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Abstract. The internalization of signaling receptors 
such as the insulin receptor is a complex, multi-step 
process. The aim of the present work was to deter- 
mine the various steps in internalization of the insulin 
receptor and to establish which receptor domains are 
implicated in each of these by the use of receptors 
possessing in vitro mutations. We find that kinase acti- 
vation and autophosphorylation of all three regulatory 
tyrosines 1146, 1150, and 1151, but not tyrosines 1316 
and 1322 in the COOH-terminal domain, are required 
for the ligand-specific stage of the internalization pro- 
cess; i.e., the surface redistribution of the receptor 
from microvilli where initial binding occurs to the 
nonvillous domain of the cell. Early intracellular steps 

in insulin signal transduction involving the activation 
of phosphatidylinositol Y-kinase are not required for 
this redistribution. The second step of internalization 
consists in the anchoring of the receptors in clathrin- 
coated pits. In contrast to the first ligand specific step, 
this step is common to many receptors including those 
for transport proteins and occurs in the absence of ki- 
nase activation and receptor autophosphorylation, but 
requires a juxtamembrane cytoplasmic segment of the 
~-subunit of the receptor including a NPXY sequence. 
Thus, there are two independent mechanisms control- 
ling insulin receptor internalization which depend on 
different domains of the #-subunit. 

C 
ELL surface receptors taken up by clathrin-coated 
pits can be divided in two categories. Class I recep- 
tors, which include transport protein receptors (i.e., 

LDL, transferrin, asialoglycoprotein receptors), move spon- 
taneously to clathrin-coated pits and are continuously inter- 
nalized and recycled even in the absence of ligand. The 
preferential localization of class I receptors to clathrin- 
coated pits is presumably dependent on the cytoplasmic do- 
main of these receptors (Brown et al., 1983) and various se- 
quences putatively capable of controlling the internalization 
of different cell surface receptors have been proposed (Chen 
et al., 1990; Lazarovits and Roth, 1988; Ktistakis et al., 
1990; Collawn et al., 1990; Bansal and Giersasch, 1991; 
Lobel et al., 1989; Girones et al., 1991). The only common 
features of these sequences identified thus far are the pres- 
ence of aromatic residues and the propensity of the amino 
acid involved to form exposed fight beta turns. Most evi- 
dence suggests that these determinants interact specifically 
with one or more components of clathrin-coated pits such as 
the 110-kD protein termed/~-adaptin which is part of a com- 
plex of proteins that also serves to bind clathrin to the plasma 
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membrane (Pearse and Robinson, 1990; Pearse, 1988; Ahles 
et al., 1988; Beltzer and Spiess, 1991). 

In contrast to the class I nutrient receptors, signaling 
receptors (class II receptors, i.e., insulin and EGF recep- 
tors) are not trapped in clathrin-coated pits unless they have 
bound their ligand (Brown et al., 1983). Their internaliza- 
tion is more complex and involves a higher degree of 
specificity than class I receptors. The cytoplasmic domain 
of these receptors contains an intrinsic tyrosine kinase which 
is activated by ligand binding (Yarden and UUrich, 1988). In 
the case of the insulin receptor, endocytosis is triggered by 
hormone binding (Carpentier et al., 1984; Backer et al., 
1989a) and, recent evidence from our laboratories has high- 
lighted the central importance of insulin-induced kinase acti- 
vation in the first step of internalization: the translocation of 
the receptors from microvilli where they concentrate in their 
unoccupied form towards the nonvillous area of the cell 
membrane where clathrin-coated pits are localized (Car- 
pentier et al., 1992). For the EGF receptor, another example 
of class II receptor, internalization eventually occurs via the 
same clathrin-coated pits as those used by class I receptors 
(Carpentier et al., 1982). Autophosphorylation itself is not 
a sufficient signal to induce internalization. Likewise, de- 
letion of a portion of the intracellular juxtamembrane do- 
main of the insulin receptor which has a minimal effect on 
autophosphorylation inhibits insulin-stimulated endocytosis 
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(Backer et al., 1990; Thies et al., 1990). Since this portion 
contains a NPXY consensus motif similar to that in the LDL 
receptor, it is probable that a second regulatory step, com- 
mon to many receptors including class I receptors, is in- 
volved in insulin receptor internalization. Thus, internaliza- 
tion of the insulin receptor appears to involve two potential 
levels of regulation: a first one controlled by insulin binding 
and kinase activation, and a second one more general and 
common to a large number of receptors. The aim of the pres- 
ent work was to characterize these two steps of insulin recep- 
tor internalization, to distinguish the exact structural deter- 
minants of the fl-subunit which are required for each of them 
and to determine whether internalization is dependent on the 
early stages of post-receptor insulin signal transduction. To 
this end, we have characterized morphologically and bio- 
chemically, the stages of internalization for insulin receptors 
possessing a variety of in vitro mutations. 

Materials and Methods 

Cell Culture and Incubation 

The generation and characterization of the stably transformed CliO cell 
lines [CliO-HIRe, CliO-A960, CHO-A1018, CliO-F960, CHO-ACT, 
CHO-Fl146, and CHO-F3TYR] expressing the wild-type (CHO-HIRC) and 
mutated (the others) human insulin receptor (HIR) 1 have been described 
previously (Backer et al., 1990; Myers et al., 1991; Wilden et al., 1990; 
White et ai., 1988). Each of these cell lines expresses >106 HIPs per cell, 
except for CliO-F960 which expresses 5 x 10~ HIR per cell. By contrast, 
untransformed CliO cells express 3 x 102 rodent insulin receptors/cell. 
Cells were grown in Ham's F-12 medium supplemented with 10% FCS in 
35- or 60-mm dishes. All transfected cells were selected for using neomycin 
resistance and their growth media contained 450 #g/ml of the active neomy- 
cin analogue G418. 

Before each incubation, cells were washed twice in incubation buffer 
containing 100 mM Hepes, 120 mM NaCI, 1.2 mM MgSO4, 15 mM 
CH3COONa, 10 mM glucose, and 1% BSA (pH 7.4) at4°C or 37°C. Cells 
were then incubated either for 2 h at 4°C or for 5, 15, 30, or 60 rain at 37°C 
in the presence of human A14 monoiodo t2sI-insulin (3.10 -H M) (a gener- 
ous gift from NOVO, Eagsvaerd, Denmark). At the end of these incubations, 
the cells were fixed in 2.5% glntaraidehyde in 0.1 M cacodylate buffer, pH 
7.4, for 30 rain at room temperature. 

Insulin Receptor Autophosphorylation 
Insulin receptor phosphorylation was assessed by Western blotting with cc 
anti-phosphotyrosine (~PY) antibodies. Cell lysates for Western blot analysis 
were performed by incubating cells in six-well dishes in the absence or pres- 
ence of insulin for 2 min, followed by lysis in Laemmli sample buffer 
(Laemmli, 1974), boiling for 2 min and sonication for 2 s. Proteins were 
separated on 7.5% resolving SDS-PAGE minigels (Hoeffer Sci. Instrs., 
San Francisco, CA), transferred to nitrocellulose in Towbin buffer contain- 
ing 0.02 % SDS, and blotted with ~xPY antibodies as indicated. Proteins 
were visualized using 125I-protein A (ICN Biomedicals, Costa Mesa, CA) 
and autoradiography. 

Autoradiography 
Fixed cells from two different experiences were dehydrated, processed for 
EM autoradiography, and quantitated as previously described (Carpentier 
et al., 1978). For each incubation time analyzed, three Epon blocks were 
prepared and three sections were cut from each block. Thus, for each time 
point studied, for each cell line, 18 separate grids were examined out of 
which ,~2,000 grains were analyzed from all cells judged to be morphologi- 
cally intact. Grains within a distance of 250 nm from the plasma membrane 
were considered associated with the cell surface; grains overlying the 
cytoplasm and >250 nm from the plasma membrane were considered inter- 
nalized. Grains associated with the plasma membrane were divided into the 

1. Abbreviations used in this paper: txPY, anti-phosphotyrosine; HIR, hu- 
man insulin receptor. 

following classes: (a) microvilli, (b) clathrin-coated pits, (c) nonvillous 
nonclathrin-cuated pits segments, and (d) uninterpretable. Grains were con- 
sidered associated with microvilli or clathrin-cuated pits if their center was 
<250 um from these surface domains, they were categorized in (d) when 
the structures underlying the grain could not be unequivocally identified. 
In all cell lines, by 5 min of incubation at 37°C, the ratio of percent grains 
associated with microvilli over percent cell surface occupied by microvilli 
was higher than one indicating that t25I-insulin preferentially associated 
with microvilli at that early time point. 

Morphometry 

Evaluation of the percentage of the total cell surface occupied by microvilli 
and clathrin-coated pits was carried out on randomly photographed pictures 
of CHO cells. Twelve pictures were taken from four different Epon blocks 
(4 x 12 = 48) at an initial magnification of x19,000. The total plasma 
membrane length, as well as the respective length of microvilli and clathrin- 
coated pits, were determined on negatives projected onto a graphic tablet 
(Tektronic, type 4953) connected with a microprocessor (IBM AT), allow- 
ing the different parameters to be recorded and statistically analyzed. 

Quick Freezing 
To visualize the cyroplasmic face of the plasma membrane and the typical 
clathrin coats, plasma membrane of CHO cells were prepared according to 
Moore et al. (1987) and Lin et al. (1991) with some modifications and 
replicas were performed by the quick-freeze rotary shadowed technique of 
Heuser (1989). Briefly, cells were sedimented on formvar nickel grids 
coated with poly-L-lysine (I mg/ml). Adherent cells were disrupted in hypo- 
tonic medium (25 mM Hepes, 25 mM KC1, 2.5 mM Mg acetate and 0.2 
mM DTI', pH 70) by gentle sonication. Grids were extensively washed to 
eliminate cell debris and immediately fixed in 0.5 % glutaraldebyde for 15 
min at 4°C followed by 15 min at room temperature. Grids were next exten- 
sively rinsed in water and rapidly frozen in liquid nitrogen. They were then 
etched in a Balzers 400 (Balzers, Liechtenstein) rotative plate device. 
Replicas were prepared by platinum and carbon evaporation. 

Measurements of the mean size of clathrin-coated pits were carded out 
on photographic prints at a final magnification of 147,000x onto the same 
graphic tablet as described above. In each cell line studied, 20 cells were 
photographed and the diameter of a mean of four clathrin-coated pits were 
measured per cell. 

Results 

Expression and Autophosphorylation of the Normal 
and Mutated Insulin Receptors in CHO Cells 

The various CHO cell lines employed in this study have been 
described previously (Chou et al., 1987; Backer et al., 1990; 
Myers et al., 1991; Wilden et al., 1990; White et al., 1988) 
and their characteristics are summarized in Fig. 1. All cell 
lines expressed >106 receptors/cell. Autophosphorylation 
of the insulin receptor fl-subunit from insulin-stimulated 
CHO cells expressing the normal receptor (CHO-HIRC), 
the receptor with a deletion of 12 amino acids in the jux- 
tamembrane domain including the NPXY (CHO-A960), a 
point mutation of Tyr960 in the NPXY to Phe (CHO-F960), 
and a COOH-terminal deletion mutant lacking two auto- 
phosphorylation sites (CHO-ACT) was similar (Fig. 2). By 
contrast, insulin-induced autophosphorylation of the ATP- 
binding site mutant (CHO-A1018) cells was undetectable, 
and phosphorylation of CHO-F1146 and CHO-F3TYR (con- 
taining Tyr to Phe mutations in one or all three tyrosines in 
the regulatory domain) was moderately to severely reduced, 
respectively (Fig. 2), in agreement with previous studies 
(Wilden et al., 1990). 

~I-Insulin Internalization in CHO Cells Expressing 
Normal or Mutated Insulin Receptors 

To investigate their ability to internalize insulin receptors, 
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Figure 1. Characteristics of mutant insulin receptors. (Upper part) A linear model adapted from Myers et al. (1991) of the intracellular 
domain of the/~-subunit indicates the relative position of the transmembrane region (/34) and the juxtamembrane, regulatory, and COOH- 
terminal regions. (Lower part) The characteristics and the references of the various mutant insulin receptors used in the present study 
are listed. 

transfected cells were exposed to tracer concentration (3 x 
10-" M) of '25I-insulin at 37°C, processed for EM autoradi- 
ography, and '2q-insulin internalization was quantitated as 
previously described (Carpentier et al., 1978). CHO-I-IIRC 
cells progressively internalized '25I-insulin so that by 60 
min of incubation, 35-40 % of the cell-associated radioactive 
material was inside the cells (Fig. 3 A). In CHO A1018 cells, 
in which the insulin receptor tyrosine kinase was inactive, 
'25I-insulin internalization was markedly reduced (Fig. 3 
A). To determine whether an intact ldnase was sufficient or 
whether, in addition, autophosphorylation of specific tyro- 
sine residues was required, we followed 12q-insulin inter- 

nalization in cells expressing insulin receptors with deletion 
or substitution of the major sites of autophosphorylation. 
Deletion of 43 amino acids of the/3-subunit (CHO-ACT), 
which removed two major autophosphorylation sites (1316 
and 1322) but maintained a normal kinase activity, was with- 
out effect on 'zsI-insulin internalization (Fig. 3 B). By con- 
trast, substitution of the three tyrosines of the regulatory re- 
gion (1146, 1150, and 1151) for phenylalanine resulted in a 
decrease in ' 'I-insulin internalization similar to that of the 
A1018 mutant (Fig. 3 B). Even substitution oftyrosine 1146 
alone (CHO-FI146) was sufficient to markedly reduce '25I- 
insulin internalization in spite of the fact that the insulin 

Figure 2. Insulin receptor 
phosphorylation assessed by 
Western blotting with aPY 
antibodies. CHO cells ex- 
pressing wild-type (HIRC) or 
mutated insulin receptors (the 
others) were incubated in ab- 
sence ( - )  or presence (+) of 
0.1 M of insulin for 2 min, 
solubilized, electrophoresed 
on 7.5% SDS-PAGE gel, and 
transferred to nitrocellulose. 
Phosphotyrosine residues were 
visualized on nitrocellulose 
blots by ~xPY antibodies, 
fotlowed by O~)protein A 
and autoradiograpby. Insulin- 
induced tyrosine phosphory- 
lation is observed as an in- 
crease in radioactivity of the 
/3-subunit (95-kD band). 
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Figure 3. ~I-Insulin internalization in CHO ceils transfected with 
normal (HIRC) or mutated (all the others which characteristics are 
detailed in Fig. 1) insulin receptors. Results presented are the aver- 
age of the analysis of three different Epon blocks from two different 
experiments (n = 6). For each time point and each cell line ~2,000 
autoradiographic grains were quantitated. Results are expressed as 
percent of the total number of grains associated with the cells which 
center was >250 nm from the plasma membrane. 

receptor kinase was activated to "o50% of normal levels 
(Fig. 3 B). Thus insulin receptor internalization requires not 
only an intact and activable kinase, but also the autophos- 
phorylation of all three tyrosines of the regulatory domain 
of the receptor. 

But, are these necessary events sufficient for the internal- 
ization of the insulin receptor in response to insulin binding? 
Since an amino acid sequence present in the juxtamembrane 
domain of various receptors could play a role in their en- 
docytosis (Chen et al., 1990; Lazarovits and Roth, 1988; 
Ktistakis et al., 1990; Collawn et al., 1990; Bansal and Gier- 
sasch, 1991; Lobel et al., 1989; Girones et al., 1991), we 

focused our interest on the juxtamembrane domain of the 
~-subunit of the insulin receptor. In CHO ceils expressing 
the A960 mutant receptor (a deletion of 12 amino acids in 
the juxtamembrane domain (amino acids 954-965, which in- 
clude the above-mentioned amino acid sequence), receptor 
autophosphorylation was normal or near normal (Fig. 2) but 
internalization of l~5I-insulin was markedly reduced (Fig. 3 
C). It has been suggested that the presence of an aromatic 
residue in the tyrosine position of NPXY sequence is re- 
quired for internalization to take place (Davis et al., 1987). 
This also appears to be true for the insulin receptor 
(Rajagopalan et al., 1991; Backer et al., 1992). ~25I-Insulin 
internalization in CHO-F960 cells, with a substitution of 
tyrosine 960 for phenylalanine, is virtually identical to that 
in CHO-HIRC Cells (Fig. 3 C). 

~z5I-Insulin Localization on the Surface of  CHO Cells 
Expressing Normal and Mutated Insulin Receptors 

Insulin-induced internalization of the insulin receptor re- 
quires surface redistribution of the receptor from microvilli 
to the nonvillous area followed by association of the recep- 
tors with clathrin-coated pits which represent the internal- 
ization gates (Carpentier et al., 1982, 1985, 1992; Fan et al., 
1982). To determine the possible roles of the kinase region, 
the autophosphorylation sites, and the juxtamembrane do- 
main of the insulin receptor/3-subunit in these two steps, we 
localized 12~I-insulin on the surface of the CHO cell lines 
expressing normal and mutant receptors at different incuba- 
tion times. 

As previously observed in other cell types (Carpentier et 
al., 1982, 1985, 1992; Fan et al., 1982), initial binding of 
125I-insulin to CHO cells preferentially occurs on microvilli 
(Figs. 4 and 5, and Table I). As a function of incubation time 
at 37°C, ~25I-insulin shifted from microviUi to the nonvil- 
lous domains in cells expressing insulin receptors with an ac- 
tive kinase and normal autophosphorylation of the regula- 
tory region (CHO-HIRC, CHO-A960, CHO-ACT) (Figs. 4 
and 5). By contrast, in kinase-inactive cells (CHO A1018), 
as well as in cells with substitution of tyrosine residues at po- 
sition 1146 or positions 1146, 1150 and 1151, the redistribu- 
tion of l~I-insulin was lost (Figs. 4 and 5). These results 
confirm that insulin activation of the receptor kinase is re- 
quired for the initial step of the internalization of the recep- 
tor, its surface redistribution. Taken together with our previ- 
ous observation that substitution of the two tyrosines at 
positions 1150 and 1151 also reduced surface redistribution 
of the receptor, the present data demonstrate that tyrosines 
1146, 1150, and 1151 in the regulatory domain of the/~-sub- 
unit are required for insulin to induce normal redistribution 
of its receptor. By contrast, autophosphorylation of tyro- 
sines 1316 and 1322 is not implicated in the redistribution 
process. 

As many other ligand-receptor complexes, in most cell 
types, the insulin-receptor complexes are internalized via 
clathrin-coated pits (Carpentier et al., 1982, 1985, 1992; 
Fan et al., 1982). In CHO-HIRC cells, ~zsI-insulin associa- 
tion with clathrin-coated pits progressively increased with 
incubation time at 37°C (Figs. 4 and 6) consistent with the 
fact that the ligand is internalized via this gating mechanism 
in these cells. Similar results were obtained in CHO-ACT 
cells (Fig. 6). By contrast, in spite of its shift towards the 
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l~gure 4. (A-E) Representative examples of the localization of autoradiographic grains after 30 min of incubation of the various CHO 
cells in the presence of t2sI-insulin. In CHO-HIR, CHO-ACT, and CHO-F960 cells (A; CHO-ACT), ~25I-insulin is mostly associated with 
nonvillous domains of the plasma membrane or internalized. At higher magnification in the same cell lines (B; CHO-HIR), grains are 
seen in the vicinity of elathrin-coated pits (cp). In CHO-A1018, CHO-F3TYR, and CHO-Fl146 autoradiographic grains remain mostly 
associated with microviUi (C; CHO-F3TYR). But grains present on the nonvillous domain of the cells are frequently seen close to clathrin- 
coated pits (D; CHO-AI018). In CHO.A960 cells (E), autoradiographie grains are neither seen concentrated on microvilli nor in clathrin- 
coated pits (cp) but are seen on noninvaginated regions of the nonvillous domain of the cell surface. As seen on quick frozen rotatory 
shadowed replicas, elathrin-coated pits present a general three-dimensional organization which is similar in CHO-HIR and CHO-A960 
cells (F). (A) xS,000; (B) x56,000; (C) x15,000; (D) x46,000; (E) x22,000; (F) x170,000. 

nonvillous region of  the cell surface, lz~I-insulin did not 
concentrate in clathrin-coated pits in CHO-A960 ceils (Fig. 
6). In the case of  CHO-A1018, CHO-Fl146, and CHO-  
F31"YR cells, the percentage of  autoradiographic grains as- 
sociated with clathrin-coated pits remained low at all time 

points (Fig. 6). This was due to the fact that a large majority 
(70-75%) of the grains remained on microvilli at all t ime 
points (Fig. 5). Indeed, when the association of the radioac- 
tivity with clathrin-coated pits was calculated in terms of the 
autoradiographic grains present on the nonvillous surface, a 
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Figure 5. Surface redistribution of 125I-insulin in CHO cells trans- 
fected with normal (HIRC) or mutated (all the others which charac- 
teristics are detailed in Fig. 1) insulin receptors. Results presented 
are the average of the analysis of three different Epon blocks from 
two different experiments (n = 6). For each time point and each 
cell line -~2,000 autoradiographic grains were quantitated. Results 
are expressed as percent of the total number of grains associated 
with the cell surface (+250 nm from the plasma membrane) which 
center were within a distance of 250 nm from a microvilli. 
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Figure 6. Association of t25I-insulin with clathdn-coaw.xl pits on 
the total surface of CHO cells transfeeted with normal (HIRC) or 
mutated (all the others which characteristics are detailed in Fig. 1) 
insulin receptors. Results presented are the average of the analysis 
of three different Epon blocks from two different experiments (n = 
6). Results are expressed as percent of the total number of grains 
associated with the cell surface (+250 nm from the plasma mem- 
brane) which center were within a distance of 250 nm from a 
clathrin-coated pit. 

Table L Initial Localization of 125I-Insulin on the Surface 
of CHO Cells 

Percent n~I-insulin Percent total cell 
associated surface occupied 

CHO cell lines with microvilli* by microvilli¢ Ratio 

HIRC 2 75.9 + 2.0 58.3 + 2.9 1.30 
A 1018 81.9 + 1.8 62.7 + 2.0 1.31 
ACT 72.8 5: 1.4 57.7 5: 1.7 1.26 

F3TYR 75.9 5 : 3 . 1  56.2 + 1.9 1.26 
F 1146 78.8 + 3.9 61.1 + 1.5 1.29 
A960 75.2 + 0.9 54.6 -t- 3.6 1.38 

* Values presented correspond to the 2-h 4"C incubation. In each case n = 6. 
n = number of structures analyzed, respectively, from top m bottom: 51, 

50, 86, 90, 90, and 43. 

similar percentage of  grains was associated with clathrin- 
coated pits in CHO-A1018 cells, CHO-F1146 and CHO- 
F3TYR cells as in CHO-HIRC and CHO-ACT (Table II). By 
contrast, this value was more than the double of the one ob- 
tained in CHO-A960 cells (Table ID. These results demon- 
strate that the juxtamembrane domain of  the insulin receptor 
is required for the anchoring of  the receptor  in clathrin- 
coated pits and that kinase activation is not needed for ren- 
dering this domain of the receptor internalization-competent. 

Characteristics of  Microvilli and Clathrin-coated Pits 
on the Surface of the Various CHO Cells 

To determine whether the impaired association of  insulin 
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Table II. 1251-1nsulin Association with Table Ill. Characteristics of Clathrin-coated Pits in 
Clathrin-coated Pits CHO Cells 

Total 
surface* NonviUous surface* 

H I R C  10.5 + 1.9 19.1 5 : 2 . 4  
A 1018 4 . 0  5: 0 .2  17.5 ± 1.7 
ACT 9 .7  5 : 1 . 8  17.0 5 : 2 . 3  

F 3 T Y R  4 .6  + 0 .6  18.5 5 : 3 . 5  

F 1146 4.1 5: 0 .3  17.3 5: 0 .7  
A960 3 .5  + 0 .5  7 .8  5: 1.2 

* Percentage of autoradiographic grains present on, respectively, the total and 
nonvillous cell surface, that were found associated with clathrin-coated pits. 
Values are the mean of the values obtained at the 5, 15, 30, and 60 rain time 
points + SEM. 
(n = number of time points = 4) 

receptors with clathrin-coated pits in CHO-A960 cells was 
related to an abnormal clathrin-coated pit structure, the or- 
ganization of these pits and of their clathrin basket was mor- 
phologically characterized. A quantitative analysis of the 
percentage of the total cell surface occupied by microvilli 
and clathftn-coated pits and of the number of clathrin-coated 
pits per micron square in the various cell lines, before or at 
the end of the 37°C incubation, indicate that these param- 
eters were affected by neither the transfections of the various 
mutated insulin receptors nor the incubation conditions (Ta- 
ble HI). 

The three dimensional visualization of the cytoplasmic 
face of the inner leaflet of the plasma membrane by the quick 
freezing technique allowed a careful analysis of the organiza- 
tion and diameter of clathftn-coated pits. As illustrated in 
Fig. 4 and as shown by the quantitative analysis in Table 1/I, 
clathrin-coated pits were not affected by the various transfec- 
tions studied. 

Discussion 

In this report, we have studied the role of the cytoplasmic 
portion of the/3-subunit of the insulin receptor in insulin- 
induced receptor internalization in order to establish the role 
of various domains of the ~-subunit in the process. Based on 
previous studies, four domains can be defined in the intracel- 
lular portion of the receptor/~-subunit: a juxtamembrane do- 
main involved in substrate binding, an ATP-binding domain 
critical for kinase activity, a regulating domain containing 
three tyrosine sites of autophosphorylation (1146, 1150, and 
1151) whose autophosphorylation is important for full ki- 
nase activation, and a COOH-terminal domain containing 
two additional autophosphorylation sites and which have 
been suggested to be, in some studies, important in insulin's 
growth effects (Kahn and White, 1988; Thies et al., 1989). 
The data of the present study demonstrate the existence of 
two cell surface mechanisms controlling insulin receptor in- 
ternalization which depend on different domains of the 
~-subunit. The first step is ligand-specific. It is mediated by 
insulin-induced receptor kinase activation and autophos- 
phorylation of three tyrosine residues: 1146, 1150, and 1151, 
but does not depend on the cascade of phosphorylation lead- 
ing to the activation of phosphatidylinositol 3'-kinase. It con- 
sists in the surface redistribution of insulin-receptor com- 
plexes from microvilli, where the initial interaction between 
the receptor and the hormone occurs, to the nonvillous re- 

Percent cell surface occupied by Clathrin-coated 
CHO cell lines clathrin-coated pits* pits diameter 

(2 h 4°C) (60 rain 37°C) (nm)~ 
H I R C  1.14 + 0 .32  0 .93  + 0 .27  105.9 + 18.3 
A 1018 0 .95  5 : 0 . 2 1  0 .90  + 0 .20  108.4 + 18.3 
A C T  1.09 + 0 . 2 0  - - 
F 3 T Y R  0 .92  -l- 0 .13  - - 

F 1146 1.16 5 : 0 . 2 1  - - 

A960  0 .98  5 : 0 . 2 6  1.08 + 0 .29  101.7 + 9 .3  

* Quantifications carried out on thin sections. Values are mean + SEM; n = 
number of cells analyzed from top to bottom: 2 h 4°C = 51, 50, 86, 90, 90, 
and 43. 60 min 37"C = 45, 50, and 47. 

Quantification carded out on quick-freezing replicas. Values are mean -t- 
SEM; n = number of cell analyzed = 20, 17, and 21, respectively. 

gion of the cell surface. The second step is more common 
to many receptors, including those which are not autophos- 
phorylated and consists in the anchoring of the receptor in 
clathrin-coated pits. This step requires the presence of a 
preserved juxtamembrane domain, and especially of an aro- 
matic residue in position 960, but is independent of receptor 
autophosphorylation and kinase activation. 

The requirement of insulin receptor tyrosine kinase activ- 
ity per se in receptor internalization has been controver- 
sial since conflicting evidence for (Haft and Roth, 1987; 
McClain et al., 1987; Russell et al., 1987; Reynet et al., 
1990) and against (Backer et al., 1989b; Reddy et al., 1988; 
Trischitta et al., 1989) its role in this function have been 
reported. Taken together with previous data from our labo- 
ratory (Carpentier et al., 1992), the present results directly 
demonstrate an important role of kinase activation in mediat- 
ing insulin-induced receptor internalization in CHO cells. 
Moreover, they show that the kinase-dependent step is the 
surface redistribution of the receptor on the cell surface. We 
also find that insulin-induced internalization requires not 
only kinase activation but also the phosphorylation of all 
three of the tyrosine residues phosphorylated in the regula- 
tory domain (1146, 1150, and 1151). By contrast, the auto- 
phosphorylation of the tyrosine residues of the COOH- 
terminal tail of the B-subunit of the receptor is not required, 
since a deletion of the last 30 amino acids including tyrosines 
1316 and 1322, as well as one serine and one threonine site 
of phosphorylation is without effect. 

Whether autophosphorylation frees the receptor from lo- 
cal constraints or whether the receptor is actively trans- 
ported from the villous region to the nonvillous domain re- 
mains an open question. However, we and others have 
previously described a polar redistribution of insulin on the 
plasma membrane of cultured human lymphocytes (Baraz- 
zone et al., 1980; Majercik and Bourguignon, 1985; Schles- 
singer et al., 1980). This capping movement is an active pro- 
cess and requires cytoskeleton elements (Bourguignon and 
Singer, 1977; De Petfts, 1975). Thus, one could speculate 
that insulin binding activates the receptor kinase and allows 
the phosphorylation of cytoskeleton-associated proteins 
responsible for the surface displacement of the receptor. 
Nevertheless, we cannot exclude the possibility that insulin 
binding and/or autophosphorylation simply releases its 
receptor from some cytoskeleton elements, as recently 
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Table IV. Summary of the Functional, Biological and Internalization Characteristics of Mutant Insulin Receptors 

HIRC A 1018 ACT F 3TYR F 1146 A960 F 960 

Kinase activation by insulin + - + + + + + 
Autophosphorylation + - + + + + + 
pp 185 Phosphorylation + - + . . . .  
Ptdlns Y-Kinase + - + + + - + 
Glycogen synthase + - + - + - - 
Thymidine incorporation + - + . . . .  
Internalization + - + - - + + 
Surface Redistribution + - + - - + ND 
Association with Clathrin-coated 

pits (nonvillous surface) + + + + + - ND 

* This summary was prepared from published data referred to in Fig. 1 together with data from the present study. 

shown in the case of IgG binding to Fc receptor (Ohta et al., 
1991). 

In addition to its implication in receptor internalization, 
the insulin receptor tyrosine kinase activity is essential for 
insulin action. Further recent evidence suggest that a phos- 
phoprotein called pp185 or IRS-1 is a substrate of the insulin 
receptor and plays a significant role in the early stages of 
post-receptor insulin signal transduction (White et al., 1985, 
1987). Recently IRS-1 has been cloned and shown to associ- 
ate with and activate phosphatidylinositol Y-kinase (Sun et 
al., 1991; Backer et al., 1992a). Present data showing that 
two cell lines with a defect of pp185 phosphorylation and 
Ptdlns 3'-kinase activation (CHO-A960 and CHO-F960), 
nevertheless normally redistribute (or internalize) insulin 
receptors indicate that the substrate phosphorylation and 
PtdIns 3'-kinase activation are not involved in the triggering 
of insulin receptor internalization (Table IV). Moreover, the 
observation that insulin receptor internalization is impaired 
in two cell lines in which glycogen synthase activation 
(CHO-Fl146) is preserved (Wilden et al., 1990) suggests 
that insulin receptor internalization is not required for all 
biological actions of the hormone. 

The second step of the internalization process, i.e., an- 
choring of the receptor in clathrin-coated pits requires an 
amino acid sequence of the juxtamembrane domain com- 
prised between alanine 954 and asparagine 965. Among 
these 12 amino acids is a sequence NPEY which is similar 
to the sequence NPVY required for internalization of the 
LDL receptor and found also in the cytoplasmic domains of 
several transmembrane proteins (Chen et al., 1990). In con- 
trast to previously published data (Berhanu et al., 1991), our 
direct morphological observations support the important 
role of this sequence in the anchoring of the insulin receptor 
in clathrin-coated pits. In these plasma membrane invagina- 
tions, coat-assembly proteins (AP 2 or HA-II adaptors) ap- 
pear to mediate the interaction between receptors and 
clathrin (Pearse and Robinson, 1990). Thus, it is probable 
that the interaction between the insulin receptor and these 
adaptors involves a sequence included in the 12 amino acids 
deleted in the receptor expressed in A960 cells. The reduced 
association of the A960 insulin receptor with clathrin-coated 
pits is not due to a general defect in the clathrin-pathway, 
since the total number, mean size, and general organization 
of clathrin-coated pits are similar in A960 cells and the vari- 
ous other CHO lines studied. However, even in the A960 
ceils, endocytosis of the insulin receptor is not totally 
prevented and still proceeds at a significant rate. This can be 

explained first by the fact that A960 cells express insulin 
receptors whose kinase can be activated by insulin binding 
and, thus, are rapidly redistributed to the nonvillous region 
of the cell where endocytotic processes occur, and by the fact 
that upstream of the NPEY sequence of the insulin receptor 
is a GPLY sequence which has also recently been implicated 
in the internalization of the insulin receptor and could have 
an additive effect to that of the NPEY sequence (Rajagopalan 
et al., 1991; Backer et al., 1992a). 

Other sequences capable of controlling the internalization 
of other surface receptors, i.e., the transferrin receptor, have 
also been proposed (Chen et al., 1990; Lazarovits and Roth, 
1988; Ktistakis et al., 1990; Collawn et al., 1990; Bansal 
and Giersasch, 1991; Lobel et al., 1989; Girones et al., 
1991). At present, the only common features of these se- 
quences are the presence of one aromatic residue and their 
specification of a particular structure: a tight type 1/3 turn. 
The presence of an aromatic residue at position 960 seems 
also sufficient for normal internalization of the insulin recep- 
tor since the replacement of tyrosine 960 by phenylalanine 
does not perturb insulin-induced insulin receptor internal- 
ization, whereas there is a marked loss of internalization ob- 
served when alanine was present at this position. As recently 
suggested (Lehmann et al., 1992; Jadot et al., 1992), the in- 
terchangeability of aromatic residues in this position could 
be dependent on the length of the cytoplasmic tail of the insu- 
lin receptor. 

The second step of insulin-induced internalization appears 
to be independent of kinase activation and of phosphoryla- 
tion of any tyrosine residue since in CHO-A1018, CHO- 
F3TYR, and CHO-ACT insulin receptors present on the 
nonvillous region of the cells do concentrate normally in 
clathrin-coated pits. These direct morphological observa- 
tions demonstrate that the receptor segment responsible for 
the anchoring of the insulin receptor in clathrin-coated pits 
is not unmasked by kinase activation and/or autophosphoryla- 
tion but is always exposed. These conclusions are in agreement 
with the previously shown ability of antipeptide antibodies 
prepared against amino acids 952-962 to immunoprecipitate 
insulin receptors regardless of their autophosphorylation 
state (Herrera et al., 1986; Perlman et al., 1989). They also 
agree with our recent observations that the constitutive inter- 
nalization of the insulin receptor occurs via clathrin-coated 
pits (Paccaud et al., 1992). By contrast, Backer et al. (1991) 
have shown that the internalization of kinase-deficient recep- 
tors can be distinguished kinetically and pharmacologically 
from that of wild-type receptors at low occupancies. Thus, 
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alternate pathways for the constitutive endocytosis of cell 
surface receptors cannot be ruled out. 

Recently, Smith et al. (1991) followed the surface distribu- 
tion and internalization of insulin labeled with colloidal gold 
in ceils expressing kinase active and inactive insulin recep- 
tors, and concluded that autophosphorylation was not re- 
quired for the receptor to migrate from microvilli to the 
nonvillous region of the cell, but was necessary for the con- 
centration of these receptors in clathrin-coated pits. These 
studies differed from ours in the use of insulin coupled to rel- 
atively large electron dense colloidal gold particles which 
might affect subcellular distribution of the hormone more 
than simple iodination. These technical differences in the 
two experimental systems could also explain the long lasting 
controversy about the internalization gate of insulin (for re- 
view see Carpentier, 1989). 

In conclusion, we have characterized two initial steps of 
insulin receptor internalization: the surface redistribution 
and the anchoring in clathrin-coated pits. These two steps in- 
volve structures in different domains (juxtamembrane and 
kinase regulating domains) of the fl-subunit-cytoplasmic 
portion. Thus, by contrast to what has been described in the 
course of transport protein receptors, ligand-dependent in- 
ternalization of signaling receptors (i.e., insulin receptor) 
internalization is highly specific and involves a complex cel- 
lular pathway requiring multiple structural determinants of 
the receptor. 
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