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Abstract. To investigate the biological functions of 
transmembrane proteoglycans we have produced clonal 
cell lines of rat Schwann cells that express the hybrid 
proteoglycan syndecan-1. This was done by transfec- 
tion of newborn rat Schwann cells with a plasmid vec- 
tor bearing the rat syndecan-1 cDNA sequence under 
transcriptional control of the constitutively active cyto- 
megalovirus promoter, and a neomycin resistance 
gene. Stably expressing cells were selected by growth 
in G418. Expression of syndecan-1 was verified by 
Northern and immunoblot analysis and immunoprecip- 
itation of 35SO4-1abeled proteoglycans. The syndecan-1 
expressing cells exhibited significantly enhanced 
spreading on several different substrata, including 
fibronectin and laminin, and an altered morphology. 
The enhanced spreading appeared to result from the 

presence of syndecan-1, based on the observation that 
anti-syndecan-1 antibodies inhibited the enhanced sub- 
stratum spreading. There was also a reorganization of 
cytoskeletal structures and formation of focal adhe- 
sions, visualized by anti-vinculin staining, which were 
absent from control Schwann cells. There was no ap- 
parent stable association of cell surface syndecan-1 
with focal contact sites, as determined by dual stain- 
ing with anti-syndecan-1 and anti-vinculin antibodies. 
Colocalization of patches of cell surface syndecan-1 
with actin was observed, but only during cell spread- 
ing. These findings provide evidence for a role of 
transmembrane proteoglycans in cellular morphogene- 
sis, and suggest that transient association of syndecans 
with microfilaments may be an important aspect of 
their biological function. 

W 
'ITHIN the last several years cDNAs coding for pro- 
teins that comprise a gene family of transmem- 
brane proteoglycans have been cloned and se- 

quenced. The proteoglycans of this gene family have been 
called syndecans, based on the name given to the first of 
these proteins to be sequenced (Bernfield et al., 1992). The 
known members of the syndecan gene family are syndecan 
(also called syndecan-1) (Saunders et al., 1989), fibrogly- 
can (syndecan-2) (Marynen et al., 1989), N-syndecan (syn- 
decan-3) (Carey et al., 1992; Gould et al., 1992), and ryuo- 
docan (also called amphiglycan or syndecan-4) (David et 
al., 1992; Kojima et al., 1992). Each of these proteoglycans 
possesses an NH2-terminal extracellular domain with at- 
tachment sites for 3-8 glycosaminoglycan chains, an inter- 
nal hydrophobic membrane-spanning domain, and a short 
COOH-terminal cytoplasmic domain. The amino acid se- 
quence homology of the extracellular domains of the synde- 
cans is low, whereas the sequence homology of the trans- 
membrane and cytoplasmic domains is high (>50 % amino 
acid identity). Thus, the proteins appear to be modular in de- 
sign, with structurally distinct extracellular domains but 
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structurally similar membrane attachment and cytoplasmic 
domains. 

The precise functions of the syndecan family proteogly- 
cans have not been elucidated. In general, they appear to 
provide cell surface binding sites for extracellular regulatory 
macromolecules, in particular adhesive proteins of the ex- 
tracellular matrix and certain polypeptide growth factors. 
Syndecan-1, which has been studied in greatest detail, binds 
in vitro to the matrix proteins fibronectin (Saunders and 
Bernfield, 1988), collagen type I (Koda et al., 1985), throm- 
bospondin (Sun et al., 1989) and tenascin (Salmivirta et al., 
1991), and to bFGF (Elenius et al., 1992), a member of the 
heparin binding growth factor family. 

Syndecan expression is highly regulated among tissues 
and as a function of development. Expression of specific syn- 
decan types is induced at critical periods of development or 
tissue remodeling. Examples include syndecan-1 induction 
in skin during wound healing (Elenius et al., 1991) and syn- 
decan-3 induction during limb bud morphogenesis (Gould et 
al., 1992). Based on these patterns of expression and their 
ability to bind to matrix adhesive proteins and growth factors 
the syndecans have been proposed to play important roles in 
the control of cell growth and differentiation and tissue mor- 
phogenesis. 
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One difficulty in assigning specific functions to syndecans 
is that in most cells syndecans do not represent the sole, or 
even primary, cell surface binding sites for their potential 
ligands. For example, receptors of the integrin family are 
well characterized receptors for matrix proteins such as 
fibronectin (Ruoslahti, 1988). Both syndecans and integrins 
are expressed simultaneously by most ceils. Another dif- 
ficulty in studying syndecan function is that all of the known 
binding interactions use the glycosaminoglycan side chains. 
With the exception of syndecan-bFGF binding, these interac- 
tions are relatively weak, so that ligand specificity and func- 
tional activity under physiological conditions have been dif- 
ficult to demonstrate. Moreover, most cell types synthesize 
more than one form of syndecan (Lories et al., 1989). The 
structural variability of the extracellular domains makes it 
unlikely that the syndecans all carry out the same function. 
At this point, however, functional specificity of different syn- 
decan forms has not been demonstrated. 

One approach to investigating the biological functions of 
the syndecans is to express a specific syndecan form in a cell 
that does not normally produce that syndecan and to identify 
the resulting alterations in the functional characteristics of 
the cell. We have begun to carry out such experiments. This 
paper presents our findings on the expression of syndecan-1 
in neonatal rat Schwann cells. 

Materials and Methods 

Preparation of Syndecan-1 Expressing Schwann Cells 
Cultures of Schwarm cells from newborn rat sciatic nerve were grown on 
poly-L-lysine coated dishes in DME (GIBCO-BRL, Gaithersburg, MD) 
containing 10% FCS and 2/zM forskolin. The cells were transfected with 
the mammalian expression plasmid pCMVneo containing a I kb insert cod- 
ing for full length rat syndecan-1 (Cizmeci-Smith et al., 1992). Control cells 
were transfected with pCMVneo containing either no insert or a partial 
cDNA insert coding for a lipid anchored heparan sulfate proteoglycan 
(Asundi, V., and D. Carey, unpublished observations). For transfections, 40 
t~g of purified plasmid and 30 ttg of Lipofectin (GIBCO-BRL) in a total vol- 
ume of 200 #l of water were mixed in a glass tube and allowed to sit for 
15 rain. The DNA mixture was added dropwise with swirling to cultures 
of Schwann cells (,'~70% confluent) growing in 100-ram culture dishes (200 
#1 of DNA solution) or 4 cm 2 glass slide chambers (50/~l of DNA solu- 
tion) in serum free OptiMEM culture medium (GIBCO-BRL). The cells 
were incubated at 37°C for 3 h, rinsed once with normal growth medium, 
and cultured in normal growth medium for 5 d. After 5 d the cells were 
switched to normal growth medium supplemented with G418 (200-300 
~g/rnl). After ,x,3 wk viable colonies were subcultured using cloning rings. 
In one experiment the viable cells on 1 100-mm culture dish were passaged 
without cloning individual colonies. 

For routine culturing the transfected cells were grown on plastic tissue 
culture dishes coated with poly-L-lysine. For some experiments the cells 
were grown on dishes coated with human plasma fibronectin (a gift of Dr. 
Michael Chernousov) or mouse tumor laminin (Collaborative Research, 
Bedford, MA). For the experiments reported in this paper Sehwann cells 
between the fourth and eighth passage were used. It has been shown previ- 

Figure 1. Analysis of syndecan-1 expression in transfected Schwann cells. Syndecan-1 expression was monitored by Northern blot analysis 
(a) and immunoblot analysis (b). (a) Total RNA was isolated from control Sehwarm cells (lane 1), three clonal lines of syndeean-1 expressing 
Sehwarm cells (clone 1A, lane 3; clone 2A, lane 4; clone 1B, lane 5) and an uneloned population of syndecan-1 expressing Schwann cells 
(lane 2). 20 #g of RNA was electrophoresed on a formaldehyde-agarose gel, transferred onto a nylon filter and hybridized with 32p_ 
labeled rat syndecan eDNA probe. The filter was exposed to X-ray film for 18 h without intensifying screens. The arrows to the left indicate 
the positions of migration of  the 28s and 18s rRNA bands, as visualized by ethidium bromide staining. (b) Equal m o u n t s  of Triton X-100 
extracts (lanes 1-5) or culture medium (lanes 6--10) from syndecan-1 expressing Sehwarm cell clones (lanes 1-3 and 6-8), an uncloned 
population of syndecan-1 expressing Schwarm cells (lanes 4 and 9) or control Schwarm ceils 0anes 5 and 10) were electrophoresed on 
a 7.5% acrylamide SDS gel, transferred to an Immobilon filter and stained with affinity purified anti-syndecan-1 antibodies. The arrow 
to the left indicates the position of migration of syndecan-1 core protein visible in the cell extracts. Numbers and arrows to the right indicate 
position of migration of molecular weight standards (in thousands). 
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Figure 2. Immunofluorescent 
staining of syndecan-1. Con- 
trol Schwann cells (c) and a 
clonal line of syndecan-1 ex- 
pressing Schwann cells (a, b, 
and d)  were stained with anti- 
syndecan-1 antibodies. The 
cells were incubated with the 
primary antibody solution be- 
fore fixation and were not per- 
meabiized so that only cell 
surface proteoglycan was 
stained, a and b show the 
same field photographed with 
phase contrast and fluores- 
cence optics. Bars (b) 100 
#m; (d) 20/zm. 

ously that Schwann cells of these passages retain essentially normal capacity 
for terminal differentiation (Porter et al., 1986). 

Biochemical Characterization of Syndecan-1 
Expression of syndecan-1 in the transfected Schwann cells was verified by 
Northern blot and immunoblot analysis. For Northern blot analysis total 
RNA was isolated as described previously (Cizmeci-Smith et al., 1992). 
15-20 /~g of RNA was electrophoresed on formaldehyde-agarose gels, 
transferred to Nylon membranes, and hybridized to 32p-labeled rat synde- 
can-1 eDNA. 

For immunoblot analysis aliquots of conditioned culture media or 1% 
Triton X-100 extracts of cells were subjected to SDS gel electrophoresis in 
7.5 % pelyacrylamide gels, electrophoretically transferred to Immunobilon 
membranes (Millipore, Bedford, MA) and stained with affinity purified 
rabbit anti-syndecan-1 antibodies. These antibodies have been described 
previously, and were prepared by immunizing rabbits with recombinant rat 
syndecan-1 extracellular domain (Cizmeci-Smith et al., 1992, 1993). 
Bound antibodies were detected on immunoblots by incubation with goat 
anti-rabbit IgG-alkaline phosphatase conjugate (Promega, Madison, WI) 
followed by incubation with phosphatase substrates as described previously 
(Carey et al., 1992). Proteoglycans were chemically deglycosylated by incu- 
bation in trifluoromethanesulfonic acid, as described previously (Cizmeci- 
Smith et al., 1993). 

Metabolic labeling with 3sso,, and immunoprecipitation of Schwann 
cell proteoglycans was carried out as described previously (Carey and Stahl, 
1990). The immunoprecipitates were analyzed on a 0.75 × 30 cm 
Ultraspherogel SEC 4000 column (Beckman Instruments, Palo Alto, CA) 
eluted with 0.1% SDS, 0.1 M Tris-HCl, pH 7.5 at a flow rate of 1 ml/min. 
The radioactivity in the eluates was quantitated with an on-line scintillation 
detector. 

Immunofluorescence Microscopy 
Ceils to be analyzed by immunofluorescence microscopy were grown in 
glass slide chambers (Lab-Tech, Thomas Scientific, Swedensboro, NJ). To 
visualize cell surface staining the culture medium was removed and the cells 
were incubated in the first antibody solution (1:20 dilution of affinity 
purified anti-syndecan-I in 5 % non-fat milk, 0.1 M sodium chloride, 0.02 M 

sodium phosphate, pH 7.4) for 30 rain on ice. After removing this solution 
and rinsing with 0.15 M NaCI, 0.05 M sodium phosphate, pH 7.4, the cells 
were fixed for 20 rain at room temperature by incubation in 3 % parafor- 
maldehyde in the same buffer. This solution was removed and the bound an- 
tibodies were detected by incubating the cells with affinity purified fluores- 
cein conjugated goat anti-rabbit IgG (1:20 dilution, Sigma Chem. Co., 
St. Louis, MO). For anti-vinculin staining the cells were fixed with 3 % 
paraformaldehyde and permeabilized by incubation for 2 rain in a solution 
of 0.05 % Triton X-100 before the antibody incubation steps. Mouse mono- 
clonal anti-vinculin antibodies were used at a dilution of 1:100 and were a 
gift of Drs. A.M. Belkin and V. Koteliansky, Cardiology Research Center, 
Moscow. For phalioidin staining the cells were fixed and permeabilized as 
for vinculin staining and then incubated for 15 min in a solution of rho- 
damine-phalloidin (Sigma Chem. Co.) or fluorescein-phalloidin (Molecu- 
lar Probes, Inc., Eugene, OR) at a concentration of 0.5 #g/rnl in 0.15 M 
NaCI, 0.05 M sodium phosphate, pH 7.4. The stained cells were examined 
and photographed using a Zeiss Axiovert 35 inverted microscope equipped 
for epifluorescence. 

Quantitation of Cell Spreading 
For quantitation of cell spreading, phase contrast images of individual cells 
in subconfluent cultures were recorded using a Newvicon tube video camera 
and digitized as described previously (Carey et al., 1990). The outlines of 
cell borders were traced manually with a mouse and the included areas were 
calculated using a morphometric analysis program (Technology Resources, 
Nashville, TN). 

Scanning Electron Microscopy 
Cells to be analyzed by scanning electron microscopy were grown on glass 
coverslips. The cells were fixed with 2.5% glutaraldehyde, 2% parafor- 
maldehyde, 0.1 M cacodylate, dehydrated through a graded ethanol series, 
impregnated with Peldri II (Ted Pella, Redding, CA), and dried under 
vacuum. Fragments of the coverslips were mounted on scanning electron 
microscopy specimen holders and shadowed with gold-palladium (60:40) 
at an angle of 30* under vacuum. The specimens were examined in a JEOL 
1200EX scanning/transmission electron microscope operating at an ac- 
celerating voltage of 60 kV. 
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Results 

Expression of Syndecan-1 in Schwann Cells 
by Transfection 
We have shown previously that Schwann cells synthesize the 
transmembrane heparan sulfate proteoglycan N-syndecan 
(Carey et al., 1992). A variety of methods were used to dem- 
onstrate that Schwann cells do not synthesize the related hy- 
brid transmembrane proteoglycan syndecan-1 (summarized 
below). We were interested in determining whether expres- 
sion of syndecan-1 in Schwann cells would result in observ- 
able phenotypic changes in the cells. For this purpose a 
cDNA coding for full length rat syndecan-1 (Cizmeci-Smith 
et al., 1992) was subcloned into the selectable expression 
vector pCMVneo and used to transfect cultures of rat 
Schwann cells. Clones of Schwann cells that stably expressed 
syndecan-1 were selected by growth in medium containing 
G418. As controls Schwann cells were also transfected with 
the same vector but containing either an irrelevant insert or 
no insert. A total of 12 G418 resistant clones transfected 
with the syndecan-1 construct were isolated. Of these 10 ex- 
pressed significant amounts of syndecan-1. Several of these 
were chosen for more detailed analysis. 

Fig. 1 A shows the results of Northern blot analysis using 
a syndecan-1 cDNA probe that was hybridized to total RNA 
isolated from control Schwann cells (lane/), 3 syndecan-1 
transfected clones (lanes 3-5), and an uncloned population 
of stably transfected Schwann ceils (lane 2). No detectable 
hybridization of the probe to RNA from the control cells was 
observed, whereas strong hybridization signals were de- 
tected with RNA isolated from all four stably transfected cell 
lines. The size of the syndecan-1 RNA was ,'~1.2 kb, which 
is consistent with the expected size of the polyadenylated 
product of the syndecan-1 expression vector. 

Fig. 1 B shows the results of immunoblot analysis using 
polyclonal anti-rat syndecan-1 antibodies of control cells and 
the same stably transfected syndecan-1 cell lines. Detergent 
lysates of the transfected cells (lanes 1-4) showed anti- 
syndecan-1 immunoreactivity at a Mr = 58,000, consistent 
with the migration of rat syndecan-1 core protein on SDS 
polyacrylamide gels (Cizmeci-Smith et al., 1992) as well as 
diffuse high molecular weight smears suggestive of pro- 
cessed syndecan-1. A lysate prepared from a clonal line of 
control cells transfected with a vector lacking the syndecan-1 
insert (lane 5) did not show any specific anti-syndecan-1 
immunostaining. Immunoblot analysis of cell surface syn- 
decan-1 isolated by trypsinization of cells revealed only the 
processed (high molecular weight) form of the proteoglycan 
(not shown). Analysis of conditioned culture media from the 
syndecan-1 transfected cell lines (lanes 6-9) showed strong 
anti-syndecan-1 immunoreactivity in the high molecular 
weight region of the gel, suggesting that syndecan-1 was 
released from the cell surface. No anti-syndecan-1 staining 
of conditioned medium from control cultures was observed 
(lane 10). 

35SO,-labeled syndecan-1 could be immunoprecipitated 
from detergent extracts of metabolically labeled cultures of 
stably transfected Schwann cells. Results of nitrous acid and 
chondroitinase ABC digestions of the immunoprecipitated 
proteoglycan indicated the Schwann cell-expressed synde- 
can-1 was a hybrid proteoglycan with •85 % heparan sulfate 
and 15% chondroitin sulfate (data not shown). 

Figure 3. Immunoblot analysis of cell surface syndecan-1. Syn- 
decanq expressing Schwarm cells were incubated in calcium and 
magnesium free buffer containing 0.25 % trypsin for 5 min at 37°C. 
The trypsinized cells were harvested by centrifugation and lysed in 
gel sample buffer, and aliquots of the trypsin-released 0anes I and 
2) and cell lysate (lanes 3 and 4) material were subjected to immu- 
noblot analysis and stained with anti-syndecan-1 antibodies, either 
without further treatment (lanes I and 3) or after deglycosylation 
by TFMS (lanes 2 and 4). The bracket to the left indicates the posi- 
tion of migration of the high molecular weight smear characteristic 
of processed syndecan-l; the arrow to the left indicates the position 
of migration of syndecan-1 core protein. Arrows and numbers to 
the right indicate the position of migration of molecular weight 
standards (in kD). 

Immunofluorescent staining with anti-syndecan-1 antibod- 
ies of control and syndecan-1 transfected cells is shown in 
Fig. 2. Consistent with the results of Northern blot and im- 
munoblot analyses no staining of control cells was observed 
(c). In contrast, bright cell surface staining of the transfected 
cells was observed (b and d). These cells were stained with- 
out prior fixation or permeabilization. These results indi- 
cate, therefore, that while much of the processed syndecan-1 
was shed into the culture medium, a significant amount was 
also present on the cell surface. 

To determine whether the cell surface syndecan-I was the 
processed proteoglycan, syndecanq expressing cells were 
incubated in medium containing trypsin to cleave the ec- 
todomain from the cell surface (Rapraeger and Bernfield, 
1985). The trypsinized cells were lysed in detergent, and ali- 
quots of the trypsin-released and cell lysate material were 
analyzed by immunoblot analysis and stained with anti- 
syndecan-1 antibodies. As shown in Fig. 3, in the trypsin- 
released material the antibodies stained only a diffuse high 
molecular weight smear (lane/), characteristic of the migra- 
tion of processed syndecan-1 proteoglycan. Deglycosylation 
of this material resulted in the appearance of a band migrat- 
ing at an apparent Mr --- 58,000 (lane 2), which is the ex- 
pected migration of rat syndecan-1 core protein (see Ciz- 
meci-Smith et al., 1993). In contrast, the lysate of the 
trypsinized cells did not contain significant amounts of the 
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Figure 4. Morphology of syndecan-1 expressing Schwarm cells. Confluent cultures of control Schwarm cells and two clonal lines of synde- 
can-1 expressing Schwann cells growing on culture dishes coated with human plasma fibronectin (top row) or mouse tumor laminin (bottom 
row) were photographed using phase contrast optics. Bar, 100 #m. 

high molecular weight smear, but two major bands migrating 
at Mrs = 58,000 and 90,000 (lane 3). These were, presum- 
ably, the core protein and a processing intermediate form of 
syndecan-1. In support of this, deglycosylation of the cell ly- 
sate material resulted in the appearance of only the Mr = 
58,000 band (lane 4). These results indicated that the cell 
surface syndecan-1 is predominantly the processed pro- 
teoglycan form. 

Syndecan4 Expression Alters Schwann Cell Spreading 
and Morphology 

The syndecan-1 expressing cells exhibited a morphology that 
differed from that of the control cells. As is typical of normal 
Schwann cells, the latter appeared mostly as networks of 
small, bipolar cells with little spreading onto the substrata 
except for thin neurite-like processes extending from the cell 
bodies (Fig. 4). The syndecan-1 expressing cells, in contrast, 
on both fibronectin- and laminin-coated dishes were spread 
more extensively onto the substrata, and had larger nuclei 
and fewer neurite-like processes (Fig. 4). Similar results 
were observed for cells grown on poly-L-lysine-coated 
dishes (not shown). These morphological characteristics 
were typical of all of the syndecan-1 expressing Schwann cell 
clones that were examined, and were not observed in the four 
control clones analyzed or wild-type Schwann cells. 

In confluent cultures syndecan-1 expressing Schwann cells 
formed a non-overlapping, continuous monolayer of flat po- 
lygonal cells with centrally located nuclei (Figs. 2 and 4). 
In these cultures the cell surface syndecan-1 staining was 
concentrated around the borders of individual cells where 
they were in contact with neighboring cells (Fig. 2). This pe- 

ripheral staining coincided with the location and shape of the 
filopodial projections visible on the cells by scanning elec- 
tron microscopy (not shown). 

The difference between control and syndecan-1 expressing 
Schwann cells was especially apparent during active cell 
spreading after replating. Fig. 5 shows control cells (a) and 
syndecan-1 expressing cells (b) 4 h after replating. The con- 
trol cells attached to the dishes and extended thin neurite- 
like processes. In contrast, the syndecan-1 expressing cells 
spread much more extensively in all directions, and pro- 
duced large, flattened, essentially round cells. The extent of 
enhanced substratum spreading was quantified by measuring 
the total spread areas of phase contrast images of sub- 
confluent control and syndecan-1 expressing cells. As shown 
in Fig. 5, syndecan-1 expressing cells exhibited an average 
increase in spread areas of 2.3- and 3.4-fold on poly-L-lysine- 
(c) and fibronectin- (d) coated plates. On both substrata 
nearly all of the syndecan-1 expressing cells were larger than 
the most spread control cells. 

The effects of syndecan-1 expression on spreading and cell 
morphology were also clearly visible by scanning electron 
microscopy. Fig. 6 shows micrographs of control cells and 
one of the syndecan-1 expressing clones. The syndecan-1 ex- 
pressing cells produced large, flat expanses of membrane 
rimmed by filopodial projections (b), in contrast to the more 
compact, elongated profiles of the control cells (a). 

To establish that these effects on cell spreading were due 
to the presence of syndecan-1 on the cell surface, we exam- 
ined the effects of anti-syndecan-1 antibodies on syndecan-1 
expressing cells grown on fibronectin- and laminin-coated 
dishes. As shown in Fig. 7, the syndecan-1 expressing cells 
(B and E) were flatter and more spread than control cells (A 
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Figure 5. Attachment and 
spreading of syndecan-I ex- 
pressing Schwann ceils. 
Clonal lines of control 
Schwann ceils (transfeeted 
with vector alone, a) and 
syndecan-I expressing Sehwann 
ceils (b) were trypsinized and 
plated onto plastic tissue cul- 
ture dishes coated with human 
plasma fibronectin. After in- 
cubation at 37°C for 4 h the 
cells were photographed using 
phase contrast optics. For 
quantitation of cell spreading 
control Schwann cells (open 
bars) and syndecan-1 express- 
ing Schwarm ceils (solid bars) 
growing on dishes coated with 
poly-L-lysine (c) or human 
plasma fibronectin (d) were 
imaged by phase contrast mi- 
croscopy and areas of indi- 
vidual ceils were measured as 
described in Materials and 
Methods. Areas are expressed 
as arbitrary units. The differ- 
ences between control and ex- 
pressing cells were statisti- 
cally significant (p < 0.001). 
Bar in b, 50/~m. 

and D). Addition of anti-syndecan-1 antibodies inhibited the 
spreading of the syndecan-1 expressing ceils (C and F),  so 
that these cells more closely resembled the control cells. 

Effects on Cytoskeletal Organization 
In addition to enhanced spreading syndecan-1 expressing 
cells exhibited a reorganization of cytoskeletal filaments. As 
shown in Fig. 6 a, phalloidin labeling of control cells re- 
vealed intense staining of closely packed, fine microfila- 
ments bundles oriented parallel to the long axes of the cells, 
as well as bright staining of the thin Schwann cell processes. 
Syndecan-1 expressing cells (Fig. 8 b) were larger and more 
spread and contained an extensive network of microfilaments 
throughout the cell cytoplasm. Many of the cells contained 
thick, short rnicrofilament bundles around the periphery of 
the cells or oriented radially across smaller parallel arrays 
of microfilament bundles. 

Syndecan4 Does Not Colocalize with VincuUn 
To determine whether there was a stable colocalization of 
syndecan-I with focal contacts that could account for the en- 
hanced spreading and cytoskeletal reorganization, we dou- 
bly stained the cells with anti-syndecan-1 and anti-vinculin 
antibodies (Fig. 9). Superimposition of these images re- 
vealed that the focal contacts (marked by anti-vinculin stain- 

ing) did not overlap the regions of anti-syndeean-1 staining, 
but were internal to and adjacent to these sites. Thus, cell 
surface syndecan-1 did not appear to be a stable component 
of focal contacts in these cells. 

Colocalization of Cell Surface Syndecan-1 and Actin 
during Cell Spreading 
We next wanted to determine whether association of syn- 
decan-1 with cytoskeletal structures could be observed dur- 
ing active cell spreading. Syndecan-1 expressing Schwarm 
cells were trypsinized and replated onto fibronectin-coated 
dishes and the distribution of cell surface syndecan-1 and 
filamentous actin were determined after several hours by flu- 
orescence microscopy, at a time when the cells had attached 
to the substratum and were in the process of spreading. In 
these cells the cell surface anti-syndecan-1 immunostaining 
was visible in a punctate pattern on the entire cell surface, 
and as patches of staining at the lateral edges of the cells (Fig. 
10 A, arrowheads). These lateral patches of syndecan-1 im- 
munoreactivity corresponded to areas of the lateral cell 
edges where actin filaments had polymerized, as visualized 
by phalloidin staining (Fig. 10 B). These results indicated, 
therefore, that during cell spreading there was an apparent 
association of cell surface syndecan-1 and actin filaments. 
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Figure 6. Scanning electron microscopy of syndecan-1 expressing 
Schwann cells. Control Sehwann cells (a) and a clonal line of 
syndecan-1 expressing Schwann cells (b) were fixed and processed 
for scanning electron microscopy as described in Materials and 
Methods. Bar, 10 #m. 

Radiolabeling of  Proteoglycans 

One potential explanation for the observed effects is that 
syndecan-1 expressing cells had vastly increased (non- 
physiological) levels of cell surface glycosaminoglycans that 
produced enhanced substratum adhesiveness through non- 
specific mechanisms. It was of interest, therefore, to estimate 
the relative amounts of syndeean-1 associated and endoge- 
nous glycosaminoglycans in the cells. To do this we radiola- 
beled the cells with 35SO4 for 24 h and measured the incor- 
poration of radiolabel into syndecan-1 and a lipid anchored 
heparan sulfate proteoglycan (Carey and Stahl, 1990) that is 
the principal endogenous membrane-associated proteogly- 
can in Schwann cells. Incorporation into the total pool of cel- 
lular proteoglycans was also measured. As assessed by 
3sSO4 labeling, syndecan-1 expression increased the total 
glycosaminoglyean content of the cells by ~,70% and ac- 
counted for less than one-half of the total glycosaminoglycan 
synthesized by the cells (Table I). The amount of syndecan-1 
associated glycosaminoglycan was ~1.7 times the amount as- 
sociated with the lipid anchored proteoglyean. When this 
value was adjusted for the numbers of glycosaminoglycan at- 

tachment sites-five for rat syndecan-1 (Cizmeci-Smith et 
al., 1992) vs three for the lipid anchored proteoglycan 
(David et al., 1990)-then the two proteoglycans were pres- 
ent at approximately equivalent concentrations (assuming 
equal chain lengths and sulfation). 

Discussion 

We have investigated the effects of expression of the trans- 
membrane proteoglycan syndecan-1 in cultured Schwann 
cells. The most obvious alteration that was observed in re- 
sponse to syndecan-1 expression was a conversion of the cells 
to a highly flattened cuboidal morphology. This was in con- 
trast to the typical morphology of cultured Schwann cells, 
i.e., small spindle-shaped cells with long thin neurite-like 
processes. There was little apparent effect of syndecan-1 ex- 
pression on the growth properties of the cells, except for a 
decrease in the confluent density (unpublished observa- 
tions). We attributed this difference to the large increase in 
area occupied by individual ceils, leading to contact inhibi- 
tion of cell proliferation at lower cell densities. Syndecan-1 
expression also resulted in a major reorganization of cyto- 
skeletal structures within the cells, although under basal 
conditions there was no apparent colocalization of cell sur- 
face syndecan-1 with cytoskeletal structures. 

The morphological conversion of the Schwann cells was 
most likely caused by increased adhesiveness of the cells to 
the substratum. Syndecan-1 has been proposed to function 
as a receptor for interstitial type extracellular matrix (Saun- 
ders and Bernfield, 1988). In our studies, increased spread- 
ing caused by syndecan-1 expression was observed on the 
non-biological substratum poly-L-lysine, as well as the ma- 
trix adhesive proteins fibronectin and laminin. Syndecan-1 
has been reported to bind in vitro to fibronectin (Saunders 
and Bernfleld, 1988) as well as other ECM molecules in- 
cluding collagen type I (Koda et al., 1985), thrombospondin 
(Sun et al., 1989), and tenascin (Salmivirta et al., 1991). In- 
terestingly, we have found that the Schwann cell expressed 
syndecan-1 binds only very weakly to fibronectin or laminin 
in vitro (Chernousov and Carey, 1993). These findings sug- 
gest, therefore, that it may be difficult to draw firm conclu- 
sions about the biological functions of these molecules from 
in vitro binding data alone. The precise mechanism by which 
syndecan-1 expression alters Schwann cell spreading is not 
known. Additional receptors would also appear to be in- 
volved, since focal contacts are present, and syndecan-1 did 
not colocalize with these structures. The effects we observed 
in living cells may result from the cooperative interactions 
of the cell surface proteoglycan with other adhesive systems 
(e.g., integrins). It has been proposed that proteoglycans of 
the syndecan family may function as "coreceptors" that stabi- 
lize or strengthen binding interactions mediated by other 
"high affinity" receptors (Bernfield et al., 1992). Whether 
syndecans and integrins cooperate to mediate adhesion in 
this manner is not known. We have shown previously that 
Schwann cell spreading on laminin-coated surfaces is in- 
hibited partially by anti-integrin antibodies, and essentially 
completely by a combination of anti-integrin and heparin 
(Carey et al., 1990). Alternatively, the adhesion could result 
from the combined action of many weak binding interactions 
mediated by proteoglycans sequestered on the cell surface. 
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Figure 7. Effects of anti- 
syndecan-1 antibodies on the 
morphology of syndecan-1 ex- 
pressing Schwann cells. A 
clonal line of syndecan-I ex- 
pressing Schwann cells (B, C, 
E, and F) or control Schwann 
cells (A and D) growing on 
cultures dishes coated with 
human plasma fibronectin 
(A-C) or mouse tumor lami- 
nin (D-F) were incubated in 
normal growth medium or 
growth medium containing 10 
#g/ml affinity purified anti- 
syndecan-1 antibodies (C and 
F) for 48 h. Bar, 100 #m. 

For example, patching of cell surface syndecan, which we 
observed during cell spreading, may increase the local con- 
centration of the proteoglycan and drive the equilibrium to- 
ward association with extracellular ligands. 

The observed effects of syndecan-1 expression on Schwann 
cells did not appear to result simply from a large increase 
in the content of cell surface glycosaminoglycans. We esti- 
mated from measurements of 35SO4 incorporation that the 
stably expressing Schwann cells had "°70% more total 
glycosaminoglycan than control cells. The amount of synde- 
can-1 in the cells measured by this method was roughly equal 

to the amount of the lipid anchored heparan sulfate proteo- 
glycan. While it is possible that this level of increase could 
significantly alter cell adhesion to the extent observed in our 
cells, we think this is unlikely. This suggests that the nature 
of the core protein has an important effect on the biological 
activity of the glycosaminoglycans. This is a potentially im- 
portant finding, since it has been difficult to demonstrate 
functional specificity of different membrane proteoglycans 
by analysis of their binding interactions in vitro. The struc- 
tural diversity of the core proteins and their highly regulated 
patterns of expression make it unlikely that all membrane as- 

Figure 8. Cytoskeletal organization in control and syndecan-1 expressing Schwann cells. Subconfluent cultures of control Schwann cells 
(a) and a clonal line of syndecan-1 expressing Schwann cells (b) were stained with rhodamine-conjugated phalloidin. Bar, 25 #m. 
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Figure 9. Syndecan-1 and vinculin distribution in syndecanq expressing Schwann cells. Syndecan-1 expressing Schwann cells were stained 
with rabbit anti-syndecan-1 antibodies and mouse anti-vinculin antibodies. These were visualized by rhodamine anti-rabbit IgG (red), and 
fluorescein anti-mouse IgG (green), respectively. A and B show the staining patterns obtained with each antibody. C shows a superimposed 
image of the staining patterns. Anti-vinculin stains predominantly focal contacts (arrow) adjacent to, but not overlapping, the outer rim 
of syndecan-1 staining. 

Figure 10. Colocalization of cell surface syndecan-1 and actin filaments during cell spreading on fibronectin. Syndecan-1 expressing 
Schwann cells were plated onto fibronectin-coated dishes and allowed to attach and spread for several hours. The cells were then stained 
with anti-syndecan-1 antibodies (visualized with rhodamine anti-rabbit IgG, a) and fluorescein-phalloidin (b). Note the patches of synde- 
can-1 staining at the lateral cell edges that correspond to sites of actin filament polymerization (arrowheads). Bar, 25 #m. 

sociated proteoglycans carry out the same functions. This il- 
lustrates, therefore, the value of assays using proteoglycans 
expressed in living cells. It is possible that the core proteins 
alter the functional consequences of glycosaminoglycan bind- 

Table 1. 35S04 Labeling of  Schwann Cell Proteoglycans* 

Proteoglycan a5SO4 clam (% total) 

Syndecan-1 46,400 (44) 
LAPG 27,023 (25) 
Other 33,028 (31) 
Total 106,451 

* Syndexan-1 expressing cells (clonal line 1B) were labeled with 3~SO4; 
incorporation into proteoglycans was determined by immunoprecipitation and 
gel permeation HPLC. LAPG is the lipid anchored Sehwann cell proteoglycan 
(Carey and Stahl, 1990). "Other ~ indicates proteoglycans not immunoprecipi- 
tated by anti-syndecan-1 or anti-LAPG antibodies. 

ing in subtle ways that cannot be differentiated by the fairly 
crude in vitro binding assays. One obvious difference be- 
tween syndecan-1 and the lipid anchored proteoglycan, for 
example, is the presence of a transmembrane and cytoplas- 
mic domain in the former, affording it the opportunity to in- 
teract with intracellular proteins. The functional importance 
of these potential interactions are not yet understood. We 
should point out that Schwann cells also synthesize N-synde- 
can, but at amounts that are considerably lower than the syn- 
decan-1 in the transfected cells. Thus, we cannot draw any 
firm conclusions about specific functions of syndecan family 
subtypes from these studies. 

The effects of syndecan-1 expression on cytoskeletal reor- 
ganization could result indirectly from increases in sub- 
stratum adhesivity. While interactions of cell surface pro- 
teoglycans (Carey and Todd, 1986), including syndecan-1 
(Rapraeger et al., 1986), with the cytoskeleton have been 
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demonstrated in some cells, we did not observe any apparent 
colocalization of cell surface syndecan-1 with cytoskeletal 
structures under steady state conditions in spread cells. In 
contrast, we found that during active cell spreading there was 
an apparent transient association of cell surface syndecan-1 
with actin filaments at the lateral cell edges. We have also 
found that colocalization of syndecanq with microfilaments 
can be induced in spread ceils by aggregation of the cell sur- 
face proteoglycan with antibodies (Carey, D., R. Staid, B. 
Tucker, K. Bendt and G. Cizmeci-Smith, manuscript sub- 
mired for publication). This raises the possibility that ligand 
mediated oligomerization of the proteoglycan during cell 
spreading could induce a transient cytoskeletal association 
that might influence cellular organization. This mechanism 
is attractive because it would allow for more dynamic regula- 
tion than would a stable long term association of the pro- 
teoglycan with cytoskeletal structures. Obviously, other 
adhesive receptor systems are also at work. An important 
area of future research will be to investigate the interactions 
between syndecans and other adhesive receptors. 

The observed actin filament colocalization presumably in- 
volved coupling of the cytoplasmic domain of the proteogly- 
can core protein to microfilaments, but this has not been 
demonstrated directly. The cytoplasmic domains are the 
most highly conserved parts of the core proteins that com- 
prise this gene family (Bernfield et al., 1992), which sug- 
gests that the cytoplasmic domains carry out an important 
biological function. This also suggests that other proteogly- 
cans of this gene family would exhibit similar behavior, but 
this remains to be tested. By analogy with other cell surface 
transmembrane proteins that bind to cytoskeletal filaments, 
the binding of syndecan-I to microfilaments would be in- 
direct. For example, integrins interact with cytoskeletal 
structures, such as focal contacts, via binding of their cyto- 
plasmic domain (Reszka et al., 1992) to the actin-binding 
protein a-actinin (Otey et al., 1990). Binding of syndecan 
family proteoglycans to actin binding proteins in vitro has 
not been reported. Additional work in this area will be re- 
quired to elucidate the specific molecular mechanisms that 
mediate the biological functions of transmembrane pro- 
teoglycans. 
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