidental selection for a second mutation affecting flagellar at- 
tachment during the cloning of the transfected parasites. We 
have generated several GP72 double mutants from indepen- 
dent transfections and used two different Y strains. All the 
null mutant clones have the same abnormal morphology. The 
chances of selecting for a second mutation affecting flagellar 
attachment in each case is remote. The abnormal morphol- 
ogy is not correlated with Neo and Hyg expression, because 
single or double drug-resistant clones that still have at least 
one GP72 gene have normal flagellar and cell morphology. 

D i s c u s s i o n  

The study of gene function has been aided in many organ- 
isms by the generation of null mutations through sexual ex- 
change or homologous gene targeting (Capecchi, 1989). Z 
cruzi has no known sexual stage and, until recently, genetic 
manipulation by DNA transfection was not possible. Major 
advances in the field have documented the efficiency of ho- 
mologous integration of transfected DNA in trypanosoma- 
tids, making it feasible to inactivate any chosen gene that is 
not a member of a large family (Capecchi, 1990). As GP72 
is encoded by a single pair of allelic genes, unlike many of 
other surface antigens of Z cruzi, direct genetic manipula- 
tion was possible. 

Because nothing is known about the location and charac- 
teristics of promoters and transcription termination signals 
in T. cruzi, we sought to avoid changes in the sequences sur- 
rounding the GP72 coding region. The targeted replacement 
plasmids, p72neo72 and p72hyg72, differed from the normal 
GP72 locus only in the coding sequences themselves and the 
insertion of two restriction sites between the 5' or 3' noncod- 
ing sequences and the start and stop codons. 

Our results corroborate the efficiency of homologous in- 
tegration in trypanosomatids (Capecchi, 1990). In the single 
gene deletions using the Neo construct, all but one of the 10 
clones analyzed had the Neo gene integrated homologously. 
We have not analyzed in detail the unexpected integration 
events that occurred when the Hyg construct was used to de- 
lete the second GP72 gene. Our preliminary data indicate 
that, in these clones, double cross-over events did not take 
place. Instead, these clones retained a single copy of the 
GP72 gene and the Hyg gene was amplified. 

The lack of any GP72 in Western blots using WIC 29.26 
provides formal proof that the gene we had previously cloned 
and characterized as a candidate gene for GP72 (Cooper et 
al., 1991) does encode the glycoprotein defined by the mAb. 
A mutation in the glycosylation pathway that synthesizes the 
glycan epitope on GP72 recognized by WIC 29.26 cannot ex- 

plain this result as the same epitope is found on other glyco- 
proteins in the mutant parasites. It is interesting to note that 
the levels of the other glycoproteins with the WlC 29.26 epi- 
tope seem to be increased in the single and double mutant 
clones from the YNIH strain. We hypothesize that the para- 
sites may be compensating for the lack of GP72 on the sur- 
face by increasing the amount of the glycan epitope on other 
glycoproteins. 

In the Y strain, the glycan epitope present on GP72 is 
evenly distributed over the entire surface of the epimastigote 
including the flagellum (Kirchhoff et al., 1984). These 
results were extended by Harth et al. (1992) who used a 
mAb, 8G2, that recognizes the same glycan epitope as WIC 
29.26. Using both indirect immunofluorescence and immuno 
EM it was evident that glycan epitope was in the cell surface 
membrane, flagellar pocket and the cytostome. There has 
been no published indication of an exclusively flagellar local- 
ization. Hence, the phenotype of the GP72 null mutant was 
surprising. 

Three T. cruzi antigens have been localized to the flagellar 
attachment region (Souto-Padron et al., 1989; Cotrim et al., 
1990), but none of them seem to be related in any way to 
GP72. Two of these antigens, recognized by antibodies to 
clone 1 and clone 30 (Ibafiez et al., 1987), are antigens of 
high molecular weight (160->205 kD) and contain tandemly 
repeated amino acid sequence motifs (lbafiez et al., 1988). 
The third is a 300-kD antigen of unknown sequence (Cotrim 
et al., 1990). In T. brucei, the homologous antigen to T. cruzi 
clone 1 has been characterized (Muller et al., 1992), and it 
is also localized to the flagellar attachment region. Also in 
T, brucei, an 88-kD glycoprotein with a transmembrane as- 
sociation to a unique flagellum attachment region has been 
characterized as well as 180-, 200- and 300-kD antigens as- 
sociated with the paraflagellar rod and the flagellar attach- 
ment zone (Woods et al., 1989a, b). None of these antigens, 
either in T. cruzi or T. brucei, bear any resemblance to GP72 
and therefore are unlikely to perform a similar function. 

Freeze-fracture EM has provided further insight into the 
mechanism of flagellar attachment in trypanosomes. Linear 
arrays of closely adjacent intramembranous particles 
denoted "miniature maculae adherentes" have been observed 
on both faces of the flagellar membrane occurring only at 
regions of membrane apposition between cell body and 
flagellum (Hogan and Patton, 1976; de Souza et al., 1978). 
Vickerman (1969) has suggested that two mechanisms of 
flagellar binding may exist. The first is weak and easily dis- 
ruptable by fixation procedures for EM and exists over the 
whole region of adhesion. The second is strong and operates 
at discrete locations where the maculae are found. We are 
unable to say at this time whether the null mutant parasites 
have maculae or not. However, as GP72 is not localized only 
in this area, it is unlikely to be involved in maculae structure. 
Instead, GP72 may be responsible for the weak binding 
mechanism which need not necessarily be localized. 
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