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Abstract. Catenins mediate the linkage of classical 
cadherins with actin microfilaments and are part of a 
higher order protein structure by which cadherins are 
connected to other cytoplasmic and transmembrane 
proteins. The ratio of actin-bound to free cad- 
herin-catenin complex, which varies depending on 
the type and growth rate of cells, is thought to be 
altered by cellular signals, such as those associated 
with mitosis, polarization of cells and growth factors 
during development. EGF induces an immediate 

tyrosine phosphorylation of/3-catenin and "g-catenin 
(plakoglobin). We show here an association of the 
EGF-receptor with the cadherin-catenin complex. 
Using recombinant proteins we demonstrate the inter- 
action of EGF-receptor and/~-catenin in in vitro 
kinase assays. This interaction is mediated by the 
evolutionarily conserved central "core" region of 
~-catenin. These results suggest that catenins represent 
an important link between EGF-induced signal trans- 
duction and cadherin function. 

C 
ADnERINS comprise a group of structurally highly 
homologous transmembrane proteins which mediate 
cell-cell interaction of different cell types in various 

invertebrate and vertebrate species. Besides the by now clas- 
sical cadherins L-CAM, E- (uvomorulin), N-, and P-cad- 
herin for which an involvement in cell adhesion has unam- 
biguously been demonstrated, a growing number of new 
proteins have been identified by their structural homologies 
(Kemler, 1992). 

Classical cadherins exhibit the highest degree of homol- 
ogy in their cytoplasmic domain, and the search for the bio- 
logical function associated with this structural conservation 
led to the identification of catenins as cytoplasmic anchorage 
proteins (Ozawa et al., 1989; Nagafuchi and Takeichi, 
1989). Molecular cloning and primary structure analysis of 
catenins revealed homologies to other peripheral cytoplas- 
mic proteins, ct-Catenin is homologous to vinculin, a protein 
found localized in adherens junctions and in focal contacts, 
where it is involved in the cytoplasmic anchorage of recep- 
tors for extracellular matrix proteins, ot-Catenin has been 
cloned in mouse (Nagafuchi et al., 1991; Herrenknecht et 
al., 1991), human (Claverie et al., 1993), chicken (Hirano 
et al., 1992), and in Drosophila (Oda et al., 1993). Sequence 
analysis revealed the existence of at least two isoforms (o~E 
and c~N) for ct-catenin (Hirano et al., 1992). Biochemical 
evidence indicated that a-catenin does not bind directly to 
the cytoplasmic domain of cadherins, but rather mediates the 
connection of the cadherin-catenin complex with actin ilia- 
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ments (Ozawa et al., 1990). The importance of oL-catenin for 
cadherin function has been demonstrated by transfection ex- 
periments (Hirano et al., 1992). ~-Catenin exhibits homol- 
ogy to human plakoglobin, a component of desmosomal 
plaques and adherens junctions (Cowin et al., 1986; Franke 
et al., 1989), and to the product of the Drosophila segment 
polarity gene armadillo (McCrea et al., 1991; Butz et al., 
1992). Pulse-chase experiments and the analysis of different 
non-ionic detergent cell lysates indicated that /$-catenin 
binds directly to the cytoplasmic domain of E-cadherin 
(Ozawa and Kemler, 1992). The molecular identity of 3'-cat- 
enin has remained less well understood, since the relative 
amount of 3,-catenin in the cadherin-catenin complex varied 
depending on cell types and because 3,-catenin was not al- 
ways found in the complex in biochemical analyses of differ- 
ent cell lines. Mainly for these reasons 7-catenin was placed 
in the periphery of the cadherin-catenin complex (Kemler, 
1992). Peptide pattern analysis (Ozawa et al., 1989) and im- 
munochemical analysis (Peifer et al., 1992) suggested that 
"r-catenin might be closely related or identical to plakoglobin 
and this was further substantiated since plakoglobin is a 
component of the cadherin-catenin complex (Knudsen and 
Wheelock, 1992; Piepenhagen and Nelson, 1993). 

Catenins play a central role in cadherin function. They 
mediate the connection of cadherins to the actin filament net- 
work and are thought to regulate thereby the strength of 
cadherin-rfiediated adhesiveness (Ozawa et al., 1990). They 
are also part of a higher order sub-membranous protein net- 
work by which cadherins are connected to other integral 
membrane proteins and peripheral cytoplasmic proteins 
(McNeill et al., 1990). The amount of actin-bound com- 
plexes varies depending on cell type and differentiation state 
of cells and is believed to be modulated during mitosis or 
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during changes of the developmental state of cells (McNeill 
et al., 1990; N~ithke et al., 1994). It has been reported that 
or- and /3-catenin become phosphorylated at tyrosine 
residues in cells expressing v-src and that this posttransla- 
tional modification correlates with changes of the epithelial 
phenotype (Matsuyoshi et al., 1991; Behrens et al., 1993; 
Kamaguchi et al., 1993). In addition, tyrosine phosphoryla- 
tion of catenins was also observed in cells treated with hepa- 
tocyte growth factor and EGF (Shibamoto et al., 1994). This 
opened up the possibility that tyrosine phosphorylation of 
catenins might represent one mechanism which modulates 
the function of catenins. We have been particularly interested 
in the action of EGF on the cadherin-catenin complex. It is 
well established that EGF induces cell rounding and mem- 
brane ruffling and that the EGF-receptor (EGF-R) ~ mole- 
cules are co-localized with cadherins on the basolateral 
membrane of epithelial cells (Fukuyama and Shimiza, 1991). 
We show here an association of the EGF-R with the cadhe- 
rin-catenin complex and an EGF-induced tyrosine phos- 
phorylation of/3-catenin and plakoglobin. We provide evi- 
dence that /3-catenin binds to the EGF-R and that this 
interaction is mediated by the conserved central "core" re- 
gion of f3-catenin. 

Materials and Methods 

Cell Lines 
Human epidermoid carcinoma cells A431 (ATCC, CRL1555; American 
Type Culture Collection, Rockville, MD) and TR146 (Rupniak et al., 
1985), and porcine kidney epithelial cell line LLC-PKI (ATCC, CLI01) 
were grown in DMEM supplemented with 10% (vol/vol) heat-inactivated 
FCS, at 37°C in a 10% CO2 atmosphere. 

Antibodies 

Affinity-purified antibodies against E-cadherin, or- and ~-catenin, and 
plakoglobin have been described previously (Ozawa et al., 1989; Her- 
renknecht et al., 1991; Butz et al., 1992). The phosphotyrosine (p-tyr) 
specific monoclonal antibody 4G10 and the polyclonal anti-EGF-receptor 
(EGF-R) antibodies were obtained from Upstate Biotechnology Inc. (via 
Biomol, Hamburg, Germany). Peroxidase-labeled secondary antibodies 
were from Dianova GmbH (Hamburg, Germany). 

Cell Extract Preparation 

Cells were seeded at a density of 106 cells per 90 mm dish, grown 24 h in 
DMEM, 10% FCS, and stimulated with 50 ng/ml EGF (human recom- 
binant) (Sigma, Munich, Germany) for the indicated times. For metabolic 
labeling, cells were grown 4 h in methionine-free DME/FCS and then 
grown overnight in the presence of 50 /~Ci/ml [35S]methionine (3,000 
Ci/mmol). Cells were washed twice with PBS and lysed at a cell density 
of 107 cells/ml in 20 mM imidazole-HCl, pH 6.8, 100 mM KC1, 2 mM 
MgCI2, 20 mM EGTA, 300 mM sucrose, 1 mM NaF, 1 mM Na-vanadate, 
1 mM Na-molybdate, 0.2% (vol/vol) Triton X-100, 10 #g/ml leupeptin, 10 
#g/nil soybean trypsin inhibitor, 10 #g/nil PMSE and 0.1 U/ml ot2- 
macroglobulin. Crude cell extracts were clarified by centrifugation (14,000 g, 
10 min), and the supernatant (soluble fraction) and pellet (insoluble frac- 
tion) were separated. The insoluble, cytoskeletal fraction was washed with 
lysis buffer without Triton X-100 and solubilized in 0.1% SDS. After dilu- 
tion to 0.02 % SDS, immunoprecipitates were collected with anti-fl-catenin 
antibodies. 

Immunoprecipitation 

Immunoprecipitations were carried out at 4°C. Immunoprecipitations of the 
detergent-insoluble fraction were carded out after solubilization of the pel- 

1. Abbreviations used in this paper: aa, amino acids; EGF- and PDGF-R, 
EGF- and PDGF-receptor; p-tyr, phosphotyrosine. 

let with 0.1% SDS and further dilution to 0.02% SDS with lysis buffer as 
described above. Supernatants and the solubilized cytoskeleton fraction 
were precleared by incubation with 10% (wt/vol) protein A-Sepharose 
beads (Pharmacia, Freiburg, Germany) preabsorbed with ovalbumin (1 
mg/ml). Unspecifically bound proteins were removed by centrifugation at 
1,000 g for 5 min. 250/~1 precleared cell lysates (2.5 x 106 cells) were in- 
cubated with 10/~g specific antibodies for I h. Antigen-antibody complexes 
were recovered with 50 ttl protein A-Sepharose slurry for 1 h. Beads were 
washed five times with lysis buffer. Bound proteins were eluted with 2% 
SDS and separated by SDS-PAGE as described (Ozawa et al., 1989). 

Construction and Expression of Fusion Proteins 

Two EcoRI fragments covering the entire/3-catenin coding region (Butz et 
al., 1992) were subcloned into the pSKII vector (Stratagene, Heidelberg, 
Germany). The two plasmids were termed pSK8E2 (NH2-terminal coding 
1.3-kb fragment, amino acids (aa) 1-422, 5'-3' orientation), and pSK8EI 
(COOH-terminal coding 2.1-kb fragment, aa 422-781, 3'-5' orientation). 

To generate a/3-catenin full-length expression construct the eDNA se- 
quence coding for the fl-catenin NH2 terminus (aa 1-119) was amplified 
with the primer pairs MKNDEI (5'-CATAIGGCTACTCAAGCTGACC) 
and MKNTERM (5'-CTATTAGGGATGAGCAGCGTCAAAC) on the 
pSK8E2 template. The PCR product was blunt-ended in both orientations 
into the EcoRV site of pSKII and subcloned. The corresponding vectors 
were termed pSKNTERM5' and 3'. The entire B-catenin coding sequence 
(pSK,Stot) was assembled by combining the BamHl/SphI fragment of 
pSKNTERM5', the SphI/EcoRl fragment of pSKSE2, the EcoRI/Sstl frag- 
ment of pSK8E1 and the SstI/BamHl fragment of pSKBEH2(HH)I. 
pSK~EH2(HH)I was obtained by digesting pSKgE2 with HindlII and ligat- 
ing the resulting COOH-terminal coding HindlIl fragment (bp 1362-2460 
of eDNA) in the corresponding site of pSKII (3'-5 '  orientation). To transfer 
the /3-catenin eDNA into a prokaryotic expression vector, pSkfltot was 
BamHI digested and subcloned into the corresponding site of pGEX4T1 
(Pharmacia). 

With a similar strategy a GST fusion protein expressing the B-catenin 
core region was generated, which will be described in detail (Aberle et al., 
1994). GST fusion proteins were expressed in Epicurian Coil a XL-1 Blue 
MRF (Stratagene). The bacteria were grown in LB medium supplemented 
with 200 mg/ml ampicillin and 2 % (wt/vol) glucose. Expression of recom- 
binant proteins was induced with 1 mM IPTG for 60 min at 30°C at an 
OD600 of 0.5. The bacteria were pelleted and resuspended in 10 volumes 
of PBS containing 1% (vol/vol) Triton X-100, 1 mM MgC12, 10/xg/ml 
DNAse 1, 10/zg/ml RNAse, 10 p,g/ml leupeptin, 10 t~g/ml PMSF, 10 #g/nil 
soybean trypsin inhibitor and 0.1 U/ml a2-macroglobulin. The bacteria 
were lysed by two passes though a french pressure cell (18,000 psi). Cell 
debris was removed by centrifugation (10 min, 14,000 g). GST fusion pro- 
teins were isolated by affinity chomatography on glutathione-agarose 
(Sigma), eluted with 10 mM glutathione in 100 mM Tris-HCl, pH 8, 10 
#g/ml leupeptin, and dialyzed against 50 mM Hepes-NaOH, pH 7.4. The 
protein solutions were adjusted to 50% glycerol (vol/vol) and stored at 
-20°C. 

Preparation of  Recombinant EGF Receptor 

The human EGF-R cloned into a baculovirus was provided by Dr. M. Wa- 
terfield (Ludwig Institute for Cancer Research, London). Propagation of vi- 
rus and infection of insect cells were essentially done as described (Wa- 
terfield and Greenfield, 1991). Infected cells were washed twice with 
serum-free TCI00 and lysed at a cell density of 107 cells/ml in 10 mM 
Hepes-NaOH, pH 7.4,200 mM KCI, 1% (vol/vol) Triton X-IO0, 10 #g/rni 
leupeptin, 10 #g/nil PMSE 10 #g/ml soybean trypsin inhibitor, and 0.1 
U/ml cl2-macroglobulin. After centrifugation (10 rain, 14,000 g) low mo- 
lecular weight components were removed by gel filtration on a PD10- 
column (Pharmacia; elution buffer: 10 mM Hepes-NaOH, pH 7.4. 200 mM 
KCI, 0.1% (vol/vol) Triton X-100), and aliquots of the extracts were stored 
at -80°C. 

In Vitro Protein Kinase Assays 

For in vitro kinase assays 20 ~,g total protein from insect cell lysates were 
incubated with 20 #g fusion proteins for 30 min at 37°C in 500 #1 kinase 
buffer (20 mM Hepes-NaOH, pH 7.4, 100 mM KC1, 2 mM MgC12, 10 
mM MnCt2, 0.1% (vol/vol) Triton X-100, 0.1 mM Na-vanadate, 0.1 mM 
ATP). The GST-fusion proteins were isolated with glutathione-agarose, 
specifically bound proteins were eluted with 2 % SDS and separated by 
SDS-PAGE, and immunoblots were developed with p-tyr and EGF- 
R-specific antibodies. 
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Other Methods  

Fluorography, SDS-PAGE and immunoblotting were done as described 
(Ozawa et al., 1989). SDS-PAGE and blots were standardized with pre- 
stained molecular weight markers (Sigma). Immanoblots were developed 
by peroxidase-labeled secondary antibodies followed by enhanced chemi- 
luminescence and exposed to enhanced chemiluminescence-hypertilm 
(Amersham, Braunschweig, Germany). 

Results 

In an initial series of experiments the effect of EGF on the 
cadherin-catenin complex in human epidermoid carcinoma 
cells A431 was analyzed. A431 ceils have been studied ex- 
tensively as a model system for the EGF/EGF-R-induced 
signal transduction, and an association of the EGF-R with 
actin filaments has been reported in these cells (den Hartigh 
et al., 1992). 

Immunoprecipitations from whole cell lysates of [35S]me- 
thionine labeled A431 cells with anti-E-cadherin antibodies 
detected a comparable relative ratio of the cadherin-catenin 
complex with or without EGF treatment (Fig. 1, lanes I and 
2). Semiconfluent A431 cells were incubated with 50 ng/ml 
EGF, and at different times cadherin-catenin complexes 
were collected with antibodies against anti E-cadherin and 
probed with anti-p-tyr antibodies in immunoblots. As can be 
seen in Fig. 1 (lane 3) already at time 0 a trace amount of 
3,-catenin (plakoglobin) was tyrosine phosphorylated. By 
3-5 min after EGF treatment, an increasing amount of tyro- 
sine phosphorylation was already detected for both/3- and 
3,-catenin (Fig. 1, lanes 4-6).  These results clearly demon- 
strate that EGF treatment results in tyrosine phosphorylation 
of/3- and 7-catenin. They differ from those obtained with 
v-src transformed cells where c~- and /3-catenin were the 
primary targets for tyrosine phosphorylation (Hamaguchi 
et al., 1993). This suggests that the EGF-induced and 
v-src-mediated phosphorylation are each specific for differ- 
ent catenins. Tyrosine phosphorylation of/3- and 7-catenin 
seems to be specific for the EGF signal transduction path- 
way. In transfected Ltk- cells expressing both the platelet- 
derived growth factor receptor (PDGF-R) and the E-cad- 

herin-catenin complex, PDGF had no detectable effect on 
the phosphorylation of catenins (not shown). 

Cadherin-catenin complexes partition into both the non- 
ionic detergent-soluble and -insoluble cytoskeletal fractions 
(Ozawa et al., 1989). It was therefore of interest to examine 
whether tyrosine-phosphorylated catenins separate equally 
in both fractions. EGF-treated A431 cells (50 ng/ml EGF, 45 
min) were solubilized and both the Triton X-100-soluble and 
-insoluble fractions (supernatant and pellet from 14,000 g 
centrifugation) were immunoprecipitated with anti-/3-cate- 
nin antibodies. As can be seen in Fig. 2 (lanes I and 2)/3-cat- 
enin was immunoprecipitated from the detergent-soluble (S) 
and -insoluble (P) fraction (to obtain comparable amounts 
of/3-catenin 5-10 times more of the immunoprecipitate of the 
insoluble fraction was loaded on the gel). When these blots 
were stained with anti-p-tyr antibodies, tyrosine-phosphory- 
lated/3-catenin was exclusively found in the detergent-solu- 
ble fraction (Fig. 2, lanes 3 and 4). Anti-p-tyr antibodies 
also detected a phosphorylated protein of 180 kD in the cad- 
herin-catenin complex immunoprecipitates (Fig. 1, lanes 
3-6).  As subsequent immunoblots with anti EGF-R anti- 
bodies revealed, this represents EGF-R (Fig. 1, lane 10). An 
association of EGF-R with the cadherin-catenin complex 
could also be demonstrated in A431 cells before treatment 
with EGF (Fig. 1, lane 8) and the receptor is weakly tyro- 
sine-phosphorylated (Fig. 1, lane 3). Since the EGF-stimu- 
lation experiments were carried out on semi-confluent cell 
layers 24 h after plating, it is likely that cells received mitotic 
stimuli due to fetal calf serum components, which led to 
some activation of EGF-R. This would explain the weak 
tyrosine phosphorylation of plakoglobin and EGF-R already 
at time 0 of EGF stimulation and an association of EGF-R 
with the complex (Fig. 1, lane 3). However, an association 
of non-activated EGF-R with the cadherin-catenin complex 
can not be excluded from these experiments. Comparison of 
the entire EGF-R pool to EGF-R associated with the cad- 
herin-catenin complex indicated that less than 10% of total 
EGF-R is associated with the complex (not shown). Since 
A431 cells express a high amount of EGF-R, it was of in- 
terest to see if tyrosine phosphorylation of catenins and an 

Figure 1. EGF-dependent 
phosphorylation of /3- and 
"r-catenin in A431 cells and 
association of the EGF-R with 
the cadherin-catenin com- 
plex. Proteins were immuno- 
precipitated with an E-cad- 
herin-specific antibody from 
lysates of metabolically la- 
beled A431 cells treated with 
50 ng/ml EGF (lane 2) or un- 
treated (lane 1). The cadherin- 
catenin complex was collected 
from A431 cells treated with 
EGF for the indicated times, 
proteins were separated by 
SDS-PAGE and immunobtots 

were developed with a phosphotyrosine-specific (anti-p-tyr) antibody (lanes 3 to 6). A431 cells without (lanes 7 and 8) and with EGF 
stimulation (50 ng/ml, lanes 9 and 10) were immunoprecipitated with anti E-cadherin antibodies (lanes 7 and 9 are controls). Im- 
munoprecipitates were blotted with anti-EGF-R antibodies, revealing the presence of EGF-R in the E-cadherin-catenin complex inde- 
pendent of EGF-treatment. Positions of cadherin and catenins are indicated on the left; positions of prestained molecular weight markers 
are indicated on the right. The low molecular weight proteins in lanes 8 and 10 correspond to heavy chains of the precipitating antibody. 
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Figure 2. Tyrosine phosphor- 
ylated ~-catenin after EGF 
stimulation of A431 cells (50 
ng/ml, 30 min) is detected 
in the non-ionic detergent- 
soluble fraction. ~-catenin 
was immunoprecipitated from 
the detergent-soluble (S) and 
SDS-solubilized insoluble frac- 
tion (P) and stained with anti- 
/3-catenin antibodies in immu- 
noblots (lanes 1 and 2). To 
obtain comparable amounts of 
B-catenin 5-10 times more of 
the immunoprecipitates from 
the insoluble fraction was 
loaded on the gel. When these 

blots were stained with anti-p-tyr antibodies, tyrosine phosphor- 
ylated /3-catenin was detected in the detergent-soluble fraction 
(lanes 3 and 4). The position of ~-catenin is indicated on the right. 
The low molecular weight proteins in lanes 1 to 4 correspond to 
the heavy chains of the precipitating antibody. 

association of the EGF-R with the cadherin-catenin complex 
could also be observed in cells which express a more physio- 
logical amount of EGF-R. For this purpose we examined 
polarized proximal kidney epithelial cells, LLC-PK~, grown 
as transfilter cultures (Costar Corp., Cambridge, MA), and 
the human squamous epithelial carcinoma cell line TR146. 
The cadherin-catenin complex was immunoprecipitated 
with anti-/3-catenin antibodies from cell lysates of metaboli- 
cally labeled LLC-PK~ and TR146 cells (Fig. 3, lanes I and 
3, respectively). Under these experimental conditions "y-cat- 

Figure 3. EGF-induced tyrosine phosphorylation of/3- and 7-cat- 
enin in LLC-PKj and TR146 cells. Proteins were immunoprecipi- 
tated with a/3-catenin-specific antibody from lysates of metaboli- 
cally labeled LLC-PKt (lane 1) or TR146 cells (lane 3). The 
cadherin-catenin complex was collected from lysates of EGF- 
treated cells, proteins were separated by SDS-PAGE and immuno- 
blots were developed with phosphotyrosine- (lanes 2 and 4) or 
EGF-R-receptor-specific antibody (lane 5). Although very little 
"r-catenin (plakoglobin) is present in the complex collected with 
anti-~-catenin antibodies, it appears to be a major target for tyro- 
sine phosphorylation in TR146 cells (lane 4). Positions of cadherin 
and catenins are indicated on the left; positions of prestained mo- 
lecular weight markers are indicated on the right. The low molecu- 
lar weight bands in lanes 2 and 5 correspond to the heavy chain of 
the precipitating antibody. 

enin (plakoglobin) appears to be under-represented in the 
E-cadherin-catenin complex (N/ithke et al., 1994). EGF, ex- 
posed basolaterally (50 ng/ml), also induces in both these 
cell types tyrosine phosphorylation of B-catenin and, inter- 
estingly, only in TR146 cells in addition tyrosine phosphory- 
lation of-t-catenin (plakoglobin). These results suggest that 
j3-catenin and plakoglobin are taken differently as substrates 
in LLC-PK1 and TR146 cells after EGF-stimulation. Im- 
munoblots with anti p-tyr antibodies revealed a tyrosine 
phosphorylated high molecular weight protein (Fig. 3, lanes 
2 and 4), as for A431 cells. Subsequent immunoblots of im- 
munoprecipitates from TR146 cells with anti-EGF-R anti- 
bodies revealed, as for A431 cells, the presence of EGF-R 
in the complex (Fig. 3, lane 5). A possible association of the 
EGF-R with the cadherin-catenin complex could not be 
demonstrated for LLC-PKI cells since anti-EGF-R antibod- 
ies did not cross-react with the porcine EGF-R. Taken to- 
gether, all these results demonstrate in three different epithe- 
lial cell types an EGF-induced tyrosine phosphorylation of 
/3-catenin and plakoglobin and an association of the EGF-R 
with the cadherin-catenin complex. 

To further elucidate the interaction of catenins with the 
EGF-R, ~-catenin, and a conserved central/3-catenin region 
(amino acid position 120-683, designated/3-catenin core re- 
gion) were expressed as glutathione-S-transferase fusion 
proteins in Escherichia coli. The core region of B-catenin is 
largely composed of hydrophobic repeats and exhibits the 
highest degree of homology to plakoglobin and the armadillo 
protein (Peifer et al., 1992; Rosenthal, 1993). Fusion pro- 
teins were purified by glutathione-agarose affinity choma- 
tography (Fig. 4, lanes I and 2) and reacted with anti peptide 
antibodies in immunoblots (not shown). ~-catenin fusion 
proteins and recombinant EGF-R, expressed in the baculo- 
virus system, were subjected to in vitro kinase assays. Cell 
lysates from insect cells expressing wild-type baculovirus 
were included as controls. Glutathione-agarose purified pro- 
teins were subjected to immunoblot analysis with anti-p-tyr 
antibodies (Fig. 4). ~-catenin, but not the ~-catenin core re- 
gion or the GST fusion partner, was phosphorylated in these 
assays (Fig. 4, lanes 4 and 5), while no tyrosine phosphor- 
ylated protein was detected with control cell lysates express- 
ing wild-type baculovirus (not shown). These results indi- 
cate that the phosphorylated tyrosine residues are located 
either in the NH2- or in the COOH-terminal domain of 
/3-catenin. More importantly, ~-catenin and the B-catenin 
core region were associated with a tyrosine phosphorylated 
protein which reacted with anti-EGF-R antibodies (Fig. 4, 
lane 6). Since no other tyrosine phosphorylated proteins 
were detected in these assays, these results suggest that B-cat- 
enin binds directly to EGF-R and that this interaction is 
mediated by the ~-catenin core region. 

Discuss ion  

EGF acts on cells by binding to its receptor (EGF-R), 
thereby initiating a variety of cellular changes including 
rapid alteration in cell surface morphology, cytoskeletal re- 
organization and redistribution of the EGF-R (den Hartigh 
et al., 1992). On epithelial cells EGF counteracts the adhe- 
sive function of E-cadherin. While E-cadherin is of crucial 
importance for the biogenesis of an epithelium and mediates 
a tight association of these cells (Larue et al., 1994), EGF 
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Figure 4. In vitro tyrosine phosphor- 
ylation and association of/3-catenin 
with the EGF-R. Glutathione-S-trans- 
ferase (GST) fusion proteins of 
B-catenin (lane 1) or the B-catenin 
core region (amino acids 120-683) 
were separated on SDS-polyacryl- 
amide gels and stained with Coo- 
massie brilliant blue (CBB, lanes 1 
and 2). GST (lane 3 ), GST-B (lane 4) 
and GST-B-core (lanes 5 and 6) were 
phosphorylated in vitro with recom- 
binant EGF-R. Fusion proteins were 
affinity purified and analyzed by 
SDS-PAGE. Subsequent immuno- 
blots were developed with phospho- 
tyrosine-specific (lanes 3 to 5) or 
EGF-R-specific antibody (lane 6). 
The low molecular weight bands in 
lane 1 represent degradation prod- 
ucts of /3-catenin as monitored 
by anti-B-catenin antibodies (not 
shown). 

initiates cell rounding and membrane ruffling. Furthermore, 
EGF-R can be found co-localized with the cadherin-catenin 
complex at the lateral membrane of epithelial cells, and an 
association of EGF-R with the cytoskeleton has been 
reported (den Hartigh et al., 1992; van Bergen en Henegou- 
wen et al., 1992). All this stimulated us to investigate a pos- 
sible molecular interaction between EGF/EGF-R and the 
cadherin-catenin complex. We show here that EGF induces 
an immediate tyrosine phosphorylation of/3- and 3,-catenin 
(plakoglobin). Depending on cell type, either/3- or 3,-catenin 
was the primary target for EGF-dependent tyrosine phos- 
phorylation, while cecatenin was never found phosphor- 
ylated in these experiments. 3,-catenin was more extensively 
phosphorylated in A431 cells, whereas /3- and 3,-catenin 
were equally phosphorylated in TR146 cells, and only phos- 
phorylated/3-catenin was detected in LLC-PKt cells (com- 
pare Fig. 1, lane 6, with Fig. 3, lanes 2 and 4). Similar results 
on the tyrosine phosphorylation of catenins induced by he- 
patocyte growth factor and by EGF in human carcinoma 
cells have been reported (Shibamoto et al., 1994). We have 
found no effect on tyrosine phosphorylation with PDGF; 
acidic fibroblast growth factor (ctFGF) also appears not to 
phosphorylate the cadherin-catenin complex on tyrosine 
residues (Boyer et al., 1992). These results suggest a selec- 
tive interaction of distinct growth factor receptors with the 
cadherin-catenin complex and might indicate that this inter- 
action depends on the correct spatial arrangement of the 
respective tyrosine kinase receptor and the cadherin-catenin 
complex. The biological consequence of tyrosine phos- 
phorylation of catenins is ct:rrently not known. The fact that 
phosphorylated/3-catenin is exclusively found in the deter- 
gent-soluble fraction is suggestive that tyrosine phosphoryla- 
tion might induce a disassembly of the cadherin-catenin 
complex from the actin filament network, but other explana- 
tions are possible. 

Our most important finding would appear to be that the 
autophosphorylated EGF-R becomes associated with the 
cadherin-catenin complex. We demonstrated this associa- 

tion in different cell lines after EGF treatment, but these ex- 
periments did not allow us to distinguish whether the associ- 
ation was direct or indirect. To further clarify this point we 
then performed in vitro phosphorylation assays with recom- 
binant proteins. Recombinant/3-catenin has several struc- 
tural features in common with native/3-catenin, e.g., it is 
recognized by epitope-specific antibodies and associates 
with native c¢-catenin (Aberle et al., 1994). In in vitro kinase 
assays with recombinant /3-catenin and EGF-R, tyrosine 
phosphorylation of/3-catenin, and an association between 
13-catenin and EGF-R were demonstrated. It is generally 
accepted that proteins which interact with tyrosine kinase re- 
ceptors become phosphorylated (Mustelin and Burn, 1993). 
If so, our results would indicate a direct interaction between 
EGF-R and/3-catenin which appears to be mediated by the 
/3-catenin core region. The core region exhibits, with about 
80 % of amino acid identity, the highest degree of homology 
to plakoglobin (3/-catenin) and the armadillo protein, which 
suggests that these proteins might also have EGF-R-binding 
properties. Our results indicate that tyrosine phosphoryla- 
tion occurs at the amino- and/or carboxy-terminal regions of 
13-catenin. The in vitro kinase assays should allow us to 
determine more precisely which tyrosine residues are sub- 
strates for EGF-R or other kinases. Finally, /3-catenin ex- 
hibits no obvious homology to SH2 domains, which are 
known to bind directly to tyrosine kinase receptors. It will 
be extremely important to identify the amino acid sequences 
on both EGF-R and 13-catenin which mediate this interac- 
tion. ~catenin is also complexed to other members of the 
cadherin protein family and might also link these cell adhe- 
sion molecules to other members of the tyrosine kinase re- 
ceptor family. If so, ~catenin may prove to be an important 
regulatory protein between receptor-mediated signaling and 
cadherin function. 
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