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Abstract. We have investigated the replication capac- 
ity of intact nuclei from quiescent cells using Xenopus 
egg extract. Nuclei, with intact nuclear membranes, 
were isolated from both exponentially growing and 
contact-inhibited BALB/c 3T3 fibroblasts by treatment 
of the cells with streptolysin-O. Flow cytometry 
showed that >90 % of all contact-inhibited cells and 
,050% of the exponential cells were in G0/Gl-phase at 
the time of nuclear isolation. Intact nuclei were as- 
sayed for replication in the extract by incorporation of 
[o~-3'P]dATP or biotin-dUTP into nascent DNA. Most 
nuclei from exponential cells replicated in the egg ex- 
tract, consistent with previous results showing that in- 
tact G1 nuclei from HeLa cells replicate in this sys- 
tem. In contrast, few nuclei from quiescent cells 
replicated in parallel incubations. However, when the 

nuclear membranes of these intact quiescent nuclei 
were permeabilized with lysophosphatidylcholine prior 
to addition to the extract, nearly all the nuclei repli- 
cated under complete cell cycle control in a subse- 
quent incubation. The ability of LPC-treated quiescent 
nuclei to undergo DNA replication was reversed by 
resealing permeable nuclear membranes with Xenopus 
egg membranes prior to extract incubation demonstrat- 
ing that the effect of LPC treatment is at the level of 
the nuclear membrane. These results indicate that 
nuclei from Gl-phase cells lose their capacity to initi- 
ate DNA replication following density-dependent 
growth arrest and suggest that changes in nuclear 
membrane permeability may be required for the initia- 
tion of replication upon re-entry of the quiescent cell 
into the cell cycle. 

T 
HE regulation of eukaryotic DNA replication is a com- 
plex process. Analysis of the regulatory mechanisms 
governing the replication of cellular DNA has been 

greatly facilitated by the development of a cell-free system 
from amphibian eggs (Lohka and Masui, 1983, 1984). In 
Xenopus egg extracts, initiation of DNA replication is depen- 
dent upon nuclear structure (Blow and Laskey, 1986; New- 
port, 1987; Hutchison et al., 1987; Blow and Watson, 1987; 
Sheehan et al., 1988; Blow and Sleeman, 1990). One partic- 
ular feature of nuclear structure, namely the nuclear enve- 
lope, is directly involved in regulating DNA replication in 
at least three ways (for review see Leno, 1992). First, the ini- 
tiation of replication is dependent upon the assembly of an 
intact, functional nuclear envelope (Newport et al., 1990; 
Meier et al., 1991; Cox, 1992). Second, the nuclear mem- 
brane determines the timing of initiation of replication (Leno 
and Laskey, 1991), and, third, the nuclear membrane pre- 
vents re-replication of DNA within a single cell cycle (Blow 
and Laskey, 1988; Leno et al., 1992). 

The cell fusion studies of Rao and Johnson (1970) clearly 
demonstrated that mammalian G1 nuclei differ from G2 
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nuclei regarding their capacities for DNA replication. Re- 
cently, Leno et al. (1992) showed that the nuclear membrane 
defines the different replication capacities of these pre-S- 
phase (G1) and post-S-phase (G2) nuclei in Xenopus egg ex- 
tract suggesting that this structure may limit DNA replica- 
tion to a single round per cell cycle in mammalian cells. The 
mechanism by which the nuclear membrane prevents re- 
replication within a single cell cycle has not been completely 
defined. According to one model (Blow and Laskey, 1988), 
an essential replication factor binds to DNA only at mitosis 
when the nuclear membrane is broken down and is destroyed 
after replication initiates. In this way, the factor would 
"license" the DNA to replicate once and only once following 
nuclear re-assembly, but further replication could not occur 
until the nuclear membrane again breaks down in the next 
mitosis. 

Recently, the existence of a positive "licensing" activity in 
egg extract has been confirmed (Coverley et al., 1993; Blow, 
1993; Kubota and Taldsawa, 1993), although its mechanism 
of action remains unclear. There are at least two possible 
ways in which a positive activity could license the DNA for 
replication: first, by direct binding of the factor to the DNA, 
as was originally proposed (Blow and Laskey, 1988), or sec- 
ond, by the catalytic conversion of inactive replication com- 
ponents into active forms (Coverley et al., 1993; Blow, 
1993). In either case, the net result is removal of the block 
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to re-replication on G2 nuclei, thereby rendering G1 nuclei 
competent for DNA replication in the ensuing cell cycle. 

In the adult vertebrate organism, the majority of cells exist 
in a quiescent state often referred to as "GO" (Pardee, 1989). 
Most of these GO cells contain unduplicated DNA, demon- 
strating that quiescence occurs prior to entry into S-phase. 
Untransformed 3T3 fibroblasts can be induced to exit the cell 
cycle early in Gl-phase (Zetterberg and Larsson, 1991) and 
enter a reversible growth-arrested state either by contact in- 
hibition (Holley and Kienan, 1968) or serum deprivation 
(Larsson et ai., 1985). Presumably, this quiescent state is 
similar to the in vivo GO state. Quiescent fibroblasts differ 
from cycling G1 fibroblasts in several ways, including cell 
size, metabolic activity, and ribosome structure (Pardee, 
1989). Along with these differences is the specific expres- 
sion of several growth-arrest-specific (gas) genes in quies- 
cent cells which demonstrates that the "out of cycle" quies- 
cent state is biologically distinct from the "in cycle" Gl-phase 
(Schneider et al., 1991). When contact-inhibited 3T3 cells 
are re-plated at a lower cell density, or when serum-starved 
cells are re-fed serum or specific growth factors, the quies- 
cent state is reversed, and these cells re-enter the cell cycle 
in (31. Thus, like cycling G1 cells, these previously arrested 
G1 cells eventually undergo DNA replication. 

We were interested in determining whether intact nuclei 
from contact-inhibited cells, which exit the cell cycle at GI, 
retain the capacity for initiating DNA replication or whether 
G1 nuclei lose this capacity following growth arrest. Here 
we show that most intact quiescent nuclei do not initiate 
DNA replication in the Xenopus egg extract, even after 
short periods of growth arrest. However, if their nuclear 
membranes are permeabilized with lysophosphatidylcholine 
(LPC) ~ before addition to the extract, virtually all nuclei 
replicate under complete cell cycle control in a subsequent 
incubation. The ability of LPC-treated quiescent nuclei to 
undergo DNA replication can be reversed by resealing per- 
meable nuclear membranes with Xenopus egg membranes 
prior to extract incubation demonstrating that the effect of 
LPC treatment is at the level of the nuclear membrane. These 
data indicate that nuclei from G1 cells lose their capacity to 
replicate following growth arrest and suggest that changes in 
nuclear membrane permeability may be required for the ini- 
tiation of replication upon re-entry of the quiescent cell into 
the cell cycle. 

Materials and Methods 

Preparation of Egg Extracts 
Xenopus egg extracts were prepared according to the procedure used by 
Leno and Laskey (1991) with the modifications described by Leno et al. 
(1992). Specifically, female frogs were injected with 50 IU pregnant mare's 
serum gonadotropin (Sigma Chemical Co., St. Louis, MO) 6-7 d before in- 
jection-with 400-500 IU human chorionic gonadotropin (Sigma Chemical 
Co.). Eggs were collected from high-salt Barth's (Blow and Laskey, 1986) 
and de-jellied with 2% cysteine hydrochloride, pH 8.0. De-jellied eggs were 
rinsed several times in Barth's (Blow and Laskey, 1986) and activated in 
Barth's containing 0.5 ~tg/ml calcium ionophore A23187 (Sigma Chemical 
Co.). Activated eggs were rinsed several times in Barth's without calcium 

1. Abbreviationx'used in this paper: BrdU, bromodeoxyuridine; EXP, ex- 
ponentially; LPC, lysophosphatidylcholine; SLO, streptolysin-O; TTBS, 
Tween-Tris-buffered saline. 

and transferred to ice-cold extraction buffer (Blow and Laskey, 1986). The 
protease inhibitors aprolinin, leupeptin, and pepstatin (Sigma Chemical 
Co.), all at 1/~g/ml, were included in the final extraction buffer rinse. Eggs 
were packed by centrifugation at 1,500 rpm for 1 rain in a SW 50.1 rotor 
(Beckman Instruments, Inc., Paio Alto, CA), and all excess buffer and dis- 
colored eggs were removed. Packed eggs were crushed by centrifogation at 
9,000 rpm for 10 rain in a SW 50.1 rotor. The cytoplasmic layer was re- 
moved, supplemented with cytochalasin B (Sigma Chemical Co.) to a final 
concentration of 10/~g/ml, and centrifuged at 15,000 rpm for 10 rain in a 
SW 50.1 rotor. The low-speed supernatant was supplemented with glycerol 
to a final concentration of 2 % and frozen as beads in liquid nitrogen. 

Preparation and Fractionation of Mitotic Vesicles 
Mitotic extracts from unactivated Xenopus eggs were prepared as described 
by Newport and Spann (1987). Mitotic vesicles were isolated and fraction- 
ated according to the procedures described by W'flson and Newport (1988). 
The "light" vesicles collected from the 1.1 M/0.9 M and the 0.9/0.7 M inter- 
faces of the discontinuous sucrose gradient were combined and incubated 
with Xenopus sperm chromatin in a membrane-depleted "high-speed" su- 
pernatant derived from activated eggs (Sheeban et al., 1988). Nuclear enve- 
lope formation around sperm chromatin was confirmed by phase contrast 
microscopy and staining with the lipophih'c dye Nile red (Leno and Laskey, 
1991). The protein concentration of the combined "ligh t" mitotic vesicle 
fraction was determined using the DC protein assay kit (Bio-Ead Laborato- 
ries, Cambridge, MA). 

Cell Culture 
BALB/c 3I"3 cells (No. CCL 163; American Type Culture Collection, 
Rockville, MD) were grown in Dulbeeco's modified Eagle's medium 
(GIBCO BRL, Galthersburg, MD) supplemented with 10% calf serum 
(GIBCO BRL), 100 U/ml penicillin G, 100 ~g/ml streptomycin sulfate, and 
0.25/~g/ml amphotericin B (GIBCO BRL). HeLa cells were grown and syn- 
chronized in Gl-phaso as previously described (Leno et al., 1992). 

Quiescent ceils were obtained as follows. Each of six 75 cm 2 flasks were 
seeded with an equal number of exponentially growing 3T3 cells, and all 
cultures were fed fresh medium daily. Cells in all cultures reached 
confluence ('~6 × 104 cells/era 2) on the same day (confluent day 0; CO). 
Nuclei, with intact nuclear membranes, were isolated from the CO culture 
and from the remaining cultures every 2 d for up to 10 d (C2-C10) (see 
below). Intact nuclei were also isolated from exponentially growing 3T3 
cells (~6 × 103 cells/cm 2) as described below. To label nuclei from S-phase 
cells in both the confluent and exponentially growing cell cultures, each cul- 
ture was pulse-labeled for 1 h with 100 ~tM bromodeoxyuridine (BrdU) be- 
fore nuclear isolation. 

Preparation of Nuclei 
Nuclei, with intact nuclear membranes, were isolated from exponentially 
(EXP) growing and confluent, contact-inhibited 31"3 cultures (C0-C10) and 
from Gl-phase HeLa cultures using the bacterial exotoxin streptolysin-O 
(SLO; Murex Diagnostics Inc., Norcross, GA) (Leno et al., 1992). 
Specifically, BrdU-labeled cells were rinsed with Dulbecco's phosphate- 
buffered saline without calcium chloride or magnesium chloride (D-PBS; 
GIBCO BRL) and detached from the flask by incubation with nonenzymatic 
cell dissociation solution (Sigma Chemical Co.) or with trypsin-EDTA 
(GIBCO BRL). The detached cells were pelleted by centrifugation for 10 
rain at 190 g. The cell pellet was resuspended in ice-cold Pipes buffer (50 
mM K-Pipes, pH 7.0, 50 mM KCI, 5 mM MgCI2, 2 mM EGTA) contain- 
ing 1 ~tg/rul each aprotinin, leupeptin, and pepstafin and I mM 131"T (Sigma 
Chemical Co.). Cell numbers were determined using a hemacytometer, and 
Pipes buffer was added to yield ~,5 × 105 cellsYml. An equal volume of 
ice-cold Pipes buffer containing SLO at a concentration of 1.5 IU/ml was 
added to give a final concentration of SLO equal to 0.75 IU/2.5 × 105 
cells/mi. Cells were held on ice for 30 rain and the tubes were inverted every 
10 rain. SLO-treated cells were pelleted by centrifugation at 0°C as de- 
scribed above. The supernatant, containing unbound SLO monomer, was 
removed and the cell pellet resuspeuded in Pipes buffer. Cells were pelleted 
and rinsed twice in Pipes buffer. The final cell pellet was resuspended in 
1 ml Pipes buffer and incubated 5 min at 37°C. The permeability of both 
plasma and nuclear membranes was determined by incubating an aliquot of 
SLO-treated cells with affinity purified TRITC-IgG (Sigma Chemical Co.) 
for 5 rain. Samples were viewed with a laser-scanning confocal microscope 
(Noran) with an excitation wavelength of 529 nm through a 20× objective 
lens. 
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The nuclear membranes of intact exponential (EXP) and intact contact- 
inhibited (C0-CI0) 3T3 nuclei and Gl-pbase HeLa nuclei were permeabi- 
lized by treatment with lysopbosphatidylcholine (LPC; Sigma Chemical 
Co.). Specifically, an aliquot from each intact nuclear population was in- 
cubated on ice for 15 rain with 200 ~tg LPC/I x 105 nuclei/ml Pipes 
buffer. Membrane permeabilization was stopped by the addition of BSA 
(Sigma Chemical Co.) to a final concentration of 1%. Samples were cen- 
trifuged at 47 g for 10 min at 0oC. The nuclear pellets were rinsed three 
times by re-suspension in Pipes buffer followed by centrifugation. An ali- 
quot of LPC-treated nuclei from each sample was incubated with TRITC- 
IgG and viewed as described above. 

The concentration Of DNA in each 3I"3 sample was estimated by counting 
nuclei with a hemacytometer and assuming a DNA mass of 10 pg per 
hypotetraploid nucleus. This value is based upon a DNA mass of 5.1 pg per 
diploid fibroblast nucleus (Patel and Rickwood, 1992). Our assumption of 
10 pg DNA per 3I'3 nucleus would result in an underestimate of the actual 
concentration of DNA in the exponential population, relative to the quies- 
cent samples, due to the number of cells in S- and G2/M-pbases in the 
former population (see Fig. 1 C). However, these small differences in the 
concentration of DNA between exponential and quiescent samples should 
have had little, if any, effect on our results. Both intact and permeabillzed 
nuclei that were not used immediately in replication assays were frozen 
using cryo 1°C freezing containers (Nalgene Co., Rochester, NY) following 
addition of dimethylsulfoxide to a final concentration of 5 %. 

The concentration of DNA in each HeLa sample was estimated by count- 
ing nuclei and assuming a DNA mass of 14.4 pg per Gl-phase nucleus (Fas- 
man, 1976). 

Flow Cytometry 
Approximately 1 x 10 ~ intact nuclei from each cell population were fixed 
in -80°C methanol for 10 rain, pelleted, and resuspended in 0.5 ml D-PBS 
in preparation for analysis by flow cytometry. The DNA was stained by in- 
cubating each nuclear sample with 0.25 ml of a 0.2 % propidium iodide solu- 
tion in PBS for 30 rain at room temperature. Samples were analyzed at ,~20 
nuclei/s on a Becton-Dickinson FACScan using CelIFIT softvaLre for dou- 
blet discrimination and the RFIT (rectangular fit) model for cell cycle stag- 
ing. LYSYS II was used for graphic representation of the composite histo- 
grams. Each histogram represents an analysis of ,~15,000 nuclei. 

Resealing of Permeable Nuclear Membranes 
Approximately 15,000 LPC-permeabilized quiescent (C2) 3T3 nuclei or G1- 
phase HeLa nuclei were incubated with "lighff mitotic membranes (0.1/~g 
protein) in a total volume of 20/d Pipes buffer supplemented with ATP and 
GTP to a final concentration of 1 raM. Samples were incubated for 1 h 
at 23°C and the nuclei were pelleted by centrifugation at 47 g for 10 rain 
at 4°C. The nuclei were resuspended in Pipes buffer and counted. The per- 
centage of nuclei excluding TRITC-IgG was determined. 

In Vitro Replication 
Egg extract was thawed and supplemented with an energy-regenerating sys- 
tem (Blow and Laskey, 1986) and cycloheximide as previously described 
(Leno and Laskey, 1991). Previously unfrozen or freshly thawed intact, 
LPC-permeabilized or -reseeded nuclei were added at '~1 ng DNA//~I extract 
and labeled with either 100 ~Ci/ml [a-32p]dATP (800 Ci/mmol; New En- 
gland Nuclear, Boston, MA) or 20 ~M 5-biotin-16-<leoxyuridine tri- 
phosphate (Boehringer Mannheim GmbH, Mannheim, Germany). Samples 
were incubated for 6 h at 23°C. Determination of the extent of [¢x-32p]dATP 
incorporation was as previously described (Leno and Laskey, 1991). Biotin- 
labeled nuclei were spun onto polylysine-coated coverslips, rinsed with 
D-PBS and fixed in ice-cold methanol for 15 rain. 

To detect both incorporated biotinylated dUTP and BrdU within the same 
nuclei, coverslips of fixed nuclei were rinsed with Tween-Tris-buffered sa- 
line (TTBS; 25 mM Tris base, pH 8.0, 137 mM NaCI, 2.7 mM KC1, 0.1% 
Tween-20; Sigma Chemical Co.) containing 1% BSA and incubated with 
anti-BrdU monoclonal antibody containing nuclease (Amersbam Corp., 
Arlington Heights, It,) for 1 h at 23°C. Excess antibody was removed by 
rinsing with TTBS, and the coverslips were then incubated with sheep 
anti-mouse Texas Red-conjugated immunoglobulin (Amersham Corp.), 
diluted 1:25 in TTBS, for 2 h. After rinsing with buffer A (Blow and Wat- 
son, 1987), each coverslip was incubated in 0.5 ml buffer A containing 5 
/~1 fluorescein streptavidin (Amersham Corp.) and 1 /zl Hoechst 33258 
(Sigma Chemical Co.) at 100/~g/mi for 10 rain. Coverslips were rinsed in 
deionized water and mounted in phenylenediamine (Sigma Chemical Co.) 

mountant. For detection of biotinylated dUTP alone, coverslips of fixed 
nuclei were rinsed in buffer A, and each was incubated for 15 rain in 0.5 
ml buffer A supplemented with 5 p.1 fluorescein streptuvidin, 0.5 izl 
propidium iodide at I mg/ml and 0.5/~1 RNase A at 10 mg/ml. Coverslips 
were rinsed in buffer A and mounted as described above. 

Density substitution experiments were conducted as previously de- 
scribed (Leno et al., 1992) with the following modifications. 3I'3 nuclei 
were incubated at 1 ng DNA/p.I extract supplemented with 0.25 mM 
BrdUTP (Sigma Chemical Co.) and 100 ~tCi/ml [o~-32p]dATP for 6 h at 
23"C. Substituted DNA was separated from unsubstituted DNA by centrifu- 
gation to equilibrium in a cesium chloride gradient using a 70.1 Ti rotor 
(Beckman Instruments Inc., Palo Alto, CA) run at 35,000 rpm for 48 h at 
20°C. The refractive index of every fifth gradient fraction was determined 
and each fraction was counted by liquid scintillation. 

Results 

Isolation of Intact Nuclei from Exponentially Growing 
and Contact-inhibited Mouse 3T3 Cells 
Mammalian Gl-phase nuclei, with intact nuclear mem- 
branes, initiate DNA replication when incubated in Xenopus 
egg extract (Leno et al., 1992). We were interested in deter- 
mining if intact nuclei from quiescent cells, which exit the 
cell cycle at G1, retain the ability to initiate DNA synthesis 
in extract even following extended periods of growth arrest. 
To address this question, mouse 3T3 cells were grown to 
confluence (i.e., saturation density), and nuclei, with intact 
nuclear membranes, were isolated from both confluent cul- 
tures and exponentially growing cultures by treatment of the 
cells with the bacterial exotoxin, SLO (Leno et al., 1992). 
Using a procedure similar to that described by Hugo et al. 
(1986) and Almert-Hilger et al. (1989), SLO selectively per- 
meabilizes the plasma membrane, leaving the underlying nu- 
clear membrane intact (Leno et al., 1992). Intact nuclei 
were isolated from confluent cells on the day that the cells 
reached confluence (CO) and every second day thereafter for 
up to 10 d (C2-C10). 

Nuclear membrane integrity was determined by incubat- 
ing aliquots of SLO-treated cells with TRITC-IgG (Sigma 
Chemical Co.). TRITC-IgG diffuses across an SLO-perme- 
abilized plasma membrane but not across an intact, selec- 
tively permeable nuclear membrane. Thus, exclusion of 
TRITC-IgG from within the nucleus indicates nuclear mem- 
brane integrity (Leno et al., 1992). Fig. 1 A is a composite 
of three representative fields of SLO-treated, quiescent 3T3 
cells, from the 2-d confluent culture (C2), incubated with 
TRITC-IgG, and viewed by confocal microscopy. The 
majority of cells showed bright cytoplasmic fluorescence but 
little or no nuclear fluorescence indicating diffusion of 
TRITC-IgG across the plasma membrane but not across the 
intact nuclear membrane. The uniform fluorescence ob- 
served within some nuclei (double arrowheads) demon- 
strates the loss of nuclear membrane integrity presmnably 
during nuclear isolation. 

Over 100 nuclei from each cell population were examined 
by conf(rad microscopy and the percentage excluding TRITC- 
IgG was determined (Fig. 1 B). 92 % of the nuclei isolated 
from the exponentially growing cell culture excluded the la- 
beled IgG. The percentage of confluent cell nuclei that ex- 
cluded label ranged from a high of 87 % in the 2-d culture 
(C2) to a low of 74 % in the 6-d culture (C6). We were con- 
sistently able to isolate a greater percentage of intact nuclei 
from exponentially growing cells than from confluent cells. 
This may indicate that the nuclear membranes from 
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Figure 1. Isolation of intact nuclei from BALB/c 3T3 fibroblasts. Cultures of exponentially-growing and confluent 3T3 cells (CO-CIO; indi- 
cating the days post-confluence) were treated with the bacterial exotoxin SLO as described in Materials and Methods. Aiiquots of SLO- 
treated cells were incubated with TRITC-IgG and viewed, without fixation, by confocal microscopy. (A) Three representative fields of 
SLO-treated cells from the 2-d (C2) culture are shown. Most cells showed a bright cytoplasmic fluorescence but little or no nuclear fluores- 
cence demonstrating nuclear membrane integrity, i.e., intact nuclei. However, some cells did show both cytoplasmic and nuclear fluores- 
cence (double arrowheads) demonstrating the loss of nuclear membrane integrity presumably during nuclear isolation. (B) Over 100 ran- 
domiy selected cells from each culture were examined for exclusion of TRITC-IgG from the nucleus. The percentage of cells showing 
nuclear exclusion from each population is shown. (C) Intact nuclei, isolated from exponentially growing and confluent cell cultures, were 
also stained with propidium iodide and analyzed by flow cytometry. Histograms show relative DNA content (x-axis) and nuclear number 
(y-axis). Approximately 90% of the nuclei from the confluent cell cultures were arrested with a G0/G1 DNA content (CO--CIO). Nearly 
50% of the nuclei from the exponential culture were derived from ceils in G1 (EXP). All cell cultures were pulse-labeled with BrdU prior 
to nuclear isolation to identify S-phase cells, In separate experiments, nuclei were probed with an anti-BrdU monoclonal antibody and 
a fluorescein-conjugated anti-mouse secondary antibody. 100 nuclei from each culture were counted and the percentage of BrdU positive 
(+) (S-phase) cells was determined (lower right). Less than 10% of the nuclei from each confluent culture were BrdU positive. Bar (in 
A), 10 #m. 

confluent cells may be more fragile than the nuclear mem- 
branes from dividing cells. 

To confirm that the 3T3 cells in each confluent population 
were arrested in G0/Gl-phase, we analyzed the DNA content 
of  the isolated nuclei by flow cytometry (Fig. 1 C). The 
results show that ,,090% of the nuclei from each confluent 
cell culture, i.e., from day 0 (CO) through day 10 (C10), were 
arrested with a diploid DNA content. No discernible in- 
crease in the number of  S-phase nor G2/M-phase nuclei was 

observed throughout this 10-d period suggesting that most 
confluent cells were indeed quiescent. Flow cytometric anal- 
ysis of nuclei derived from exponentially growing 3T3 cells 
(EXP) showed that '~,50% of these cells were in G1 at the 
time of nuclear isolation. 

All 3T3 cultures were pulse-labeled with BrdU for 1 h be- 
fore nuclear isolation. To specifically determine the number 
of  S-phase cells in each culture, an aliquot of  each nuclear 
sample was fixed in methanol and probed with an anti-BrdU 
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Figure 2. Replication of intact exponential and quiescent cell nuclei in Xenopus egg extract. (A) Intact quiescent nuclei isolated from the 
CO 3T3 culture were incubated at 1 ng DNA/#I extract supplemented with 100 #Ci [a-32p]dATP for up to 12 h. At hourly intervals, the 
samples were processed as described in Materials and Methods. The mass of DNA synthesized at each time point is expressed as nanograrns 
per microliter of extract. (B) Intact quiescent nuclei isolated from each culture were incubated at 1 rig DNA/#I extract supplemented with 
100 #Ci [c~-32p]dATP. After 6 h, the samples were processed as described in Materials and Methods. The value shown for each culture 
is the mean of three separate experiments and the bar represents the standard error of each mean. (C) Intact exponential and quiescent 
cell nuclei were incubated for 6 h at 1 ng DNA/#I extract supplemented with 20 #M biotinylated-dUTP. Nuclei were spun onto coverslips, 
fixed with methanol, stained with propidium iodide to show total DNA, and then stained with fluorescein streptavidin to detect biotin-dUTP 
incorporated into nascent DNA. More than 100 nuclei from each sample were examined for fluorescein fluorescence by confocal micros- 
copy. The mean percentage of fluorescein-labeled, i.e., biotin-positive (+) nuclei from three separate experiments are shown for each cul- 
ture. The standard error of each mean is also shown. (D) A representative field of intact exponential nuclei (EXP-SLO; a and b) and of 
intact quiescent nuclei (C2-SLO; c and d) are shown following incubation in egg extract. Nuclei were stained with propidium iodide (DNA; 
a and c) and probed with fluorescein streptavidin to detect incorporated biotin-dUTP (Biotin; b and d). Bar, 35 #m. 

primary antibody followed by a Texas Red-conjugated sec- 
ondary antibody. 100 nuclei from each sample were ana- 
lyzed by fluorescence microscopy and scored as BrdU posi- 
tive or negative. The percentage of  BrdU-positive (+)  nuclei 
from each culture is shown in the lower right-hand panel of  
Fig. 1 C. 36 % of the exponential nuclei (EXP) were BrdU 
positive while <10% of the nuclei from each of  the confluent 
cell cultures had incorporated label. These data confirm that 

few confluent cells were in S-phase at the time of  nuclear iso- 
lation. 

Most Intact Quiescent Nuclei Do Not Initiate DNA 
Replication in Xenopus Egg Extract 

To determine the extent to which intact quiescent nuclei 
replicate in the egg extract we conducted time course experi- 
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ments using nuclei isolated from the 120 culture. Intact nuclei 
were incubated for up to 12 h at ,,ol ng DNA//zl of extract 
supplemented with [ot-32p]dATP. At hourly intervals, the 
reactions were stopped and the DNA was purified and 
precipitated with trichloroacetic acid. The results of a typi- 
cal experiment are shown in Fig. 2 A where the extent of 
replication is expressed as nanograms of DNA synthesized 
per microliter of extract. DNA synthesis increased during 
the first 6 h of incubation and then reached a plateau after 
which replication decreased slightly. In this case, only 0.3 ng 
of DNA was synthesized representing replication of 30 % of 
the input DNA. While the extent of replication of intact CO 
nuclei varied slightly among experiments (see Fig. 2 B), in 
nearly all cases, the amount of DNA synthesized did not in- 
crease significantly after 6 h of incubation. Therefore, we 
used a single 6 h time point in all subsequent experiments. 

To determine if the extent of replication of intact nuclei 
was correlated with the duration of growth arrest, we in- 
cubated nuclei from each cell population for 6 h in egg ex- 
tract supplemented with [o~-32p]dATP. The concentration of 
DNA added was ~1 ng/#l of extract. Fig. 2 B shows the mean 
values from three separate experiments with each bar indi- 
cating the standard error of the mean. In this set of experi- 
ments, the average mass of DNA synthesized ranged from a 
low of 0.13 ng/#l (C8) to a high of 0.26 ng//zl (CO and C10) 
representing 13 and 26% of the total template replicated, 
respectively. These data illustrate two important points. 
First, unlike intact G1 HeLa nuclei which replicate exten- 
sively in the egg extract (Leno et al., 1992; Coverley et al., 
1993), intact quiescent nuclei undergo limited replication in 
this system. Second, the replication capacity of these intact 
quiescent nuclei does not appear to be correlated with the 
duration of growth arrest (Fig. 2 B; compare mean values for 
CO and C10 samples). 

The small amount of DNA synthesis observed with intact 
quiescent nuclei could be due to either complete replication 
of a small subset of nuclei or to limited replication within 
most nuclei. To distinguish between these two possibilities, 
we used an approach that allows for the identification of in- 
dividual nuclei undergoing DNA replication. Specifically, 
we incubated intact nuclei from exponential (EXP) and 
quiescent (C0-C10) 3T3 cells in egg extract supplemented 
with 20 #M biotinylated-dUTP. We chose to use exponential 
cells as a source for our G1 "control" nuclei in these experi- 
ments primarily to avoid inducing a temporary GO arrest in 
our G1 cells as a result of synchronization (Zickert et al., 
1993). Following a 6-h incubation in extract, samples were 
spun onto coverslips, fixed in methanol, and stained with 
both propidium iodide to label total DNA and fluorescein 
streptavidin to detect the biotinylated dUTP incorporated 
into nascent DNA. The percentage of biotin-positive (+) 
nuclei in each sample was determined. Fig. 2 C shows the 
mean values from three separate experiments along with the 
standard error of each mean. In these experiments, an aver- 
age of 88 % of the intact exponential nuclei (EXP) incorpo- 
rated biotin as judged by fluorescein fluorescence. A repre- 
sentative field of exponential nuclei from one experiment is 
illustrated in Fig. 2 D (EXP-SLO; a and b). This observation, 
coupled with the fact that *50% of these nuclei were derived 
from G1 cells (Fig. 1 C), suggests that most intact G1 nuclei 
replicated during extract incubation. This idea is consistent 
with previous results showing that intact G1 nuclei from 

HeLa cells initiate replication in this system (Leno et al., 
1992). 

In contrast to the results obtained with exponential nuclei, 
few intact quiescent nuclei incorporated biotin in the extract. 
The mean percentage of biotin positive quiescent nuclei 
ranged from only 19% (C4) up to 27% (C10) (Fig. 2 C). A 
representative field of quiescent nuclei from one experiment 
is illustrated in Fig. 2 D (C2-SLO; c and d). To determine 
how many of the intact quiescent nuclei that replicated in egg 
extract were actually S-phase contaminants, we incubated 
nuclei from each cell population in extract supplemented 
with biotin-dUTP and then probed the fixed nuclei with 
Texas Red-streptavidin, to detect incorporated biotin, and 
with anti-BrdU monoclonal antibody and fluorescein-conju- 
gated secondary antibody to detect incorporated BrdU. We 
found that an average of 8 % of all intact quiescent nuclei that 
incorporated biotin in extract had previously incorporated 
BrdU in vivo (data not shown) suggesting that these S-phase 
nuclei were undergoing residual DNA synthesis in the ex- 
tract. Taken together, these data demonstrate that most intact 
nuclei from quiescent cells do not initiate DNA replication 
in egg extract, irrespective of the duration of growth arrest. 

Nuclear Membrane Permeabilization 
Allows Replication of  Quiescent Cell Nuclei 
in Egg Extract 

Mammalian G2-phase nuclei, with intact nuclear mem- 
branes, are unable to initiate DNA replication in the egg ex- 
tract. However, if the nuclear membranes of these G2 nuclei 
are permeabilized with detergent prior to addition to the ex- 
tract, virtually all of these nuclei initiate replication during 
a subsequent extract incubation (Leno et al., 1992). Thus, 
we were interested in determining if nuclear membrane in- 
tegrity was also preventing replication of quiescent cell 
nuclei in this system. 

To address this question, we first treated intact nuclei from 
exponential and quiescent cell populations with lysophos- 
phatidylcholine (LPC). Aliquots of LPC-treated nuclei were 
then incubated with TRITC-IgG to determine nuclear mem- 
brane integrity. Greater than 99 % of all nuclei from each 
population included TRITC-IgG within the nucleus (see Fig. 
4 A, b) demonstrating that the nuclear membranes of virtu- 
ally all nuclei were permeabilized by this treatment. Perme- 
able nuclei from each quiescent cell population were then in- 
cubated in extract supplemented with [ol-32p]dATP for 6 h. 
In contrast to the low levels of replication observed with in- 
tact quiescent nuclei (Fig. 2, A and B), permeable quiescent 
nuclei replicated extensively (Fig. 3 A). In this set of experi- 
ments, the average mass of DNA synthesized ranged from 
0.79 ng//~l (C4 and C6) to 0.93 ng//~l (C8) representing 79 
and 93 % of the total template replicated, respectively. Con- 
sistent with these results was the observation that nearly all 
permeable quiescent nuclei incorporated biotinylated dUTP 
into nascent DNA during a similar 6-h incubation in the ex- 
tract (Fig. 3 B). The mean number of biotin positive nuclei 
from three separate experiments ranged from 84 (C2) to 
95 % (C6 and C10). An average of 96% of the permeable ex- 
ponential nuclei replicated after 6 h in the extract (Fig. 3 B). 
Fig. 3 C shows a representative field of permeable exponen- 
tial nuclei (EXP-LPC; a and b) and of permeable quiescent 
nuclei (C2-LPC; c and d) following incubation in extract. 
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Figure 3. Permeabilizing the nuclear membranes of intact quiescent nuclei allows replication in egg extract. Intact exponential and quiescent 
cell nuclei were permeabilized with LPC (for example see Fig. 4 A, b) and incubated at 1 ng DNAJpl extract supplemented with 100 
/~Ci [c~-32p]dATP (A) or 20 t~M biotin-dUTP (B) for 6 h at 23°C. Incubated nuclei were processed as described in the legend for Fig. 
2, B and C and in Materials and Methods. (A) The mass of DNA synthesized is expressed as nanograms per microliter of extract. The 
value shown for each culture is the mean of three separate experiments and the bar represents the standard error of each mean. (B) Over 
100 nuclei from each sample were examined for fluorescein fluorescence by confocal microscopy. The mean percentage of fluoreseein- 
labeled, i.e., biotin-positive (+), nuclei from three separate experiments are shown for each culture. The standard error of each mean 
is also shown. (C) A representative field of permeable exponential nuclei (EXP-LPC; a and b) and of permeable quiescent nuclei (C2-LPC; 
c and d) are shown following incubation in egg extract. Nuclei were stained with propidiurn iodide (DNA; a and c) and probed with fluores- 
cein streptavidin to detect incorporated biotin-dUTP (Biotin; b and d). (D) Permeable quiescent nuclei (C2) were incubated at 1 ng DNA//~I 
extract supplemented with 0.25 mM BrdUTP (Sigma Chemical Co.) and 100/~Ci//~l [~-32P]dATP for 6 h at 23"C. Substituted DNA was 
separated by centrifugation to equilibrium in a cesium chloride gradient. Gradient fractions were collected and the refractive index of every 
fifth fraction was determined (o). The counts per minute (CPM) in each fraction were determined by liquid scintillation (o). The peak 
of incorporation was observed at a density of '~1.76 g/cm 3 indicating heavy/light (HL) DNA. The expected densities of heavy/heavy (HH) 
and unsubstituted light/light (LL) DNA are '~1.79 g/cm 3 and '~1.71 g/cm 3, respectively. Bar (in C), 25 #m. 

These results demonstrate that permeabilizing the nuclear 
membranes of  intact quiescent cell nuclei prior to incubation 
in the extract allows nearly complete replication of  all of  
these nuclei during a subsequent extract incubation. Further- 
more, density substitution experiments confirmed that 3"1"3 
nuclear D N A  was replicated semi-conservatively and 

limited to one round in the extract. In this experiment, per- 
me.able quiescent 3T3 nuclei from the 2-d confluent culture 
(C2) were incubated in extract supplemented with 0.25 mM 
BrdUTP and 100 /~Ci/ml [ot-32p]dATP. The D N A  was 
purified and separated by centrifugation to equilibrium in a 
cesium chloride gradient. A single prominent peak of 32p 

L e n o  a n d  M u n s h i  Initiation of DNA Replication in Quiescent Nuclei 11 



B 
1.0.  

o 

o.a Q 

~ o.6 
"o 

"~ o.4. 
o 

~ 0.2. 
< 
Z 

0.0. 
I P R I P R 

I I I I 
C2  G1 

Figure 4. Reseaiing the nuclear membranes of permeable quiescent nuclei prior to extract incubation prevents DNA replication in a subse- 
quent incubation. Intact quiescent (C2) 3"1"3 nuclei or Gl-phase HeLa nuclei were permeabilized with LPC and subsequently "reseaied" 
following incubation for 1 h with membranes isolated from Xenopus eggs. (A) Aliquots of intact, permeable and resealed C2 3"1"3 or G1 
HeLa (not shown) nuclei were combined with TRITC-IgG and examined by confocal microscopy. TRITC-IgG was excluded from "~80% 
of the nuclei in this intact C2 population (a). LPC permeabilization resulted in a uniformly bright nuclear fluorescence in >99% of these 
nuclei (b). Incubation of these permeable nuclei with Xenopus egg membranes resulted in exclusion of TRITC-IgG from 80 to 85 % (c) 
indicating resealing (i.e., repair) of their nuclear membranes. (B) Intact, permeable and resealed C2 nuclei (C2, shaded) or Gl-phase 
HeLa nuclei (G1, unshaded) were incubated at 1 ng DNAJ#I extract supplemented with 100 #Ci [cc-32P]dATP for 6 h at 23"C. The sam- 
pies were processed as described in Materials and Methods. The mass of DNA synthesized is expressed as nanograms per microliter of 
extract. The value shown for each sample is the mean of two separate experiments. L intact; P, permeable; and R, resealed. Bar (a-c) 13 #m. 

incorporation was observed at a density of ,vl.76 g/cm 3 
(Fig. 3 D; heavy/light DNA; HL) demonstrating a single 
round of semi-conservative DNA replication in the egg ex- 
tract. 

The Effect of Lysophosphatidylcholine 
Treatment on DNA Replication in Quiescent Cell 
Nuclei Is Reversible 
To determine if the effect of LPC treatment on DNA replica- 
tion in quiescent 3"1"3 nuclei is directly related to nuclear 
membrane permeability rather than the alteration of some 
other aspect of nuclear structure, we conducted nuclear 
membrane resealing (i.e., repair) experiments similar to 
those described by Coverley et al. (1993). Initially, intact 
quiescent (C2) 3"1"3 or Gl-phase HeLa nuclei were perme- 
abilized with LPC and subsequently incubated with a mem- 
brane fraction from Xenopus eggs for 1 h. Aliquots of intact, 
permeable, and resealed quiescent 3T3 nuclei (Fig. 4 A) or 
G1 HeLa nuclei (not shown) were then incubated with 
TRITC-IgG to determine nuclear membrane integrity. In the 
intact quiescent 3T3 sample, ,080 % of the nuclei excluded 
TRITC-IgG (Fig. 4 A, a). After permeabilization with LPC, 
>99 % of these nuclei included the labeled IgG demonstrat- 
ing permeabilization of their nuclear membranes (Fig. 4 A, 
b). After incubation of these permeable nuclei with egg 
membranes, ,x,80% again excluded TRITC-IgG (Fig. 4 A, c) 
demonstrating that their nuclear membranes had been re- 
sealed. Approximately 86% of intact G1 HeLa nuclei ex- 
cluded TRITC-IgG; however, >99 % of these nuclei included 
the label following LPC treatment. Over 80 % of these per- 
meable nuclei again excluded labeled IgG following incuba- 
tion with egg membranes demonstrating nuclear membrane 
repair. 

Intact, permeable or reseeded C2 or G1 nuclei were added 

to egg extract at 1 ng DNA/#I and the extract was sup- 
plemented with 100 #Ci/ml [ot-a2p]dATP. Samples were 
then incubated for 6 h at 23°C. The mass of DNA synthe- 
sized in each sample was determined as described in 
Materials and Methods. The results shown in Fig. 4 B are 
mean values from two independent experiments in which 
permeable nuclei were resealed with a similar efficiency, 
i.e., ,x,80%. Consistent with previous results, intact quies- 
cent nuclei (Fig. 4 B, C2, I) underwent limited replication 
in the extract while permeable quiescent nuclei (C2, P)  
replicated extensively in this system (compare Fig. 4 B with 
Figs. 2 B and 3 A). However, when permeable nuclei were 
resealed before the addition to the extract, replication in a 
subsequent incubation was reduced approximately fourfold 
relative to the permeable sample (Fig. 4 B, C2, R) but it was 
similar to the extent of replication observed with intact 
nuclei. These results are in striking contrast to the results ob- 
served with resealed G1 nuclei. In this latter case, reseeded 
G1 nuclei (Fig. 4 B, G1, R) replicated as extensively as did 
permeable nuclei (Fig. 4 B, G1, P) consistent with the results 
of Coverley et al. (1993). Taken together, these results dem- 
onstrate two important points. First, the effect of LPC on 
DNA replication in quiescent cell nuclei is at the level of the 
nuclear membrane. Second, the inability of resealed quies- 
cent nuclei to replicate is not due to a nonspecitic effect of 
egg membranes on permeable nuclei, as evidenced by the 
replication of resealed G1 nuclei, but rather it appears to be 
related to some specific difference in replication capacity be- 
tween the nuclei of quiescent and cycling G1 cells. 

Discussion 

We have investigated the replication capacity of intact nuclei 
from quiescent cells using Xenopus egg extract. Surpris- 
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ingly, we find that most intact quiescent nuclei, unlike nuclei 
from Gl-phase cells, do not initiate DNA replication in the 
extract (Fig. 2). However, when the nuclear membranes of 
these intact nuclei are permeabilized with LPC before addi- 
tion to the extract, nearly all nuclei undergo a single round 
of replication during the subsequent extract incubation (Fig. 
3). Furthermore, resealing the nuclear membranes of these 
permeable quiescent nuclei prior to addition to the extract 
resulted in the loss of replication capacity during the subse- 
quent extract incubation, demonstrating that the effect of 
LPC treatment on DNA replication is indeed at the level of 
the nuclear membrane (Fig. 4). Taken together, these data 
indicate that G1 nuclei lose the capacity to initiate replication 
following density-dependent growth arrest and that changes 
in nuclear membrane permeability may be required for the 
initiation of replication upon re-entry of the quiescent cell 
into the cell cycle. 

There are at least three general ways in which intact quies- 
cent nuclei could be prevented from initiating DNA replica- 
tion in the extract. First, replication of quiescent nuclei 
could be prevented by a growth-arrest-specific inhibitor of 
initiation which remains within the nucleus following nu- 
clear isolation. This inhibitor could be acting directly at the 
level of initiation by binding to the DNA or alternatively, it 
could act by binding and inactivating an essential replication 
protein such as a"licensing" factor (Blow and Laskey, 1988). 
A growth-arrest-specific inhibitor could also indirectly pre- 
vent initiation of replication through a variety of mecha- 
nisms. Second, quiescent nuclei may not be "licensed" for 
replication and if this replication license is a DNA-bound ini- 
tiation factor (Blow and Laskey, 1988), loss of initiation ca- 
pacity following growth arrest could result from inactivation 
or degradation of this factor. Thus, an intact nuclear mem- 
brane could be preventing initiation of replication in quies- 
cent cell nuclei either by preventing the loss of a diffusible 
inhibitor or by excluding fresh "licensing" factor from the 
nucleus. The demonstration that resealed quiescent nuclei do 
not replicate in the extract (Fig. 4) suggests that the inability 
of intact nuclei to replicate is not due to a diffusible inhibitor 
of initiation. Rather our results suggest that exposure of per- 
meable quiescent nuclei to the egg extract may be required 
for initiation. However, it is important to point out that these 
data do not exclude the possibility that a nondiffusible, 
chromatin-associated inhibitor is present within the nuclei of 
quiescent ceils and that extract exposure is required for inac- 
tivation of this inhibitor. 

Third, quiescent cell nuclei could be prevented from repli- 
cating in egg extract by a variety of specific growth ar- 
rest-related changes in nuclear structure and/or function. 
One intriguing possibility involves the reduced capacity 
for signal-mediated nuclear transport in growth-arrested 
cells (Feldherr and Akin, 1990, 1991, 1993). It has been sug- 
gested that changes in cell shape may alter the nucleocyto- 
plasmic transport properties of the nuclear envelope and, in 
turn, the capacity of the nucleus for DNA replication (Ingber 
and Folkman, 1989; Ingber, 1990). This view is supported 
by the observations that flattened 3T3 cells have a greater 
functional pore size than rounded ceils and that more flat- 
tened cells synthesize DNA than rounded cells (Feldherr and 
Akin, 1993). Thus, the changes in cell shape that accompany 
density-dependent growth arrest could alter nuclear pore 
structure which, in turn, could lead to a reduction in enve- 

lope permeability and the inability of intact quiescent nuclei 
to initiate DNA replication. However, Feldherr and Akin 
(1991) found that the functional nuclear pore diameter in 
confluent cells appears to be sufficiently large to allow the 
import of most nuclear proteins suggesting to us that the in- 
ability of quiescent cell nuclei to initiate replication in ex- 
tract may not be due to a reduction in their capacity for im- 
port of nuclear proteins. Yet, it is possible that replication 
is dependent upon the import of a large protein complex and 
that this complex is unable to cross the nuclear membrane 
of a quiescent nucleus. 

Whichever of these or other possibilities are correct, the 
observation that nuclear membrane permeabilization is nec- 
essary for replication of quiescent nuclei in egg extract sug- 
gests that changes in membrane permeability may be re- 
quired for entry of quiescent cells into S-phase following 
release from growth arrest. Such permeability changes could 
be due to alterations in either signal-mediated nuclear trans- 
port or in the passive diffusion of molecules through the nu- 
clear pores (Jiang and Schindler, 1988). 
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