
Presequence and Mature Part of Preproteins Strongly 
Influence the Dependence of Mitochondrial Protein 
Import on Heat Shock Protein 70 in the Matrix 
Wolfgang Voos,* B. Diane  Gambil l ,* Bernard  Guiard,§ Nikolaus  Pfanner,* and  Elizabeth A. Craig* 

* Biochemisches Institut, Universit/it Freiburg, Hermann-Herder-StraBe 7, D-79104 Freiburg, Germany; t Department of 
Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; and § Centre de Cr6n6tique Mol6culaire, 
Laboratoire propre du CNRS associ6 ~t l'Universitd Pierre et Marie Curie, 91190 Gif-sur-Yvette, France 

Abstract. To test the hypothesis that 70-kD mitochon- 
drial heat shock protein (mt-hsp70) has a dual role in 
membrane translocation of preproteins we screened 
preproteins in an attempt to find examples which re- 
quired either only the unfoldase or only the translo- 
case function of mt-hsp70. We found that a series of 
fusion proteins containing amino-terminal portions of 
the intermembrane space protein cytochrome be (cyt. 
b2) fused to dihydrofolate reductase (DHFR) were 
differentially imported into mitochondria containing 
mutant hsp70s. A fusion protein between the amino- 
terminal 167 residues of the precursor of cyt. be and 
DHFR was efficiently transported into mitochondria 
independently of both hsp70 functions. When the 
length of the cyt. be portion was increased and in- 
cluded the heme binding domain, the fusion protein 
became dependent on the unfoldase function of 

mt-hsp70, presumably caused by a conformational re- 
striction of the heme-bound preprotein. In the absence 
of heme the noncovalent heme binding domain in the 
longer fusion proteins no longer conferred a depen- 
dence on the unfoldase function. When the cyt. be 
portion of the fusion protein was less than 167 
residues, its import was still independent of mt-hsp70 
function; however, deletion of the intermembrane 
space sorting signal resulted in preproteins that ended 
up in the matrix of wild-type mitochondria and whose 
translocation was strictly dependent on the translocase 
function of mt-hsp70. These findings provide strong 
evidence for a dual role of mt-hsp70 in membrane 
translocation and indicate that preproteins with an in- 
termembrane space sorting signal can be correctly im- 
ported even in mutants with severely impaired hsp70 
function. 

T 
HE import of proteins into mitochondria is a complex, 
multi-step process. In recent years, a number of com- 
ponents of the mitochondrial import machinery have 

been identified. Among them are six gene products which 
are essential for the growth of Saccharomyces cerevisiae: the 
outer membrane protein ISP42/MOM38 that forms part of 
the general insertion pore (Baker et al., 1990; Kiebler et ai., 
1990); the inner membrane protein Mpilp that seems to 
represent part of the inner membrane translocation ma- 
chinery (Maarse et al., 1992); the 70-kD heat shock protein 
(hsp70) 1 in the matrix (termed Ssclp in yeast) that is in- 
volved in translocation and folding of proteins (Craig et al., 
1987, 1989; Kang et al., 1990; Scherer et al., 1990); hsp60 
in the matrix, the central component of the (re)folding ma- 
chinery (Cheng et al., 1989; Ostermann et al., 1989; Hor- 
wich, 1990); and the two subunits of the mitochondriai pro- 
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1. Abbreviations used in this paper: DHFR, dihydrofolate reductase; hsp70, 
70-kD heat shock protein; mt-hspT0, mitochondrial hsp70. 

cessing peptidase (Hawlitschek et al., 1988; Pollock et al., 
1988; Witte et al., 1988; Yang et al., 1988). 

Of all soluble essential components, mitochondrial hsp70 
(mt-hsp70) is the only one that seems to have a direct role 
in membrane translocation of preproteins, mt-hsp70 binds to 
the polypeptide chain in transit across mitochondrial outer 
and inner membranes (Kang et al., 1990; Ostermarm et al., 
1990; Scherer et al., 1990; Manning-Krieg et al., 1991). By 
using two temperature-sensitive yeast mutants of mt-hsp70 
(sscl-2 and sscl-3) we provided evidence that mt-hsp70 has 
a dual role in membrane translocation of preproteins (Gam- 
bill et al., 1993). (a) It facilitates unfolding of the polypep- 
tide chain. Mutant mitochondria that are only defective in 
the "unfoldase function" (sscl-2) are able to completely im- 
port an unfolded preprotein. (b) It is a genuine component 
of the inner membrane translocation machinery and thereby 
is essential for the completion of preprotein translocation 
into the matrix, independently of the folding state of the 
polypeptide chain ("translocase function"). Sscl-3 mitochon- 
dria were found to be affected in both, the unfoldase and the 
translocase functions of mt-hsp70 (Gambill et al., 1993). 

We have attempted a detailed test of this hypothesis. We 
tried to find preproteins which depended only on the unfol- 
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dase function or the translocase function of mt-hsp70 to ask 
which properties of  the preproteins influenced the hsp70 de- 
pendence. This was possible with a series of preproteins de- 
rived from the precursor of  cytochrome b2 that is targeted 
to the intermembrane space by a bipartite presequence of 80 
residues, consisting of a matrix-targeting signal and an in- 
tramitochondrial sorting signal. The distinct requirements 
for hsp70 could be correlated with the presence of  intramito- 
chondrial sorting signals and conformational restrictions of 
the preproteins that were fully consistent with the proposed 
hypothesis. Surprisingly, some of the preproteins did not re- 
quire a functional mt-hsp70 at all. The implications of these 
findings on the role of mt-hsp70 in preprotein sorting to the 
intermembrane space are discussed. 

Materials  and Methods  

Published procedures were used for the following: growth of Saccharo- 
myces cerevisiae wild-type and sscl-2 and sscl-3 mutant strains, and isola- 
tion of mitochondria (Daum et al., 1982; Hartl et al., 1987; Kang et al., 
1990, Gambill et ai., 1993); synthesis of cytochrome be and b2-dihydrofo- 
late reductase (DHFR) fusion proteins in rabbit reticulocyte lysates in the 
presence of [35S]methionine (Rassow et ai., 1989, 1990; Pfanner et al., 
1990; Koll et al., 1992); incubation of energized mitochondria (50/~g pro- 
tein; preincubated for 15 rain at 37"C) with reticuloeyte lysate at 25"C in 
the presence of BSA-buffer (with 3% [wt/vol] BSA) (Kang et al., 1990; S611- 
her et al., 1991); treatment with proteinase K (40-75 ttg/ml) (Pfanner and 
Neupert, 1987); analysis by SDS-PAGE, fluorography, laser densitometry 
and Western blotting (Kang et al., 1990; S611ner et al., 1991). 

Results 

Import of the Fusion Protein be(16 7)-DHFR Does Not 
Require a Functional mt-hsp70 

To find a preprotein that showed a low dependence on mt- 
hsp70, we tested the import of a number of  authentic and 
artificial preproteins into isolated mitochondria from wild- 
type yeast, sscl-2 and sscl-3 mutants. Surprisingly, we found 
a preprotein that was imported into both types of  mutant mi- 
tochondria with the same efficiency as into wild-type mito- 
chondria. The precursor, called b2(167)-DHFR, consisted 
of the 167 amino-terminal amino acid residues (the 80-resi- 
due presequence and 87 residues of the mature protein part) 
of  the precursor of yeast cytochrome be and the entire 
mouse DHFR (Rassow et al., 1989). In our experiments, this 
fusion protein was synthesized in rabbit reticulocyte lysates 
in the presence of [35S]methionine and incubated at 25°C 
with isolated energized mitochondria, that has been prein- 
cubated for 15 min at 37°C, leading to induction of  the mt- 
hsp70 deficiency in the mutants (Kang et al., 1990; GambiU 
et al., 1993). Fig. 1, A and B shows that the rate of import 
of b2(167)-DHFR was indistinguishable in the three kinds 
of  mitochondria. It was processed in two steps, first to an 
intermediate-sized form by the matrix-localized processing 
peptidase (Hawlitschek et al., 1988; Yang et al., 1988) and 
then to the mature form by the inner membrane protease I 
whose catalytic activity resides on the intermembrane space 
side (Schneider et al., 1991). The imported mature-sized 
protein was protected against digestion by protease added to 
the mitochondria. However, it was accessible to added pro- 
tease after opening of  the intermembrane space by a mild 
swelling (Fig. 1 C), indicating that it was correctly located 
in the intermembrane space. 

Figure 1. b2(167)-DHFR is imported into isolated sscl-2 and sscl-3 
mutant mitochondria. (A and B) b2(167)-DHFR was synthesized 
in rabbit reticulocyte lysates in the presence of [35S]methionine 
and incubated with isolated energized mitochondria from wild-type 
(WT) yeast or the sscl-2 and sscl-3 mutant strains for 15 min (A) 
or the indicated times (B) at 25°C. The mitochondria had been 
preincubated for 15 min at 37°C. After the import reaction, treat- 
ment with proteinase K (B, and A where indicated) was performed 
(see Materials and Methods). The mitochondria were reisolated 
and analyzed by SDS-PAGE, fluorography, and laser densitometry. 
In B the total amount of precursor added to the import reaction was 
set to 100%. (C) Imported b2(167)-DHFR is located in the inter- 
membrane space, bz(167)-DHFR was imported as described 
above. The mitochondria were reisolated and resuspended in SEM- 
buffer (250 mM sucrose, 1 mM EDTA, 10 mM MOPS, pH 7.2). 
Half of the samples was diluted 10-fold in 25 mM Hepes/KOH, 
pH 7.4 (swelling), the other half in 25 mM Hepes/KOH, pH 7.4, 
0.6 M sorbitol. Then treatment with proteinase K was performed 
for 15 min at 0°C. The organeUes were reisolated and analyzed as 
described above. The amount of m-b2(167)-DHFR obtained in 
parallel samples without protease treatment was set to 100%. p, 
precursor; i, intermediate; m, mature. 
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Figure 2. Import of authentic cytochrome b2 and long b2-DHFR 
fusion proteins into sscl-2 and sscl-3 mitochondria is inhibited. The 
precursors of cytochrome b2 (A), b2(331)-DHFR (B) or b2(220)- 
DHFR (C) (Pfanner et al., 1990) were imported into isolated mito- 
chondria for 10-15 min at 25°C and analyzed as described in the 
legend to Fig. 1. Quantitation of the amount of protein (p + i 
+ m) imported into sscl-2 mitochondria (+ proteinase K) revealed 
28% for cytochrome b2, 32% for b2(331)-DHFR, and 44% for 
b2(220)-DHFR (WT set to 100%). 

The import of b2(167)-DHFR, as well as precursors 
shown to require mt-hsp70 function (Kang et al., 1990; 
Gambill et al., 1993), strictly depends on a membrane 
potential (Rassow et al., 1989; Martin et al., 1991). There- 
fore, the import defects seen in sscl-2 and sscl-3 mitochon- 
dria with preproteins other than b2(167)-DHFR are not 
caused by a dissipation of AxI,. In subsequent experiments we 
attempted to unravel the properties of b2(167)-DHFR that 
rendered its import independent of mt-hsp70. 

Fusion Proteins Containing a Long 
Cytochrome b2 Portion Require the UnfoMase 
Function of  mt-hsp70 

The processing of the authentic cytochrome b2 precursor 
and its transport to a protease-protected location was par- 
tially inhibited in sscl-2 mitochondria (Fig. 2 A; Kang et al., 
1990) and almost completely inhibited in sscl-3 mitochon- 
dria (Fig. 2 A). These results exclude the possibility that 
translocation of all preproteins with the targeting and sort- 
ing signals of cytochrome b2 is independent of functional 
mt-hsp70. 

It was thus possible that the presence of the DHFR-moiety 
conferred the independence of mt-hsp70. We used the fusion 
protein b2(331)-DHFR in which the carboxyl-terminal por- 
tion of the authentic cytochrome b2 precursor beyond resi- 
due 331 has been replaced by DHFR (Pfanner et al., 1990) 
to test this possibility. The import of b2(331)-DHFR was 
inhibited in both sscl-2 and sscl-3 mitochondria (Fig. 2 B), 
suggesting that sequences between 167 and 331 of cyto- 
chrome b2 were involved in conferring mt-hsp70 depen- 
dence of translocation. To further delimit the region, the 

Figure 3. Urea-denatured b2(220)-DHFR is imported with similar 
efficiency into wild-type, sscl-2 and sscl-3 mitochondria. Reticulo- 
cyte lysate containing b2(220)-DHFR was precipitated with am- 
monium sulphate (66% saturation) and dissolved in 8 M urea, 10 
mM DTT, 30 mM MOPS, pH 7.4, and diluted 40-fold into the im- 
port assay. Import into isolated mitochondria was performed for 5 
or 15 min at 25°C as described in the legend of Fig. 1. 

translocation of a fusion protein containing 220 amino acid 
residues of cytochrome b2 (b21220]-DHFR) was analyzed 
(Fig. 2 C). Import of b2(220)-DHFR was inhibited, indi- 
cating that sequences between residues 167 and 220 of the 
preprotein were required for the mt-hsp70 dependence. 

We then asked which of the functions of mt-hsp70 was 
needed by the longer preproteins. A requirement for the un- 
foldase function, but not for the translocase function, can be 
circumvented by artificially unfolding the preprotein by 
preincubating in 8 M urea (Gambill et al., 1993). Fig, 3 
shows that the import of denatured b2(220)-DHFR into 
sscl-2 and sscl-3 mitochondria occurred with the same 
efficiency as the import into wild-type mitochondria. The 
import of b2(220)-DHFR thus mainly depended on the un- 
foldase function of mt-hsp70. 

What is the reason for the conformational restriction of 
b~(220)-DHFR? The domain of cytochrome b2 that binds 
one heme noncovalently is located within the first 99 amino 
acids of the mature protein (Zia and Mathews, 1990). The 
b2(167)-DHFR fusion protein contains only 87 residues of 
the mature protein and thus does not contain a functional 
heme binding domain. However, b2(220)-DHFR and the 
larger fusions contain complete heme binding domains. As 
hemin is present in the reticulocyte lysate system, its binding 
to the longer preproteins may stabilize the conformation of 
the preprotein and therefore could explain a strong require- 
ment for unfolding during membrane translocation. To test 
this directly, b2(220)-DHFR was synthesized in a rabbit 
reticulocyte lysate that was prepared in the presence of 
cAMP instead of hemin (Ernst et al., 1976; Nicholson et al., 
1987). Fusion protein synthesized in hemin-depleted lysate 
was imported into sscl-2 and sscl-3 mitochondria (Fig. 4). 
Readdition of hemin inhibited its import (Fig. 4). The non- 
covalent binding of heme to the preprotein thus seems to lead 
to a conformational restriction of the polypeptide which 
renders its import dependent on the unfoldase function of 
fully active hsp70. It is interesting to note that the mitochon- 
drial import of &aminolevulinate synthase was also found to 
be inhibited by addition of hemin. In this case, the inhibition 
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Figure 4. Import of B2(220)-DHFR into sscl-2 and sscl-3 mito- 
chondria is inhibited in the presence of heroin. Rabbit reticulocyte 
lysates were prepared in the presence of 5 mM cAMP instead of 
heroin (Ernst et al., 1976; Nicholson et al., 1987). The b2(220)- 
DHFR was synthesized and imported as described in the legend to 
Fig. 1. Where indicated heroin (10 #M final concentration) was 
added back after synthesis, before the import reaction. 

was mediated by a region in the presequence of the protein 
(Lathrop and Timko, 1993); the mode of interaction of this 
so-called heme regulatory motif with heme and the role of 
hsp70 in the translocation of ~-aminolevulinate synthase are 
unknown. 

Figure 5. Short b2-DHFR fusion proteins with an intact sorting 
signal are not inhibited in import into sscl-2 and sscl-3 mitochon- 
dria. The fusion proteins b2(151)-DHFR, b2(84)-DHFR, b2(55)- 
DHFR, and b2(47)-DHFR were synthesized in rabbit reticulocyte 
lysates and imported for 8 rain at 25"C as described in the legend 
to Fig. 1. The amount of protein processed in wild-type mitochon- 
dria (no protease treatment) was set to 100% (control). 

Fusion Proteins That Lack the Intramitochondrial 
Sorting Signal Require the Translocase Function 
of  mt-hsp70 

The experiments described above indicate that fusion pro- 
teins containing 167 or more amino-terminal amino acid 
residues of cytochrome bz do not require the translocase 
function of rnt-hsp70, as indicated by their ability to be cor- 
rectly imported into sscl-3 mitochondria. We asked if cer- 
tain sequences in the amino-terminal portion of cytochrome 
b2 conferred this independence of the translocase function. 
b2-DHFR fusion proteins with amino-terminal segments 
shorter than 167 residues were analyzed for import into the 
mutant mitochondria (Fig. 5). The preproteins b2(151)- 
DHFR and b2(84)-DHFR were imported efficiently into 
sscl-2 and sscl-3 mitochondria. The shorter preprotein 
b2(55)-DHFR, however, was partially inhibited in import 
into sscl-3 mitochondria. Import of the preprotein b2(47)- 
DHFR was strongly inhibited in sscl-3 mitochondria, while 
the import into sscl-2 mitochondria was not affected (Fig. 5). 

The dependence of the import of short preproteins on mt- 
hspT0 might be due to their reduced length or, more interest- 
ingly, caused by the lack of certain signals that are present 
in the longer preproteins. The intermembrane space sorting 
signal of cytochrome b2 is located in the second half of 
the presequence. Similar to prokaryotic leader sequences 
(Wickner et al., 1991), the sorting signal consists of a hydro- 
phobic segment that is preceded by positively charged 
residues (Guiard, 1985; van Loon et al., 1986; Hartl et al., 
1987; Glick et al., 1992a,b; Koll et al., 1992). The posi- 
tively charged residues, amino acids 47-49, are followed by 
a mainly hydrophobic segment of >20 residues. The dele- 
tion of a 19-residue fragment (amino acids 47 to 65) in 
b2(167)-DHFR has been shown to fully disrupt the sorting 
signal and generate a preprotein that ended up in the mito- 
chondrial matrix (Koll et al., 1992). Therefore, we asked if 
b:(167)~lg-DHFR import into isolated mitochondria de- 
pended on mt-hsp70. In fact, processing and transport to 
a protease-protected location of b2(167)~19-DHFR were 
strongly inhibited in sscl-3 mitochondria (Fig. 6). This inhibi- 
tion of processing means that b2(167)~9-DHFR did not 
even go far enough into sscl-3 mitochondria to be cleaved 
by the processing peptidase. We conclude that the intact in- 
tramitochondrial sorting signal makes the import of b2(167)- 
DHFR independent of functional mt-hsp70. In sscl-2 mito- 
chondria, the import of b2(167)~19-DHFR was only slightly 
inhibited (Fig. 6), suggesting that b2(167)~t9-DHFR pre- 
dominantly depended on the translocase function of mt- 
hsp70. Consistently, unfolding of h2(167)~9-DHFR did not 
allow transport of the preprotein into sscl-3 mitochondria 
(Fig. 7). 

b~(16 7)~IrDHFR, but Not b2(16 7)-DHFR, Is Found in 
a Complex with mt-hsp70 

b2(167)At9-DHFR was accumulated in ssd-2 mitochondria 
and b2(167)-DHFR imported into ssd-2 or ssd-3 mito- 
chondria. The mitochondria were then lysed with detergent 
and co-immunoprecipitations with antibodies directed against 
mt-hsp70 were performed, bz(167)~I9-DHFR was efficiently 
co-immunoprecipitated out of sscl-2 mitochondria (Fig. 8). 
This co-immunoprecipitation indicated that the preprotein 
was accumulated in a complex with Sscl-2p which has a 
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Figure 6. b2(167)~Ig-DHFR is 
inhibited in import into ssd-3, 
but not sscl-2 mitochondria. 
The precursor of b2(167)AIg- 
DHFR was imported into iso- 
lated mitochondria for 15 min 
at 25°C as described in the 
legend to Fig. 1. 

strong binding activity for preproteins (Kang et al., 1990; 
Gambill et al., 1993). b2(167)-DHFR was not co-precip- 
itated with mt-hspT0s (Fig. 8). This result was expected as 
the import of h2(167)-DHFR was not inhibited in the mu- 
tant mitochondria and thus the imported protein was in the 
intermembrane space (see Fig. 1), while mt-hspT0 resides in 
the matrix. 

We therefore accumulated b2(167)~tg-DHFR and be(167)- 
DHFR at the same stage of import, in a two-membrane span- 
ning fashion in translocation contact sites (Fig. 9, A and B). 
To accomplish this the preproteins were preincubated with 
the specific DHFR-inhibitor methotrexate that stabilizes the 
tertiary structure of the DHFR-moiety (Eilers and Schatz, 
1986; Rassow et al., 1989, 1990; Koll et al., 1992). The 
amino-terminal b2 portion was inserted into the membranes 
of wild-type, sscl-2, and, in the case of b2(167)-DHFR, 
also sscl-3 mitochondria and processed to the intermediate- 
sized form, while the folded DHFR remained on the outside 
of the outer membrane and was accessible to added protease. 
In co-immunoprecipitations with anti-mt-hspT0 antibodies, 
b2(167)~,9-DHFR was found associated with mt-hsp70 of 
wild-type and ssclo2 mitochondria (Fig. 9 A). ba(167)- 
DHFR, however, could not be co-immunoprecipitated in 
wild-type, sscl-2 and sscl-3 mitochondria (Fig. 9 B), al- 
though it was accumulated in translocation contact sites and 
thus would have been in a stage where it should have access 
to mt-hspT0. We conclude that Ih(167)Alg-DHFR has to in- 
teract with mt-hspT0 to be imported into the mitochondrial 

Figure 7. Unfolding of b2(167)Amg-DHFR does not allow import 
into sscl-3 mitochondria, b2(167)AIg-DHFR was denatured in urea 
as described in the legend of Fig. 3 and imported for the times indi- 
cated as described in the legends to Figs. 1 and 3. The amount of 
protein protease-protected in wild-type mitochondria after 15 min 
incubation was set to 100% (control). 

0 - -  _ _ l  _ _ _ _  

Am:t-DIII0R + 4. ÷ 
P t ' ~ m m q l ~ e  ÷ 4 .  ÷ 

Ant[-Ssclp , 4. + 4. 
J t l J 

u c l - 2  ssc l -2  ssc l -3  
i 

b 2 ( 1 6 7 ) / ,  19 -DHI~ b~(167)-DHPR 

Figure 8. Co-immunoprecipitation of b2(167)~,9-DHFR, but not 
b2(167)-DHFR, with mt-hspT0. Urea denatured b2(167)~tg-DHFR 
and b2(1CI)-DHFR were imported as described in the legends to 
Figs. 1 and 7 for 10 min at 25°C. The reisolated mitochondria were 
lysed in 0.1% Triton X-100, 100 mM NaC1, 10 mM Tris/HC1, pH 
7.5, 5 mM EDTA and immunoprecipitation with antiserum against 
DHFR, preimmune serum and antiserum against mt-hsp70 (Ssclp) 
were performed (Gambill et al., 1993). The amount of protein 
precipitated with anti-DHFR serum was set to 100% (control). 

matrix, whereas for the import of b~(167)-DHFR into the 
intermembrane space functional mt-hsp70 is not required 
and an interaction between the preprotein and mt-hsp70 can- 
not be detected. 

Discussion 

The experiments reported here show that the properties of 
mitochondrial preproteins strongly influence their depen- 
dence on mt-hsp70 for membrane translocation. The results 
obtained with the precursor of cytochrome b, and fusion 
proteins between amino-terminai portions of b2 and DHFR 
are best discussed by considering a dual role for mt-hsp70 
in membrane translocation (unfolding of the preprotein and 
actual translocation; summarized in Fig. 10). 

DHFR fusion proteins with a relatively short cytochrome 
b2 part are nearly independent of the unfoldase function of 
mt-hsp70 (Fig. 10, d-i).  This group of precursors can be sub- 
divided into those which require no mt-hsp70 unfolding or 
translocation functions (Fig. 10, d, f, and g) or require only 
the translocase function (Fig. 10, e, h, and i). This distinc- 
tion depends on the presence of the intermembrane space 
sorting signal. Short preproteins which contain the inter- 
membrane space sorting signal are independent of mt-hsp70 
and can thus be imported efficiently into sscl-2 and ssd-3 mi- 
tochondria where no association with the hsp70 can be ob- 
served. Preproteins which lack the intermembrane space 
sorting signal are imported completely into the matrix of 
wild-type mitochondria and depend strictly on binding to 
mt-hsp70 to reach the matrix. Unfolding of the preproteins 
does not promote their import into the matrix ofsscl-3 mito- 
chondria where mt-hsp70 appears to be defective in binding 
to preproteins. Transport into sscl-2 mitochondria is possi- 
ble, however, as the mutant Sscl-2p shows a strong binding 
activity for the preproteins. 

Long cytochrome b2 preproteins that require unfoldase 
function are completly imported upon artificial unfolding of 
the preprotein. Therefore, an interaction with mt-hsp70 does 
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Figure 9. Differential co-immunopreeipitation of contact site-inter- 
mediates of th-DHFR fusion proteins with mt-hsp70, b2(167)a19- 
DHFR (A) and b2(167)-DHFR (B) were preincubated with 4/.tM 
methotrexate for 10 min at 0°C (Eilers and Schatz, 1986; Rassow 
et al., 1989, 1990) and incubated with the energized mitochondria 
for 20 rnin at 25°C. The mitochondria were reisolated, washed, and 
subjected to immunoprecipitation as described in the legend of 
Fig. 8. In parallel samples the mitochondria were treated with pro- 
tease, leading to degradation of the fusion proteins, confirming that 
the fusion proteins were accumulated in mitochondrial contact sites 
as described (Rassow et al., 1989, 1990). 

not seem to be essential for correct import and sorting of 
preproteins with an intermembrane space-sorting signal. 
Since even the first processing step of preproteins without the 
sorting signal is blocked in sscl-3 mutant mitochondria, it 
appears that precursors with a sorting signal can use an alter- 
native mechanism that promotes their insertion into the inner 
membrane followed by correct localization to the intermem- 
brane space. A yet to be identified sorting component may 
thus be able to substitute for the translocase function of mt- 
hsp70 when preproteins possess the intermembrane space- 
sorting signal. 

The sorting pathway of the precursor of cytochrome b2 is 
currently the subject of a controversial debate. According to 
the "stop transfer" hypothesis, the sorting signal in the sec- 
ond portion of the presequence is arrested in the inner mem- 
brane and the mature portion of the protein is prevented from 
entering the matrix (van Loon et al., 1986; Glick et al., 
1992a,b). The lack of a mt-hsp70 requirement for cyto- 
chrome b2 import would be in agreement with the predic- 
tions of the stop transfer hypothesis, however, our findings 
do not imply that precursors with the brsorting signal do 
not interact with mt-hsp70 at all; rather, longer th-DHFR 
fusion proteins as well as the authentic cytochrome b2 

Figure 10. Cytochrome b2 and b2-DHFR fusion proteins and their 
requirement for the translocase function or unfoldase function of 
mitochondrial hsp70. The numbers of amino acid residues of the 
preproteins used in this study are given (starting with the first 
amino-terminal residue of the precursor of cytochrome b2[pb2]). 
The arrows indicate the processing sites. 

preprotein require mt-hsp70 for unfolding. According to the 
stop transfer model, mt-hspT0 would only be able to bind to 
the presequence of cytochrome b2 to facilitate unfolding of 
the mature part of the protein. While this possibility cannot 
be excluded, one could perhaps more easily imagine that in- 
teraction of mt-hsp70 with the mature part of the protein is 
involved in facilitating the unfolding of large proteins. 

According to the original "conservative sorting" hypothe- 
sis, the preprotein is first imported completely into the ma- 
trix and then exported to the intermembrane space (Hartl et 
al., 1987). Recently, Koll et al. (1992) suggested that the im- 
port and export steps are coupled. A sorting component may 
recognize the sorting signal of the precursor during translo- 
cation and redirect translocation back across the inner mem- 
brane. In this modified view of conservative sorting, one 
might not expect to find the entire translocation interme- 
diate in the matrix. Since interaction with mt-hsp70 is not 
essential for the cytochrome b2 sorting pathway, cyto- 
chrome b2 is apparently not imported like a matrix-targeted 
precursor as would be predicted in the original conservative 
sorting hypothesis. However, the independence of import of 
some b2 fusion proteins from mt-hsp70 is compatible with 
the modified version of the model, with mt-hsp70 required 
for unfolding of certain fusion proteins. Therefore, although 
at a first glance, our findings may appear to favor the stop 
transfer model, they do not allow a definitive conclusion as 
to which model is correct. 

The ongoing debate focuses on the issue of whether or not 
the sorting signal and the mature part of cytochrome b2 
pass through the ma~ix during the import process. The 
identification and localization of a sorting component that 
recognizes the intermembrane space-sorting signal will be 
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crucial for the determination of the mechanism of sorting to 
the intermembrane space. The localization of the sorting 
component to the matrix or the matrix face of the inner mem- 
brane would strongly favor the conservative sorting model, 
while localization to the intermembrane space or the outer 
face or core of the inner membrane would favor the stop 
transfer model. Surprisingly, the studies reported here indi- 
cate that the hypothetical sorting component has to operate 
in a very early step of translocation since preproteins lacking 
the sorting signal do not undergo even the first processing 
step in sscl-3 mitochondria. 

Independence from the unfoldase function of mt-hsp70 
seems to depend on the structure of the protein to be im- 
ported. Apparently the amino-terminal portions of cyto- 
chrome b2 do not have a tendency to fold into stable ter- 
tiary structures. The low energy required for unfolding of 
DHFR (6 kcal/mol for authentic DHFR) (Pace et al., 1990) 
may be further lowered due to its fusion with segments of 
cytochrome b2. Interestingly, the (short) Su9-DHFR fusion 
protein (presequence of Fo-ATPase subunit 9 fused to 
DHFR) shows a dependence on mt-hsp70 to promote unfold- 
ing of the DHFR-moiety (Kang et al., 1990; Gambill et al., 
1993), indicting that indeed the context of DHFR in a fusion 
protein modulates the requirements for unfolding. 

Preproteins with longer segments of cytochrome b2, par- 
ticularly the heme-binding cytochrome domain (Fig. 10, 
a-c), have conformational restrictions that require unfolding 
by mt-hsp70. Strikingly, a preprotein containing the cyto- 
chrome domain could be imported independently of func- 
tional mt-hsp70 when the reticulocyte lysate was prepared in 
the absence of hemin, but its import was inhibited by readdi- 
tion of hemin. This suggests that binding of heme to the 
preprotein in the cytosol promotes folding of the polypeptide 
chain. The translocation of those preproteins then apparently 
needs the full unfolding activity of mt-hsp70 as preproteins 
seem to be translocated across mitochondrial membranes in 
an extended conformation (Rassow et al., 1990). 

It is likely that mt-hsp70 is not the only component of the 
import machinery that is involved in unfolding of prepro- 
teins. These yet to be characterized components seem to be 
sufficient for preproteins that require only low energy inputs 
for unfolding. It is obvious that the translocation of an initial 
segment of a preprotein across the inner membrane includes 
the unfolding of this segment and thus facilitates a further 
unfolding of the preprotein (Neupert et al., 1990). Cyto- 
chrome brpreproteins, that depend strictly on the translo- 
case function of mt-hsp70, are apparently not inserted far 
enough into the inner membrane of sscl-3 mitochondria to 
expose the processing site to the matrix processing peptidase 
and thus lack the unfolding and import promoting force pro- 
vided by a translocation of the presequence across the inner 
membrane. On the other hand, the membrane potential is 
sufficient to drive the translocation of the more positively 
charged matrix-targeting sequence of Su9-DHFR across the 
sscl-3 inner membrane (Gambill et al., 1993; Martin et al., 
1991). Consistently these cytochrome b2 preproteins are 
not even transported across the outer membrane in sscl-3 mi- 
tochondria. Interaction of a polypeptide chain with the sort- 
ing component postulated above may provide a low unfolding 
force sufficient for short b2-DHFR proteins carrying the 
sorting signal. With the longer fusion proteins, the unfoldase 
function of mt-hsp70 is needed in addition to remove stronger 

conformation restrictions. The requirement for mt-hsp70 
correlates with the ATP dependence of import, as the short 
fusion proteins (containing the sorting signal) were found 
to be efficiently imported into ATP-depleted mitochondria, 
while import of the longer fusion proteins required the pres- 
ence of ATP (Pfanner et al., 1990). 

In summary, the differential requirements of the various 
th-DHFR fusion proteins for mt-hsp70 provide strong sup- 
port for our hypothesis of a dual role of mt-hsp70 in mem- 
brane translocation ofpreproteins. We do not intend to imply 
that in the normal translocation process mt-hsp70 acts inde- 
pendently in the unfolding and the translocation processes. 
Rather, we envision that, while all proteins require binding 
for translocation into the matrix, preproteins with a greater 
degree of structure would reasonably be expected to require 
binding of more molecules of mt-hsp70 or mt-hsp70 with a 
higher affinity than is required for preproteins that are only 
loosely folded. Moreover, our results show that the mecha- 
nism of insertion into the inner membrane is not identical for 
matrix-targeted preproteins and preproteins with an inter- 
membrane space-sorting signal. Our findings also empha- 
size that an analysis of sorting routes of preproteins should 
not only include the question of involvement of a certain 
component such as mt-hsp70, but also take into account that 
a single component can have multiple functions. 
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