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Abstract. We report here on the in vivo assembly of 
ot-internexin, a type IV neuronal intermediate filament 
protein, in transfected cultured cells, comparing its as- 
sembly properties with those of the neurofilament trip- 
let proteins (NF-L, NF-M, and NF-H). Like the 
neurofilament triplet proteins, ot-internexin coassem- 
bles with vimentin into filaments. To study the assem- 
bly characteristics of these proteins in the absence of a 
preexisting filament network, transient transfection ex- 
periments were performed with a non-neuronal cell 
line lacking cytoplasmic intermediate filaments. The 
results showed that only o~-internexin was able to self- 
assemble into extensive filamentous networks. In con- 
trast, the neurofilament triplet proteins were incapable 
of homopolymeric assembly into filamentous arrays in 
vivo. NF-L coassembled with either NF-M or NF-H 

into filamentous structures in the transfected cells, but 
NF-M could not form filaments with NF-H. ot-inter- 
nexin could coassemble with each of the neurofilament 
triplet proteins in the transfected cells to form fila- 
ments. 

When all but 2 and 10 amino acid residues were re- 
moved from the tail domains of NF-L and NF-M, 
respectively, the resulting NF-L and NF-M deletion 
mutants retained the ability to coassemble with 
ot-internexin into filamentous networks. These mutants 
were also capable of forming filaments with other 
wild-type neurofilament triplet protein subunits. These 
results suggest that the tail domains of NF-L and 
NF-M are dispensable for normal coassembly of each 
of these proteins with other type IV intermediate fila- 
ment proteins to form filaments. 

Ct-internexin and the neurofilament triplet proteins (desig- 
nated NF-L, NF-M, and NF-H for low, middle, and high mo- 
lecular weight subunits, respectively) are members of the 
type IV intermediate filament (IF) ~ family of proteins (for 
reviews see Steinert and Roop, 1988; Fliegner and Liem, 
1991; Shaw, 1991). ot-internexin is expressed abundantly in 
young, postmitotic neurons of the developing peripheral and 
central nervous systems, but in the adult it is found primarily 
in the central nervous system (Chin et al., 1989; Kaplan et 
al., 1990). The neurofilament triplet proteins (NFTPs), 
whose expression is preceded by that of ot-internexin, are ex- 
pressed in mature neurons of both the peripheral and central 
nervous systems. While all of these type IV IF proteins ap- 
pear to be present in nearly all mature neurons of the central 
nervous system, a-internexin is expressed at much lower lev- 
els than the NFTPs in large neurons such as the motor neu- 
rons of the spinal cord and cranial nerve ganglia (Kaplan et 
al., 1990). Conversely, a-internexin is highly expressed in 
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the parallel fibers of the cerebellar granule cells, where the 
NFTPs are noticeably absent (Kaplan et al., 1990). 

a-internexin and the NFTPs conform to a structure typical 
of all IF proteins, which consists of a highly conserved 
c~-helical rod domain flanked by variable amino-terminal 
head and carboxyl-terminal tail domains (Steinert and Roop, 
1988). The o~-helical rod domain contains hydrophobic hep- 
tad repeats which are believed to mediate the formation of 
coiled-coil dimers, the first step in the process of IF assem- 
bly. Although the head and tail domains of these proteins 
show only limited sequence homology, they share certain 
similarities. The head domains are highly basic, rich in argi- 
nine, glycine, and proline, and contain many serine residues, 
some of which have been found to be the targets of various 
kinases both in vitro and in vivo (Toru-Delbauffe et al., 
1986; Sihag et al., 1988; Sihag and Nixon, 1989). The tail 
domains contain several sequence motifs (Shaw, 1991): the 
glutamic acid-rich E region present in all type IV IF pro- 
teins; the conserved KE sequence, rich in lysine and glu- 
tamic acid residues, and present in ot-internexin and NF-M; 
and finally, the KSP (lysine-serine-proline) and SP (serine- 
proline) sequences present exclusively in NF-M and NF-H, 
where they occur multiple times and serve as phosphoryla- 
tion sites. 

In vitro reassembly studies of purified NFTPs showed that 
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NF-L could easily polymerize into 10-nm filaments, whereas 
NF-M and NF-H required the presence of NF-L to copoly- 
merize into filaments of normal morphology (Geisler and 
Weber, 1981; Liem and Hutchison, 1982). Purified o~-inter- 
nexin was also shown to be able to polymerize into filaments 
in vitro (Chiu et al., 1989; Kaplan et al., 1990). However, 
it has not yet been examined whether these proteins display 
the same kinds of assembly characteristics in vivo. 

Transfection studies have shown that the NFTPs could 
each coassemble into the endogenous vimentin network in 
fibroblast cell lines (Chin and Liem, 1989, 1990; Monteiro 
and Cleveland, 1989). Recently, it has been shown by tran- 
sient transfections that mutants of NF-L and NF-M with sub- 
stantial portions of the tail domains deleted, as well as a 
headless NF-L mutant still retained the ability to coassemble 
into the endogenous vimentin network in fibroblasts (Gill et 
al., 1990; Wong and Cleveland, 1990; Chin et al., 1991). 
However, deletions into the o~-helical rod domains of either 
protein resulted in mutants which were unable to coassemble 
with the endogenous vimentin. While the head domain and 
most of the tail domain appear to be dispensable, at least for 
NF-L and NF-M, for normal coassembly with vimentin, a 
type III IF, the role of these domains in coassembly with 
other type IV IF proteins in vivo remains to be established. 
A similar analysis of the coassembly of ot-internexin with the 
type III and IV IF proteins has not yet been reported. 

The present work describes the self- and coassembly of 
transfected type IV IF proteins in a cell line lacking an en- 
dogenous cytoplasmic IF network. We also demonstrate by 
deletion analysis that the variable carboxy-terminal tail do- 
mains of NF-L and NF-M are dispensable for their coassem- 
bly with the other type IV IF proteins. 

Materials and Methods 

Construction of Plasmids 

The cDNA for rat a-internexin encoding the full-length polypeptide has 
previously been cloned as a 1.6-kb EcoRI insert into pGEM 7zf(+) 
(Fliegner et al., 1990). To construct pRSV-c~, the 1.6-kb EcoRI fragment 
was isolated and its ends were filled in with Klenow enzyme and attached 
to HindlII linkers (CAAGCTTG). After HindlII digestion, the resulting 1.6- 
kb Hindlll fragment was cloned into the HindgI site on the pRSVi-HindIII 
vector, which contains the Rous sarcoma virus long terminal repeat (FOr- 
man et al., 1988). To prepare a promoterless vector for the construction 
of pctP-a, a PvuII-HindIII fragment containing the SV40 promoter was re- 
moved from the pSVi-HindIII vector (Forman et al., 1988) and the PvuII 
site remaining on the vector was changed to a Hind[II site with attachment 
of HindIII linkers (CAAGCTTG), yielding a promoterless pSV2 (APvuII) 
vector. To construct paP-a, a 1.7-kb HindIII-XhoI fragment containing 1.2 
kb of the 5' flanking sequence and 436 bp of the 5' coding sequence of the 
a-internexin gene was isolated from paEX12 (Ching and Liem, 1991), and 
a 1.2-kb XhoI-HindIII fragment containing the t~-internexin eDNA se- 
quence downstream of its unique XhoI site was isolated from pRSV-a, fol- 
lowed by ligation of these two fragments together with the HindlH-digested, 
promoterless pSV2(APvulI). FOr construction of MI-421, a 1.3-kb Hind- 
III-SfaNl fragment encoding amino acid residues 1-421 of rat NF-M was 
isolated from pRSVi-NFMI(+) (Chin and Liem, 1989), and its ends were 
filled in with Klenow and attached to HindllI linkers (CAAGCTTG). After 
digestion with HindlII, the resulting 1.3-kb Hind[I/fragment was cloned 
into the HindlU site on pRSVi-HindHI. The other constructs, pRSVi- 
NFHI(+), pRSVi-NFLI(+), and L1-402 have been previously described 
(Chin and Liem, 1989, 1990; Chin et al., 1991). pRSV-Vim contains the 
fully-encoding rat vimentin cDNA cloned into the pRSVi-HindIII vector 
(Chen, W. J., and R. K. H. Liem, unpublished observations). DNA se- 
quencing was performed on the deletion mutant constructs in order to de- 
duce the amino acid sequences at the deletion junctions. 

Cell Culture and Transfection 

Mouse Ltk- cells were grown as previously described (Ching and Liem, 
1991). Human adrenal carcinoma SW13cl.2Vim- (Sarria et ai., 1990; a 
generous gift from Dr. Robert Evans, University of Colorado, Denver, CO) 
were grown in DMEM/F12 medium (GIBCO BRL, Gaithersburg, MD) sup- 
plemented with 5% FBS at 37°C in a humidified atmosphere of 7% CO2. 

For immunofluorescence studies, cells were grown on sterile, untreated 
glass coverslips 24 h before transfection. Twenty t~g of a tested DNA con- 
struct (or 10/~g each when two DNA constructs were used) were introduced 
into cells by calcium phosphate-mediated transfection essentially as previ- 
ously described (Ching and Liem, 1991). 4 h after transfection, cells were 
treated with DMEM/F12 medium containing 15 % DMSO at room tempera- 
ture for 2 rain, washed, and refed with fresh growth medium. Cells were 
harvested 48 h after transient transfection. For stable transfeetion, Ltk- 
cells that were transfected with 19 ttg of pRSV-a (or peeP-c0 and 1 #g of 
pSV2-neo (Southern and Berg, 1982) as described above were subcultured 
48 h after transfection, and were subsequently selected and maintained in 
growth medium containing 400 tLg/ml of G418 (Geneticin, GIBCO BRL). 

Antibodies 

A mouse monoclonal antibody to a-internexin, as well as rabbit polyclonal 
antibodies to NF-L and NF-M (designated AbNFLn and AbNFMn), which 
specifically recognize the amino-termini of rat NF-L and NF-M, respec- 
tively, have been previously described (Kaplan et al., 1991). A rabbit poly- 
clonal antibody to a-internexin was prepared against a fusion protein con- 
taining the amino-terminal 340 amino acid residues of rat a-internexin, 
expressed from the pET vector (Kaplan, M. P., and R. K. H. Liem, unpub- 
lished results). Rabbit polyclonal anti-NF-L and anti-NF-M antibodies were 
obtained commercially (Chemicon International, Temecula, CA), as were 
mouse monoclonais to NF-M (Boehringer Mannheim, Indianapolis, IN) 
and NF-H (Sigma Chem. Co., St. Louis, MO). A mouse monoclonal anti- 
NF-L, in the form of ascites fluid, was a gift from Dr. Gerry Shaw (Univer- 
sity of Florida, Gainesville, FL). Like most antibodies to the NFTPs, these 
last five are all directed against epitopes in the tail region. A mouse mono- 
clonal antibody to vimenfin was obtained commercially (Sigma Chem. 
Co.); a rabbit polyclonal anti-vimentin antibody was a gift from Dr. Eugenia 
Wang (Lady Davis Institute for Medical Research, Montreal). 

Indirect Immunofluorescence Staining 

Ceils grown on coverslips were rinsed in PBS-def (phosphate-buffered sa- 
line deficient in Ca 2+ and Mg 2+) and fixed in cold methanol at -20°C for 
10 rain. After several washes with PBS-def, the cells were treated with PBS- 
def containing 3 % normal goat serum for 30 min and were subsequently 
washed and incubated with primary antibodies at room temperature for 1 
h. The cells were then washed several times with PBS-def and incubated 
with either FITC-conjugated anti-mouse IgG or tetramethyl rhodamine- 
conjugated anti-rabbit IgG (Cappel, Durham, NC) at room temperature for 
30 min. The cells were subsequently washed and mounted onto slides with 
Aquamount (Lerner Laboratories, New Haven, CT). 

Cell Extractions and Immunoblot Analysis 

Transiently transfected cells were washed with PBS-def and subsequently 
lysed and incubated in 10 mM Tris-HCl (pH 7.5), 150 mM NaCI, 1% Triton 
X-100, 1 mM EDTA, 0.5 mM PMSF, 10/~g/ml aprotinin, 2 pg/ml leupeptin, 
and 1/~g/ml pepstatin A in ice for 15 rain. The lysate was centrifuged at 
4°C at 430,000 g for 1 h. The resulting detergent-soluble fraction was fur- 
ther centrifuged at the same speed for 30 min to ensure complete removal 
of insoluble materials. The detergent-insoluble pellet was digested with 0.2 
mg/ml of DNase I in 10 mM Tris-HCl (pH 7.5), 150 mM NaC1, 5 mM 
MgCI2, 0.5 mM PMSF and 2 #g/ml leupeptin at 40C for 15 min and was 
then centrifuged at 430,000 g for 1 h. The pellet was subsequently washed 
with 10 mM Tris-HCl (pH 7.5), 150 mM NaCI containing the four protease 
inhibitors as described above, and was centrifuged again at 430,000 g for 
1 h. The pellet was boiled in SDS-sample buffer containing 62.5 mM Tris- 
HC1 (pH 6.8), 2.3 % SDS, 5 % 2-mercaptoethanol, 10 % glycerol and 0.01% 
Bromophenoi blue, and was then centrifuged in a microfuge to remove in- 
soluble materials, and the resulting supernatant was designated as the Triton 
X-100-insoluble fraction. 

Proportional amounts of the Triton X-100-insoluble and -soluble frac- 
tions were electrophoresed in SDS-10% polyacrylamide gels (Laemmli, 
1970) and were subsequently electrotransferred to nitrocellulose filters 
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(Towbin et al., 1979). The blots were incubated in PBS-def containing 5% 
dry milk at room temperature for 30 min. After several washes with PBS- 
def, the blots were incubated in PBS-def containing 3 % BSA and primary 
antibodies at 4"C overnight. The blots were then washed and incubated in 
PBS-def containing 3% BSA, 0.05% Triton X-100, and teSI-labeled protein 
A or goat anti-mouse Ig at room temperature for 1 h. Subsequently, the 
blots were washed several times in PBS-def containing 0.05% Triton X-100 
and were exposed to XAR-5 film (Eastman-Kedak Co., Rochester, NY) 
with an intensifying screen at -70"C. The relative amounts of proteins in 
the detergent-insoluble and -soluble fractions were measured by densito- 
metric scanning of the autoradiograms. 

To prepare total cellular proteins, transiently transfected cells were 
washed with PBS-def and subsequently lysed with 62.5 mM Tris-HCl (pH 
6.8) containing 1% SDS. The lysates were boiled for 10 min and centrifuged 
at 13,000 g for 5 min. Concentrations of the resulting supernatants contain- 
ing total cellular proteins were determined by Bradford assay (Bradford, 
1976). To compare the levels of the accumulated NFTPs between the cul- 
tures transfected with single NFTP expression constructs and those cotrans- 
fected with two NFTP expression constructs, equal amounts of total cellular 
proteins from these cultures were boiled in SDS-sample buffer, eleetropho- 
resed in SDS-PAGE, and eleetrotransferred to nitrocellulose filters. The 
resulting blots were immunostained as described above. Relative amounts 
of the proteins were measured by densitometric scanning of the autoradio- 
grams. 

Results 

Coassembly of  a-internexin with Vimentin to Form 
Filament Networks 

To determine whether oMnternexin can incorporate into 
preexisting vimentin networks as the NFTPs have been ob- 
served to do, mouse Ltk- cells were transfected with ex- 
pression constructs of  ot-internexin driven by either the Rous 
sarcoma virus long terminal repeat (pRSV-ot) or the 1.2-kb 
5' flanking region of  the ot-internexin gene (ImP-or). Im- 
munofluorescence staining of  both stable and transient trans- 
fectants indicated that ~-internexin, a type IV IF, does in fact 
incorporate into the endogenous type HI vimentin inter- 

mediate filament network in Ltk- cells (data not shown). 
Similarly, when an expression construct of rat vimentin, 
pRSV-Vim, was transiently cotransfected with pRSV-ot into 
the human adrenal carcinoma cell line SWl3cl.2Vim-, which 
lacks its own cytoplasmic IF network, the exogenous vimen- 
tin coassembled with oMnternexin to form filaments (Fig. 1). 

Self-Assembly Competency and Coassembly of  Type I V  
IF  Proteins 

To study the self- and coassembly of  ot-internexin and the 
NFTPs, the human adrenal carcinoma cell line SW13cl.2- 
Vim-, which lacks its own cytoplasmic IF network, was 
employed for all transient transfection experiments de- 
scribed below. Since it is possible that vimentin-expressing 
revertant cells might arise during culturing, transfected cells 
were routinely examined for anti-vimentin antibody staining 
to make certain that assembly had indeed occurred in the ab- 
sence of a preexisting vimentin network. 

Cells transiently transfected with pRSV-ot displayed fila- 
mentous staining (Fig. 2 A). Similar results were obtained 
in transfections employing potP-ot (not shown), except that 
lower levels of  ot-internexin were expressed under the 
ot-internexin 5' flanking region, whose promoter strength has 
previously been shown to be weaker than that of  the RSV 
promoter (Ching and Liem, 1991). Apparently, ot-internexin 
by itself was capable of  forming extensive fibrillar networks. 
In contrast, none of  the NFTPs were capable by themselves 
of  forming such networks in cells transfected with pRSVi- 
NFLI(+) ,  pRSVi-NFMI(+),  or pRSVi-NFHI(+);  instead, 
fine, punctate staining patterns were observed (Fig. 2, B-D). 
Immunoblot analysis of  cellular proteins from transiently 
transfected SW13cl.2Vim- cells showed that NF-L and 
ot-internexin were present only in the Triton X-100-insoluble 
fraction, whereas NF-M and NF-H were detected in both the 

l~gure 1. Coassembly of a-internexin with vimentin into filamentous networks. SWl3cl.2Vim= cells transiently transfected with pRSV-~x 
and pRSV-Vim were stained with mouse monoclonal anti-o~-internexin (,4) and rabbit polyclonal anti-vimentin (B) antibodies. Bar, 20 #m. 
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Figure 2. Self-assembly of type IV IF proteins. SW13cl.2Vim- cells transiently transfected singly with pRSV-a (A), pRSVi-NFLI(+) (B), 
pRSVi-NFMI(+) (C), or pRSVi-NFHI(+) (D) were stained with mouse monoclonal anti-c~-internexin, rabbit polyclonal anti-NF-L, rabbit 
polyelonal anti-NF-M, and mouse monoclonal anti-NF-H antibodies, respectively. Bar, 20 #m. 

Triton X-100-insoluble and -soluble fractions (Fig. 3, A, B, 
D, and F,, and Table I). The presence of the NFTPs in the in- 
soluble fractions suggest that the transfected proteins were 
probably present in some kind of polymeric form of a higher 
order than the tetrameric stage, despite their inability to 
form filamentous structures. It should be noted that ot-inter- 
nexin as well as NF-L were distributed equally between the 
Triton X-100-insoluble and -soluble fractions when the cell 
extracts were centrifuged at 13,000 g for 30 min (data not 
shown) instead of at 430,000 g as described above. Appar- 
ently, a centrifugal force higher than 13,000 g was required 
to spin down the insoluble filaments or polymeric structures 
from the transfeeted cells, which represent a very small 
population among the much more numerous IF-negative, un- 
transfeeted SWl3cl.2Vim- cells. 

To examine whether ot-internexin is able to coassemble 
with any one of the NFTPs into filamentous networks, 
pRSV-ot was transiently cotransfected with pRSVi-NFLI(+), 
pRSVi-NFMI(+), or pRSVi-NFHI(+) into SWl3cl.2Vim- 
cells. As shown in Fig. 4, A-F, the filamentous staining pat- 

terns were similar to those observed in cells transfected with 
pRSV-ot alone, and individual anti-NFTP antibody staining 
coincided with the anti-ot-internexin antibody staining. 
These results indicated that a-internexin was capable of in- 
teracting with each of the NFTPs to form long fibrillar struc- 
tures, which at the light microscopic level were qualitatively 
indistinguishable from those composed of only o~-internexin. 
It should be noted that the morphologies of the filament net- 
works resulting from these cotransfections were somewhat 
heterogeneous; the variety of filamentous patterns shown in 
Fig. 4, A-Fwere seen in all of these cotransfeetions. Interest- 
ingly, cotransfection of potP-ot with pRSVi-NFMI(+) resulted 
in formation of filamentous fragments in some (•20%) of 
the transfected cells, although long, filamentous networks 
were observed in most of the transfected cells (Fig. 4, G and 
H). These filamentous fragments were absent in cells trans- 
fected with pRSV-c~ and pRSVi-NFMI(+). 

To determine whether NF-L and NF-M can coassem- 
ble into filamentous structures, SW13cl.2Vim- cells were 
transiently transfected with pRSVi-NFLI(+) and pRSVi- 
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Figure 3. Western blot analysis of type IV IF proteins from extracts of transiently transfeeted cells. Cell extracts of transfected 
SW13cl.2Vim- cells were separated into Triton X-100-insoluble 0ane 1) and -soluble fractions (lane 2) by centrifugation at 430,000 g. 
Proteins were electrophoresed in SDS-10% polyacrylamide gels and were subsequently transferred to nitrocellulose filters. The samples 
in the blots were from cells transfeeted singly with pRSV-t~ (a); pRSVi-NFLI(+) (b); L1-402 (c); pRSVi-NFMI(+) (d); M1-421 (e); and 
pRSVi-NFHI(+) (f). The blots were immunostained with mouse monoelonal anti-a-internexin (a), rabbit polyclonal anti-NF-L (b), 
AbNFLn (c), rabbit polyclonal anti-NF-M (d), AbNFMn (e), and mouse monoclonal anti-NF-H (f)  antibodies. Bars indicate the posi- 
tion of the prestained protein markers with molecular masses of 180, 116, 84, 58, 48, 36, and 27 kD. 

NFMI(+).  Immunofluorescence staining of the transfected 
cells showed that NF-L and NF-M interacted to form illa- 
ments (Fig. 5, A and B). Similar filamentous staining was 
observed in cells transfected with pRSVi-NFLI(+) and 
pRSVi-NFHI(+), indicating that NF-L also coassembled 
with NF-H into filamentous structures (Fig. 5, C and D). In 
both cotransfections, filamentous fragments similar to those 
seen in cotransfection of pctP-a with pRSVi-NFMI(+) were 
observed in 15-20% of the transfected ceils (data not 
shown). 

In contrast, cotransfection of pRSVi-NFMI(+) with 
pRSVi-NFHI(+) did not result in filamentous staining (Fig. 
5, E and F).  Instead, NF-M and NF-H appeared to be 
colocalized in a fine, punctate staining pattern similar to that 
observed in cells singly transfected with pRSVi-NFMI(+) or 
pRSVi-NFHI(+). 

Table L Relative Amounts of Neuronal IF Proteins in 
the Triton X-lOO-Insoluble and -Soluble Fractions from 
Transiently Transfected SW13cl.2Vim- Cells 

Protein % Insoluble % Soluble 

a-internexin 100 0 
NF-L 100 0 
L1-402 97 3 
NF-M 80 20 
M1-421 100 0 
NF-H 39 61 

The relative amounts of the neuronal IF proteins present in the detergent- 
insoluble and -soluble fractions were determined by densitometric scanning of 
the autoradiograms of the Western blots shown in Fig. 3. Autoradiograms of 
several different exposures were used for scanning in order to assure accurate 
measurements. 

It should be noted that 20 #g of single DNA constructs 
were used for the transfections of pRSVi-NFLI(+), pRSVi- 
NFMI(+),  or pRSVi-NFHI(+) shown in Fig. 2, whereas 10 
#g each of the two DNA constructs were used for the co- 
transfections shown in Fig. 5 (see Materials and Methods). 
Even when the amounts of DNA used for transfections were 
increased to 30/zg, cells transiently transfected with a single 
NFTP expression construct all yielded fine, punctate stain- 
ing patterns such as those shown in Fig. 2. Table II shows 
that the levels of the accumulated NFTPs in cells transfected 
with two DNA constructs vary from 70 to 90% of the levels 
of the proteins in the ceils transfected with a single DNA 
construct. Similar variations were seen in duplicates of these 
experiments. The slightly higher levels of protein in the 
cells transfected with the single constructs are probably due 
to the higher amounts of DNA (20/~g) used for these trans- 
fections. These data are directly relevant to the immuno- 
fluorescence results shown in Figs. 2 and 5, since the same 
amounts of DNA were used for each experiment. Within the 
limits of the transient transfection techniques, these results 
suggest that the lack of filament formation observed in cells 
transfected with pRSVi-NFLI(+), pRSVi-NFMI(+), or 
pRSVi-NFHI(+) alone is unlikely to be due to insufficient 
levels of accumulated NFTPs, but is rather due to some in- 
trinsic inability of these proteins to form homopolymeric 
IF structures. 

Effects of  Carboxyi-Terminal Deletions in NF-L 
and NF-M on Their Coassembly with Other 7)pc I V  
IF Proteins 

When L1-402, encoding a truncated NF-L protein in which 
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Figure 5. Coassembly of neurofilament triplet proteins. SWl3cl.2Vim- cells from transient cotransfection of pRSVi-NFLI(+) with pRSVi- 
NFMI(+) (A and B), pRSVi-NFLI(+) with pRSVi-NFHI(+) (C and D), and pRSVi-NFMI(+) with pRSVi-NFHI(+) (E and F) were 
stained with mouse monoclonal anti-NF-L (A), rabbit polyclonal anti-NFM (B and E), rabbit polyclonal anti-NF-L (C), and mouse mono- 
clonal anti-NF-H antibodies (D and F). Bar, 20 ~tm. 

Figure 4. Coassembly of c~-internexin with neurofilament triplet proteins. SWl3cl.2Vim- cells from transient cotransfection of pRSV-c~ 
with pRSVi-NFLI(+) (A and B), pRSVi-NFMI(+) (C and D), or pRSVi-NFHI(+) (E and F), and of potP-o~ with pRSVi-NFMI(+) (G 
and H) were stained with mouse monoclonal antibodies to ~-intemexin (A, C, and G) or NF-H (F) and rabbit polyclonal antibodies to 
NF-L (B), NF-M (D and H), or c~-internexin (E). Bar, 20/~m. 
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Table II. Comparison of the Levels of the 
Accumulated NFTPs between SW13cl.2Vim- 
Cells Transiently Transfected with Single NFTP 
Expression Constructs and Those Transiently 
Cotransfected with Two NFTP Expression Constructs 

NF-L + NF-M NF-L + NF-H 

NF-L 0.74 nd 
NF-M 0.76 - 
NF-H - 0.92 

Transfections were performed as described for those shown in Fig. 2 and Fig. 
5. The relative amounts of the neuronal IF proteins present in the transfected 
cells were determined by densitometric scanning of the autoradiograms of 
Western blots of total cellular proteins. Values for NF-L, NF-M, and NT-H 
in the cotransfections arc expressed as ratios of the amounts observed in single- 
construct transfections. 

all but two amino acid residues of  the tail domain is removed 
(Chin et al., 1991; see also Fig. 6 A), was transfected into 
SWl3cl.2Vim- cells, tubular-vesicular structures were ob- 
served which were stained by the anti-NFL~ antibody (Fig. 
7, A and B). These structures appeared to be located within 
the cytoplasm and often clustered around one side of  the nu- 
cleus. Immunoblot analysis showed that the truncated pro- 
tein expressed in the transfected cells was present mainly in 
the Triton X-100-insoluble fraction (Fig. 3 C). On the other 
hand, cotransfection of  L1-402 with either a-intemexin, 

pRSVi-NFMI(+),  or pRSVi-NFHI(+) yielded filamentous 
staining patterns reminiscent of  those observed with intact 
NF-L coassembled with ct-internexin, NF-M or NF-H (Fig. 
7, C-H). However, in ~ 2 0 - 3 0 %  of the cells cotransfected 
with pRSV-ot, tubular-vesicular structures similar to those 
comprised of  only the L1-402 mutant protein were observed, 
which were stained by both the anti-NFL~ and anti-ot- 
internexin antibodies. These tubular-vesicular structures 
were also found in 10% of  the cells cotransfected with 
pRSVi-NFMI(+) and 20% of those cotransfected with 
pRSVi-NFHI(+).  Formation of  these tubular-vesicular 
structures is probably due to the overexpression of  the L1- 
402 mutant protein in these cells, causing the collapse of  any 
filaments formed and preventing cz-internexin from associat- 
ing with itself to form homopolymeric IF structures. Alter- 
nately, it may be due to partial degradation of  the L1-402 pro- 
tein resulting in deletion into coil 2 of  the rod domain, the 
type of  deletion which has been shown to collapse the endog- 
enous vimentin network and which yields similar kinds of 
tubular-vesicular structures in transfected Ltk- cells (Chin 
et al., 1991). These two possibilities are both likely, and not 
mutually, exclusive. Nevertheless, the results presented here 
show that the carboxyl-terminal tail domain is dispensable 
for normal coassembly of  NF-L with cz-internexin, NF-M, 
or NF-H into filaments. 

M1-421 encodes a tailless NF-M which has all but 10 
residues removed from its tail domain (Fig. 6 B). Transfec- 

A 

B 

RatNF-L lb i 2 

Rat NF-M 
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Figure 6. Schematic illustra- 
tions of the truncated NF-L 
and NF-M proteins. NF-L (A) 
and NF-M (B) and their car- 
boxy-terminal deletion mu- 
tants are shown. The helical 
domains are represented by 
open rectangles and the linker 
regions by closed rectangles. 
Amino acid positions of the 
domain junctions are indi- 
cated with numbers. Amino 
acid sequences at the deletion 
junctions of the mutants are 
shown with one-letter codes, 
and additional amino acid 
residues generated from clon- 
ings of the DNA constructs 
are underlined. Asterisks in- 
dicate the position of the stop 
codon. It should be noted that 
the amino acid sequence at the 
deletion junction of L1-402 
reported by Chin et al. (1991) 
is incorrect; the correct se- 
quence is shown here. Also, 
the Phe (F) residue is at posi- 
tion 403; the tail domain of 
LI-402 thus retains two amino 
acid residues. 

Figure 7. Assembly characteristics of the carboxyl-terminal deletion mutant of NF-L. SW13cl.2Vim- cells from transient transfections of 
L1-402 (A and B), L1-402 and pRSV-a (C and D), L1-402 and pRSVi-NFMI(+) (E and F), and LI-402 and pRSVi-NFHI(+) (G and H) 
were stained with rabbit polyclonai antibody AbNFL~ (A-C, E and G) and mouse monoclonal antibodies to c~-internexin (D), NF-M (F), 
and NF-H (H). Bar, 20/zm. 

The Journal of Cell Biology, Volume 122, 1993 1330 



Ching and Liem In Vivo Assembly of  Neuronal Intermediate Filaments 1331 



The Journal of Cell Biology, Volume 122, 1993 1332 



tion of this tailless NF-M construct into SWl3cl.2Vim- 
cells resulted in the formation of tubular-vesicular structures 
in the cytoplasm (Fig. 8, A and B), which often clustered 
asymmetrically around one side of the nucleus. The mutant 
protein was present in the Triton X-100-insoluble fraction of 
the transfected cells, and a substantial proportion of the pro- 
tein appeared to be partially degraded from the carboxyl end 
(Fig. 3 E and Table I). Cotransfection of M1-421 with pRSV- 
c~ resulted in formation of filaments stained by both the anti- 
NFMn and anti-ct-internexin antibodies (Fig. 8, C and D). 
Cotransfection of M1-421 with pRSVi-NFLI(+) also yielded 
a filamentous staining pattern (Fig. 8, E and F). When M1- 
421 was cotransfected with pRSVi-NFHI(+), punctate stain- 
ing patterns similar to those observed with cotransfection of 
pRSVi-NFMI(+) and pRSVi-NFHI(+) were seen (Fig. 8, G 
and H). However, in ~10% of the cells cotransfected with 
pRSV-ct and 30% of the cells cotransfected with either 
pRSVi-NFLI(+) or pRSVi-NFHI(+), tubular-vesicular struc- 
tures were observed. The formation of these tubular-vesicular 
structures is probably due to overexpression and/or partial 
degradation of a proportion of the M1-421 mutant protein, 
as is the case for the L1-402 mutant. Overall, these results 
suggest that the tail region is dispensable for normal coas- 
sembly of NF-M with ot-interuexin or NF-L into filaments, 
and with NF-H into heteropolymers. 

D i s c u s s i o n  

Our present studies have yielded several interesting results 
regarding the assembly characteristics of the type IV neu- 
ronal IF proteins. Like the NFTPs, a,-internexin was capable 
of coassembly with vimentin to form a filamentous network 
in transfected cells. But unlike any of the NFTPs which by 
themselves were incapable of homopolymeric filament for- 
marion, ot-internexin formed long fibrillar structures by itself 
in transfected SW13cl.2Vim- cells. This capacity for self- 
assembly into long filaments in the absence of any preexist- 
ing IF network is interesting in light of the finding that 
~-internexin is the only neuronal IF present in many young 
postmigratory neurons of the developing rat CNS at a time 
when the NFTPs are not yet expressed, and also in the paral- 
lel fibers of the cerebellar granular cells in the adult, which 
appear to lack other IF proteins (Kaplan et al., 1990; 
Fliegner, K. H., M. P. Kaplan, J. E. Pintar, T. L. Wood, and 
R. K. H. Liem, manuscript submitted for publication). 
Moreover, t~-interuexin could coassemble with each of the 
NFTPs to form filamentous networks in the transfected 
SW13cl.2Vim- ceils, an observation consistent with previ- 
ous immunofluorescence studies which showed the colocal- 
ization of these proteins in axons. Taken together, these data 
suggest that in addition to a possible structural role in 
stabilizing small-diameter axons (such as parallel fibers or 
growing processes), a,-internexin may play an additional role 
in the normal incorporation of the other NFTPs into filamen- 
tous networks. 

Although each of the NFTPs by itself was unable to form 
filamentous networks in transiently transfected SWl3cl.2- 
Vim- cells, the presence of these proteins in the Triton 
X-100-insoluble fractions of the cell extracts indicates that 
they are probably capable of forming homopolymers of a 
higher order than the tetrameric stage. NF-M and NF-H, but 
not NF-L, were also detected in the Triton-soluble fractions 
suggesting that the NFTPs may differ in their competency to 
form these higher order structures. Such differences may ac- 
count for the ability of NF-L to polymerize readily into 
homopolymeric IF structures under certain in vitro condi- 
tions, and the inability of NF-M and NF-H to do so under 
the same conditions (Geisler and Weber, 1981; Liem and 
Hutchison, 1982; Hisanaga and Hirokawa, 1990). When ex- 
tractions of the transfected cells were performed in the same 
buffer system without addition of Triton X-100, NF-M and 
NF-H were found in the supernatant, indicating that they 
also may exist in the cytosolic, soluble form (data not 
shown). Further extraction of the remaining pellets with Tri- 
ton X-100 showed that these two proteins were also present 
in the resulting detergent-soluble fractions. Taken together, 
these results suggest that NF-M and NF-H are present in the 
cytoplasm of the transfected cells in three distinct forms: in- 
soluble (Triton X-100-insoluble), membrane-associated (Tri- 
ton X-100-soluble), and soluble. SoeUner et al. (1985) have 
reported that in cultured cells a small pool of vimentin exists 
in a cytosolic, soluble tetrameric form. It is thus possible that 
the membrane-associated and soluble forms of NF-M and 
NF-H in these transfected cells are tetramers and/or dimers. 

NF-L was able to interact with NF-M or NF-H to form IF 
structures in the transfected cells, whereas NF-M and NF-H 
were unable to coassemble into filaments. While these 
results are consistent with cell-free in vitro polymerization 
studies which showed that NF-M and NF-H require NF-L to 
copolymerize into filaments (Geisler and Weber, 1981; Liem 
and Hutchison, 1982), the competency of NF-L to form 
homopolymeric IF structures in these in vitro studies was not 
observed in the transfected cells. Since cell-free in vitro po- 
lymerization depends on myriad experimental parameters 
such as pH, ionic strength, and Mg 2+ concentration, it is 
not entirely surprising to see that NF-L exhibited somewhat 
different assembly properties in these studies. However, the 
present observations that NF-L could coassemble with 
NF-M or NF-H to form filaments in the absence of any 
preexisting IF network are in agreement with the fact that 
mammalian neurofilaments in vivo are formed from hetero- 
polymeric IF structures composed of all three NFTPs (Wil- 
lard and Simon, 1981; Hirokawa et al., 1984). Moreover, 
they suggest that the assembly process may involve 
NF-L/NF-M and NF-L/NF-H complexes acting as the inter- 
mediate building blocks for neuronal IFs. As previously 
shown for the assembly of cytokeratin, an obligate hetero- 
polymer, a molecular recognition event appears to be in- 
volved in the nucleation step of the neuronal IF assembly 
process, since IF formation requires specific NF-L/NF-M or 
NF-L/NF-H heteropolymerizations. In contrast to the kera- 

Figure 8. Assembly characteristics of the carboxyl-terminal deletion mutant of NF-M. SW13cl.2Vim- cells from transient transfections 
of M1-421 (,4 and B), MI-421 and pRSV-ot (C and D), M1-421 and pRSVi-NFLI(+) (E and F), and M1-421 and pRSVi-NFHI(+) (G and 
H) were stained with rabbit polyclonal antibody AbNFMn (A-C, E and G) and mouse monoclonal antibodies to c~-internexin (D), NF-L 
(F), and NF-H (H). Bar, 20 #m. 
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tins, however, the NFTPs are able to form stable homopoly- 
mers of higher order than the tetrameric stage when present 
alone in transfected cells, as suggested by the presence of 
these proteins in the Triton X-100-insoluble fraction. Het- 
eropolymerization is apparently more favorable than homo- 
polymerization, as indicated by the prevalence of heterofila- 
ments, and the absence of observable homopolymeric 
structures, in transfected cells expressing two different 
NFTPs (e.g., NF-L and NF-M or NF-H). 

It is interesting to note that filamentous fragments were 
observed in a minor population of cells transfected with 
pRSVi-NFMI(+) and potP-ct (Fig. 4, G and H). Similar 
results were obtained from cotransfection of pRSVi- 
NFLI(+) with pRSVi-NFMI(+) or pRSVi-NFHI(+). It 
seems that once expressed, even at low levels insufficient for 
formation of extensive filamentous networks, these coex- 
pressed neuronal IF proteins coassembled and elongated 
into filamentous fragments. However, since transfection 
efficiencies and levels of exogenous gene expression vary in 
transiently transfected cells, the stoichiometric amounts of 
these proteins required for filament formation could not be 
determined. 

The time course of developmental expression of the type 
IV proteins and the inability of any of the NFTPs to form 
homopolymeric filamentous networks suggest that ot-inter- 
nexin may act as a scaffold for the formation of neuronal IFs 
during early development. Expression of oMnternexin ap- 
pears to precede that of the NFTPs throughout most of the 
developing nervous system (Kaplan et al., 1990; Fliegner, K. 
H., M. P. Kaplan, J. E. Pintar, T. L. Wood, and R. K. H. 
Liem, manuscript submitted for publication). As the other 
NFTPs are expressed, they may incorporate directly into the 
preexisting ot-internexin network, and/or coassemble with 
ct-internexin into IF networks. As development continues, 
expression of c~-internexin decreases and that of the NFTPs 
increases, so that ct-internexin in the neuronal IF network is 
progressively replaced with the NFTPs. In this way, ot-inter- 
nexin and the NFTPs could each accomplish their possible 
roles of stabilizing small and/or growing axons and regulat- 
ing the caliber of large axons, respectively, in development 
and in the adult. 

Transient transfections in SWl3cl.2Vim- cells with the 
carboxyl-terminal deletion constructs L1-402 and M1-421 
demonstrated that the entire tail regions of NF-L and NF-M 
are dispensable for normal coassembly of each of these two 
proteins with the other type IV IF proteins to form filaments. 
However, these deletions appeared to affect the homopoly- 
merization of both mutants, resulting in the formation of Tri- 
ton X-100-insoluble tubular-vesicular structures in the cyto- 
plasm of cells transfected with the L1-402 or M1-421 
constructs alone. In contrast to the wild-type NF-M, the M1- 
421 mutant was present only in the Triton X-100-insoluble 
fraction of the transfected cell extracts (Table I). The ob- 
served tubular-vesicular structures appeared at the level of 
light microscopy to be similar to those seen in the transfected 
Ltk- cells with truncated NF-L mutants containing carboxyl- 
terminal deletions into the rod domain, which were shown 
by electron microscopy to be associated with vesicles in the 
cytoplasm (Chin et al., 1991). It is thus possible that the 
tubular-vesicular structures formed by the L1-402 and M1- 
421 mutants in the SW13cl.2Vim- cells may be similarly 
associated with cytoplasmic vesicles. It is noteworthy that in 

the majority of the transfected SW13cl.2Vim- cells, coas- 
sembly of the L1-402 or M1-421 mutants with other exoge- 
nous type IV IF proteins into filaments prevented the mu- 
tants from forming tubular-vesicular structures. Like the 
wild-type NF-M, the M1-421 mutant did not form filaments 
with NF-H, but their coassembly resulted in a punctate 
staining pattern instead of the formation of tubular-vesicular 
structures. Rather than self-associate, the L1-402 and M1- 
421 mutants appear to interact and associate preferentially 
with the other type IV IF proteins and are thus no longer free 
to form homopolymeric tubular-vesicular structures. 

Our present observations with L1-402 and M1-421 in trans- 
fected SWl3cl.2Vim- cells are consistent with the reports 
of Chin et al. (1991) and Wong and Cleveland (1990) which 
showed, respectively, that the L1-402 mutant and a carboxyl- 
terminal deletion mutant of NF-M retaining only 9 amino 
acid residues of the tail could incorporate normally into the 
endogenous vimentin network although they also formed cy- 
toplasmic aggregates in minor populations of the transfected 
fibroblasts. Since the present study showed coassembly of 
the tailless NF-L or NF-M mutants with other type IV IF 
proteins in vimentin-free cells, it eliminates the possibility 
that the presence of the preexisting vimentin network could 
mask the effect of the tailless mutants on filament formation. 
Our results are also similar to those obtained in transfection 
studies using tailless keratins. While Lu and Lane (1990) re- 
ported that a tailless keratin mutant could coassemble into 
normal filaments only if the other keratin partner within a 
heterotypic pair was intact, Bader et al. (1991) demonstrated 
that removal of the tall domain from both types of keratins 
could still lead to formation of extensive arrays of IFs in 
transfected mouse 3T3 cells. However, the tall domain ap- 
pears to play an important role in filament assembly of other 
IF proteins. A tailless desmin was shown to be incapable of 
homopolymeric filament assembly in transfected ceils lack- 
ing preexisting vimentin and desmin networks (Raats et al., 
1991). Similarly, a tailless vimentin, which integrated nor- 
mally into the endogenous vimentin network in transfected 
vimentin-containing cells, was shown to form short fibriUar 
structures as well as spheroidal aggregates in transfected 
vimentin-free cells (Eckelt et al., 1992). It is noteworthy that 
desmin and vimentin are both type HI IF proteins and are 
able to self-assemble into filamentous structures. In light of 
these findings, it will be of great interest to characterize the 
assembly of a tailless tx-internexin to determine the role of 
the tail domain in its homopolymeric filament assembly as 
well as in coassembly with other type IV IF proteins. It will 
also be important to investigate whether removal of the tail 
domain from both NF-L and NF-M can result in their coas- 
sembly into filamentous networks. 
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