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Abstract. We have examined the cell-specific expres- 
sion of two fibronectin isoforms, EIIIA and EIHB, 
during experimental hepatic fibrosis induced by ligation 
of the biliary duct. At the mRNA level, EIIIA and 
EIIIB were undetectable in normal liver but expressed 
early in injury, preceding fibrosis. The cellular sources 
of these changes were determined by fractionating the 
liver at various time points after bile duct ligation into 
its constituent cell populations and extracting RNA 
from the fresh isolates. EIllA-containing fibronectin 
mRNA was undetectable in normal sinusoidal en- 
dothelial cells but increased rapidly within 12 h of in- 
jury. By contrast, the EIIIB form was restricted to he- 
patic lipocytes (Ito or fat-storing cells) and appeared 
only after a lag of 12-24 h: it was minimal in sinusoi- 
dal endothelial cells. Both forms were minimal in he- 

patocytes. At the protein level, EIIIA-containing 
fibronectin was markedly increased within two days of 
injury and exhibited a sinusoidal distribution. Secre- 
tion of this form by endothelial cells was confirmed in 
primary culture. Matrices deposited in situ by en- 
dothelial cells from injured liver accelerated the con- 
version ("activation") of normal lipocytes to myo- 
fibroblast-like cells, and pretreatment of matrices with 
monoclonal antibody to the EIIIA segment blocked 
this response. Finally, recombinant fibronectin peptide 
containing the EIIIA segment was stimulatory to lipo- 
cytes in culture. We conclude that expression of EIIIA 
fibronectin by sinusoidal endothelial cells is a critical 
early event in the liver's response to injury and that 
the EIIIA segment is biologically active, mediating the 
conversion of lipocytes to myofibroblasts. 

F 
IBl~Or~ECa'Irq is a large (440 kD) glycoprotein that is 

widely distributed in the extracellular matrix 
(ECM)' (Hynes, 1985, 1987). Several variants exist, 

all of which arise by alternative splicing of three "type IIr' 
domains spaced along the carboxy-terminal half of the mole- 
cule (Schwarzbauer et al., 1983, 1987; Kornblihtt et al., 
1985; Tamkun et al., 1984; Schwarzbauer, 1990). Two of the 
three (EIIIA and EIIIB, respectively) have been termed "ex- 
tra" domains, because they are either completely included or 
excluded in the mature molecule. The third is termed V 
("variable"), because in the human it contains several inter- 
nal splice sites that result in a domain of variable length; in 
the rat, one internal site exists giving rise to three possible 
forms (completely excluded, partially excluded, or com- 
pletely included) (Magnuson et al., 1991). 

Although several cell- and ECM-binding regions of fibro- 
nectin have been characterized, the role of the EIIIA and 
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EIIIB segments is poorly understood. "Plasma" fibronectin, 
which is produced largely by hepatocytes and circulates as 
a soluble protein, lacks both regions. The extra domains are 
present at specific stages of embryonic development and or- 
ganogenesis (Norton and Hynes, 1987; ffrench-Constant and 
Hynes, 1989; Glukhova et al., 1990; Laitinen et al., 1991; 
Pagani et al., 1991). Their expression in the adult is minimal 
except in specific pathological circumstances such as wound 
healing (ffrench-Constant et al., 1989; Brown et al., 1993), 
epithelial fibrosis (Kuhn et al., 1989; Barnes et al., 1994), 
and vascular intimal proliferation (Glukhova et al., 1989). 
The apparently programmed expression implies an active 
role for the extra domains, although few clues on its nature 
exist. 

In approaching this question, we have examined wound 
healing using a liver model, which facilitates analysis at the 
cellular level. As in cutaneous wounding, fibrogenesis in 
liver is heralded by the appearance of a myofibroblast-like 
population (Bienkowski et al., 1978; Martinez-Hernandez, 
1984; Bissell et al., 1990a). While the myofibroblasts in cu- 
taneous wounds are of uncertain origin, in liver injury they 
arise largely if not entirely from pericyte-like cells termed 
lipocytes (Ito or fat-storing cells) (Minato et al., 1983; Mak 
et al., 1984; Friedman et al., 1985; Milani et al., 1989, 
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1990; Nakafsukasa et al., 1990; Rockey et al., 1992). In nor- 
mal liver, lipocytes are synthetically quiescent, notable 
mainly for their abundant stores of retinoid esters. A central 
event in the initiation of fibrosing injury is the conversion of 
these cells from the resting to an "activated" state in which 
cytokine receptors and ECM production are sharply upregu- 
lated and features of smooth-muscle cells appear (Maher and 
McGuire, 1990; Friedman, 1993). Overall, the cells acquire 
the phenotype of myofibroblasts. 

Analysis of lipocyte activation suggests that it is regulated 
both by soluble products of inflammation (cytokines) and by 
the ECM itself (Friedman et al., 1989). Among the earliest 
detectable changes in the ECM of the injured liver is an in- 
crease in total fibronectin (Martinez-Hernandez, 1984). 
Given the likelihood that this comprises splice variants as in 
other forms of epithelial fibrosis, we undertook a detailed 
examination of fibroneetin expression during the early injury 
response. Also, having developed culture models of lipocyte 
activation with cells freshly isolated from normal animals 
(Friedman et al., 1989), we were in a position to test whether 
variant fibronectins-specifically the EIIIA-containing vari- 
ant-directly mediates activation. 

Materials and Methods 

Materials 

Radiolabeled cytidine-5'-triphosphate ([ct-32p]CTE >800 Ci/mmol) was 
purchased from Amersham Corp. (Arlington Heights, IL). Pronase, col- 
lagenase B, and DNase I were purchased from Boehringer Mannheim Bio- 
chemicals (Indianapolis, IN); DME, Ham's F-12 and Medium 199, calf 
and horse sera from Flow Laboratories (McLean, VA); Eagle's MEM with- 
out calcium was p~pared in the laboratory using amino acids from Sigma 
Chemical Co. (St. Louis, MO). Latex ® (arabinogalactan) was obtained 
from Consulting Associates (Tacoma, WA). Guanidine thiocyanate was pur- 
chased from Fluka Chemical Corp. (Ronkonkoma, NY); acrylamide and 
agarose from Bio-Rad Laboratories (Richmond, CA); ultra-pure urea, re- 
striction enzymes, T4 DNA ligase, and RNase T2 from GIBCO BRL 
(Gaithershurg, MD); SP6 and T ' /RNA polymerases, Taq DNA polymer- 
ase, and low-melting agarose from Promega (Madison, WI); Bluescript 
SK+ (pBSSK) cloning vector, MMLV reverse transcriptase and oligo-dT 
primers from Stratagene (La Jolla, CA); and a DNA sequencing kit (Se- 
quenase) from United States Biochemical (Cleveland, OH). Avidin-biotin 
complex (Vectastain) was purchased from Vector Laboratories (Burlin- 
game, CA); carboxylated paramagnetic spheres (1-2-#m-diam) and 3,-glu- 
tamyl-4-methoxy-naphthylamide (GMNA) from Polysciences (Warrington, 
PA); deoxycholic acid and Fast Blue BB salt from Sigma. The pMAL-c2 
expression vector and amylose resin were purchased from New England 
BioLabs (Beverly, MA). Purified plasma and "cellular" fibronectin (both 
human) were purchased from Fibrogenex, Inc. (Chicago, IL). 

Antibodies 

Biotinylated sheep anti-mouse IgG was purchased from Amersham. Two 
monoclonal antibodies specific to the EIIIA domain of fibronectin were 
used: IST-9 (Borsi et al., 1987) and ED-A (52DH1) (Vartio et al., 1987). 
A third monoclonal, C6F10, specific for the invariant tenth type HI repeat 
(Darrib~re et al., 1992) and a polyclonal rabbit anti-type IV collagen (Ir- 
ving et al., 1984) also were used. Individual monoclonals were titered by an 
ELISA procedure (Koteliansky et al., 1982). The titer of C6Fl0, per #g 
purified IgG, was fivefold that of IST-9 or IST-6, which were of similar titer 
(data not shown). In the studies to be described, the indicated dilutions do 
not take into account these differences. 

Animal Model of l~brogenesis 
Hepatic injury was induced in male Sprague-Dawley rats (",,400 g body 
weight) by ligation of the biliary duct, which reproducibly initiates a fibro- 
genic response (Bienkowski et al., 1978; Maher and McGuire, 1990). 
Sham-operated animals underwent laparotomy and bile duct manipulation 

without ligation. Animals were maintained postoperatively on food and wa- 
ter ad lib. 

Liver Cell Isolation and Purification 
Hepatocytes were isolated from control and experimental animals by col- 
lagenase perfusion and elutriation, as previously described (Bissell et al., 
1990b). Lipocytes, Kuptfer cells and sinusoidal endothelial cells were iso- 
lated by in situ perfusion with pronase and collagenase followed by centrifu- 
gation on a discontinuous gradient of Latex (6, 8, 12 and 15% wt/vol) 
(Friedman and Roll, 1987). The top two interfaces contained lipocytes, 
which were collected and washed twice in culture medium to remove cellu- 
lar debris. The bottom two interfaces contained mixed Kupifer and en- 
dothelial cells, which were separated by centrifugal elutriation at 2,500 rpm 
and flow rates of 18 ml/min (endothelial cells) and 36 ml/min (Kupffer cells) 
(Irving et al., 1984). Lipocytes were identified by their characteristic 
ultraviolet autofluorescence (Friedman and Roll, 1987), endothelial cells by 
their uptake of DiI-conjugated acetoacetylated low density lipoprotein (Ir- 
ving et al., 1984), and Kuptfer cells by their ability to phagocytose 
fluorescein-conjugated S. aureus  (Friedman and Roll, 1987). In isolates 
from normal liver, the purity of the individual fractions was 99 % for hepato- 
cytes, >95% for lipocytes and endothelial cells, respectively; and for 
Kupffer cells it was 90-95 %, the principal contaminant being lipocytes. 
Preparations from injured or fibrotic liver were similarly pure except for 
the Kupffer cell fraction, in which 10-20% of the cells were lipocytes and 
5-10% biliary epithelial cells. The Kupffer cell isolate was further purified 
by an adaptation of a method initially described by Rous (Rous and Beard, 
1934): paramagnetic spheres (l-2-#m-diam) were administered intrave- 
nously in a volume of 0.5 ml, 5-10 rain before liver perfusion. The particles 
rapidly disappeared from the circulation and, within the liver, were internal- 
ized exclusively by Kupffer cells (Bissell et al., 1972). After perfusion of 
the liver with pronase and collagenase, the unfractionated cell suspension 
was placed in a plastic centrifuge tube, and the iron-laden Kupffer cells were 
drawn to the wall of the tube with a magnet. The free suspension was aspi- 
rated, and the isolate was released into fresh culture medium and again 
separated magnetically; three such washes were carried out. The final iso- 
late was 99% pure by light microscopy. The remainder of the non- 
parenchymal cells were fractionated by gradient centrifugation, as de- 
scribed above. 

Histochemical Detection of T-Glutamyl Transpeptidase 
Non-parenchymal cells isolated from normal and injured liver were stained 
for the presence of ^/-glutamyl transpeptidase (GGT), which is a specific 
marker of biliary epithelial cells. Aliquots of various fresh isolates were 
plated on glass chamber slides coated with type I collagen and, 24 h later, 
fixed with acetone at 4°C. After washing in 0.1 M Tris-HCl, pH 7.4, the 
slides were incubated in GMNA solution (GMNA 2.5 mg/ml, Fast blue BB 
salt 0.67 mg/ml, glycyiglycine 0.67 mg/mi) for 30 rain at 25"C, as previously 
described (Rutenburg et al., 1969). Frozen sections of normal kidney served 
as a positive control. Cells exhibiting the bright red reaction product were 
absent from isolates of normal liver. From animals subjected to bile duct 
ligation, the lipocyte and endothelial fractions contained 1-5% GGT- 
positive cells and the routinely prepared Kupffer cells, 5-10%. Kupffer cells 
purified using magnetic beads, as described above, were free of con- 
taminants. 

cDNA Probes 

Rat eDNA probes containing the alternatively spliced regions EIIIA (A+) 
and EIIIB (B+) and an invariant, 270 base-pair fragment (pSR270) were 
provided in pGEM vectors by Dr. Richard Hynes (M.I.T., Cambridge, 
MA). The A +  probe spans 170 bp of EIIIA and 100bp of the adjacent invar- 
iant segment (1/I-12). The B+ probe spans 250 bp of EII1B and 100 bp of 
the adjacent type 11/repeat (Schwarzbauer et al., 1987). A eDNA spanning 
the entire V region with 5' and 3' extensions of 67 and 102 bp, respectively, 
was prepared in the laboratory according to an established protocol using 
PCR amplification (Pagani, et al., 1991). The amplified fragment was sub- 
cloned into pBSSK. By DNA sequencing, it was identical to the published 
one (Schwarzbaner et al., 1983). The probe constructs are summarized in 
Fig. 1. 

RNase Protection Assay 
Total RNA was extracted from the individual cell isolates or whole liver 
tissue as described (Chomczynski and Sacchi, 1987) or using TRI Reagent 
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Figure L Summary of eDNA 
probes used in RNase protec- 
tion assays. In the diagram, 
the fibronectin molecule is 
shown with type I, II, and HI 
repeats as small rectangles, 
ovals and large rectangles, 
respectively. Various binding 
regions are indicated. Filled 
rectangles indicate the type- 
HI segments, EIIIA and EHIB, 
that undergo alternative splic- 
ing. A third variable region, 
V, also is indicated. The pro- 
tected probe fragments are 
shown as stippled boxes. A +  
and B +  indicate inclusion, 
and A -  and B -  exclusion, of 
EHIA and EIIIB, respectively. 
• Vl20 indicates inclusion of the 
entire V region; V95 denotes 
exclusion of a 25-amino acid 
fragment at the 5' end of the V 
region. (VO mRNA, indicat- 
ing exclusion of the entire V 
region, was not detectable.) In 
addition to the probes shown, 
one termed pSR270 was also 
used; it represents a 270-bp 
invariant sequence at the car- 
boxy-terminus and hybridizes 
with all forms of fibronectin. 

(Molecular Research Center, Inc., Cincinnati, OH). The concentration of 
RNA was determined spectrophotometrically; the integrity of each sample 
was verified by agarose/formaldehyde gel eloctrophoresis. Radiolabeled 
probes were made by transcription of the appropriate plasmid with SP6 or 
T7 RNA polymerase in the presence of [a-32p]CTP. Total cellular RNA 
(5-50 #g) was hybridized in solution with excess 32P-labeled cRNA 
(0.5-1.0 × 106 cpm) for 12-16 h at 50-55°C. Unhybridized RNA was 
digested with ribonuclease T2 (Maher and McGuire, 1990). Intact hybrids 
were precipitated, denatured by boiling for 3 rain in electropboresis buffer 
containing 80 % formamide, and separated by electrophoresis in a 5 % poly- 
acrylamide/urea gel. After drying, gels were applied to x-ray film (Kodak 
X-OMat AR-5) for 12-24 h. Scanning densitometry (Hcefer Scientific In- 
struments, San Francisco, CA) was used to quantitate the autoradiographic 
signals. Apparent band intensities were corw.~ed for size differences among 
the various fragments. 

RNA samples were probed also with a cDNA encoding 585 bp of 
ribosomal protein S-14 (Rhoads et al., 1986) both to verify the integrity 
of the mRNA in a sample and also to control internally for the amount of 
mRNA present in an individual assay. Preliminary experiments were con- 
ducted to evaluate the constancy of this mRNA among liver cell types and 
under different experimental conditions. The level of S-14 mRNA increased 
less than 1.4-fold in whole liver after bile duct ligation (Fig. 2) and did not 
change significantly in endothelial cells or lipocytes (Fig. 3). 

lmmunohistochemical Detection of A + Fibronectin in 
Normal and Injured Liver 

The liver, with or without bile duct ligation, was perfused under low pres- 
sure with PBS until free of blood, via a catheter inserted into the portal vein. 
The tissue was then removed, cut into small (0.5 cm 2) pieces and im- 
mersed in liquid nitrogen. Cryostat sections of frozen liver were placed on 
positively charged glass plates and stored at 4°C overnight. Specimens were 
fixed in acetone at -20°C for 10 rain, then incubated at 25°C in a blocking 
solution consisting of PBS with 0.1% nonfat milk, 0.15 M ammonium ace- 
tate and 2 % sheep serum. 

Monoclonal antibodies specific for A+ fibronectin (IST-9 and ED-A), 
directed at epitopes within the EIIIA domain of the molecule, were diluted 

1:200 in PBS containing 0.1% nonfat milk, 15 mM ammonium acetate, and 
2% sheep serum. Sections were incubated with antibody overnight at 4°C, 
then washed three times with PBS and incubated with biotinylated sheep 
anti-mouse IgG for 2 h at 25°C. After three washes with PBS, the speci- 
mens were exposed to streptavidin-linked Texas red for 30 min, washed with 
PBS, and mounted. Negative controls consisted of specimens incubated 
with nonimmune mouse IgG and processed in parallel. Sections were 
viewed with a Nikon Microphot-FX fluorescence microscope and pho- 
tographed with Ilford HPS-plus (AS#, 400) film. 

Preparation of Endothelial Cell-derived 
Extracellular Matrices 

Native cell matrices with differing levels of A+ fibronectin were prepared 
as follows: sinusoidal endothelial cells were isolated from either normal 
liver or from liver that had been subjected to bile duct ligation (BDL) 12 h 
earlier. The fresh isolates were plated at confluent density in 35-ram cell 
culture dishes or on chamber-well slides (Nunc, Inc., NaperviUe, IL) in 
Medium 199 with 20% serum (10% calf, 10% horse), insulin (4 mU/mi) 
and penicillin (100 U/ml). All culture dishes were procoated with a thin 
layer of type I collagen ('~10 #g/35-mm dish) to facilitate cell attachment. 

Three days after plating, the cells were removed from the underlying ex- 
tracellular matrix with 0.5% deoxycholic acid in Dulbecco's PBS for 1 h 
at room temperature followed by extensive washing with the same buffer. 
Complete removal of the cells was confirmed by microscopy. The presence 
of A+ fibronectin in the endothelial cell-derived substrata was established 
inununohistochemically. Cell layers or stripped preparations on chamber- 
well slides were fixed in methanol at 4°C for 10 rain, followed by incubation 
at 25°C with PBS containing 0.1% nonfat milk, 0.15 M ammonium acetate 
and 5 % sheep serum, to block nonspecific binding of antibody. Anti- 
fibronectin monoclonal antibodies or anti-type IV collagen (all as purified 
IgG) were added (IST-9 diluted 1:1013, ED-A 1:200, C6F10 1:100, IST-6 
1:I00 and anti-type IV collagen 1:100 in PBS with 0.1% dry milk, 15 mM 
ammonium acetate, and 2 % sheep serum). In some studies, IST-9 hybrid- 
oma culture medium was used at a 1:20 dilution with results identical to 
those for purified IgG. After overnight incubation at 4°C, the slides were 
washed several times with PBS and incubated with biotinylated sheep 
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anti-mouse IgG for 2 h at 25°C. After multiple washes with PBS, 
streptavidin-linked Texas red was added for 30 min. After washes, the speci- 
mens were viewed and photographed, as described above. 

Lipocyte Activation in Culture 

Culture dishes (35 ram) were prepared with a thin layer of type I collagen 
or with matrices formed in situ by endothelial cells from normal or injured 
liver (see above). Where indicated, some matrices were pretreated with 
antifibronectin antibodies (IST-9, ED-A, or C6F10) added in serum-free 
medium for 6 h and then washed with PBS before plating of lipocytes 
(0.5-1.0 x 106 cells/dish) in serum-free medium. By immnnofluorescence, 
there was no loss of bound IgG from the matrices during 3 d of incubation, 
with or without lipocytes (data not shown). Cells in each group were har- 
vested at 3 d after plating in a buffer containing 62.5 mM Tris-HC1, 1% 
SDS, 10% glycerol, 20 mM dithiothreitol, and 2%/3-mercaptoethanol. The 
samples were boiled and the protein concentration determined (Bio Pad 
Labs., Richmond, CA). Equivalent amounts of protein were analyzed by 
SDS-PAGE (8 % polyacrylamide). Immunoblotting and detection of smooth 
muscle-specific ct-actin, a marker of lipocyte activation, was carried out as 
described previously (Rockey et al., 1992). Scanning densitometry (reflec- 
tance mode) was used to quantitate the results. The data are expressed rela- 
tive to smooth muscle a-actin levels in cells plated on type I collagen, ar- 
bitrarily set at one. The quantitative nature of the assay was established by 
parallel assay of graded amounts of protein extract from rat aorta. 

Studies with Fibronectin Fusion Proteins 

eDNA clones encoding the desired fusion proteins were prepared utilizing 
an RNA extract of whole liver from an animal that had undergone bile duct 
ligation and contained the mRNA for both A+ and A -  fibronectin (see Fig. 
2). Reverse transcription was performed with an oligo dT primer, according 
to the manufacturer's protocol (GIBCO BRL, Gaithersburg, MD). For am- 
plification of specific fibronectin sequences with or without the A+ seg- 
ment, two sets of oligonucleotide primers complementary to the published 
sequence of rat fibronectin were prepared. (Schwarzbauer et al., 1983; 
Odermatt et al., 1985) 

1. Forward 5' -CTCCGAA~CATTGACCGCCCTAAAGGACTG-3'  
Reverse 5'- CTC CAAG-C ~ TGGAC TCd3AC TC CAATCACf_fJG- 3' 

2. Forward 5'-CTCCGAATTCGAAATTGACAAGCCATCCCAGATG- 
CAG-Y 

Reverse 5'- C TC CAAC,-C TTC TC CAGAG TC G TGAC GAC TC C CTG- 
AGC-3' 

The first primer pair spanned just the 270-bp EIHA segment. The second 
primer pair was designed to extend from the amino terminus of the eleventh 
type III repeat to the carboxy terminus of the twelfth type HI repeat (see 
Fig. 1). Recognition sites for restriction enzymes were added (5'-EcoRI, 
YHindm). Amplification of the first strand cDNA was accomplished by 30 
cycles of polymerase chain reaction (1 rain at 94°C, 30 s at 45°C, 1 rain 
at 72°C). The first primer pair yielded a single band at ,0280 bp which on 
sequencing was identical to the Fn EIIIA fragment (EIIIA). The second 
primer pair yielded two bands, one at 550 and one at 840 bp. The latter 
fragment was identical to EIIIA flanked on either side by the llth and 12th 
type III repeats (11EIIIA12), while the former comprised the llth and 12th 
repeats without the EIIIA segment ( l l I2A-) .  

The PCR-amplified fragments were cloned into the EcoRI and HindIH 
sites of pMAL-c2, downstream of the male gene, which encodes the 
maltose-binding protein (MBP) and results in expression of an MBP fusion 
protein. Transformed Escherichia coli were grown to a density of "°2 x 
l0 s cells/ml. After addition of isopropyl-/~-n-thiogalactoside to a final con- 
centration of 0.9 raM, the bacteria were agitated at 37°C for 2 h, centrifuged 
at 4,000 g for 20 min, resuspended in buffer (20 mM Tris, 200 mM NaC1, 
1 mM NaEDTA, pH, 7.4), and disrupted by freezing/thawing and sonica- 
tion. The bacterial lysate was centrifuged at 9,000 g for 30 min and the su- 
pernatant was applied to an amylose resin column. After extensive washing 
with column buffer, the fusion protein was eluted in 10 mM maltose, dia- 
lyzed against 10 mM Tris-C1, 100 mM NaC1, pH, 8.0, concentrated by ul- 
trafiltration (Centricon-30; Amicon, Beverly, MA) and analyzed by West- 
ern blot using monoclonai antibodies EDA (52DHI) and IST9. 

Culture substrata were prepared by mixing purified fusion protein (100 
#g) with 50 #g type I collagen in a volume of 200 #l which was spread 
evenly over 35-ram culture dishes and allowed to dry at 25°C overnight. 
The presence of the fibronectin fusion proteins after rehydration was 
confirmed by immunoperoxidase staining. Lipocytes from normal liver 
were plated on these substata and on collagen alone (0.5-1 x 106 

cells/dish); at 3 d, the cells were analyzed for smooth muscle c~-actin by 
immunoblot as described above. 

Recombinant peptides were prepared also using the 6xHis system (Qia- 
gen, Chatsworth, CA), which eliminates MBP from the fusion product. The 
6xHis-tagged peptides were purified on Ni-NTA resin and used as described 
above. 

Statistical Analysis 

All numerical data represent the mean + SEM of at least three independent 
experiments, with cells prepared from different animals. Results with P < 
0.05 by Mann-Whitney U-test were considered significant. 

Results 

Quantitation of Fibronectin mRNAs 

Whole Liver. Total fibronectin mRNA, detected by the 
pSR270 probe, increased sevenfold after liver injury (Fig. 2 
A); the signals for A -  and B -  fibronectin increased in par- 
allel, indicating that much of the change is attributable to 
fibronectin that is A+ only, B+ only or A - / B -  (Fig. 2, B 
and C). The mRNAs for A+ and B+ fibronectin were essen- 
tially undetectable in normal whole-liver extracts but clearly 
present seven days after bile duct ligation. V95 and V120 
mRNAs similarly increased. S-14 mRNA increased 1.3-fold 
after bile duct ligation in relation to total liver RNA (Figure 
2, E and F). 

Hepatocytes. A+ (EIIIA containing) and B+ (EIIIB con- 
taining) fibronectins were not detectable in hepatocytes from 
normal liver or from injured liver up to 14 d after bile duct 
ligation. Moreover, total fibronectin mRNA in hepatocytes 
remained constant throughout the injury response as indi- 
cated by the intensity of the A -  and B -  bands (data not 
shown). The data for V-region mRNA in hepatocytes were 
similar to those for whole-liver extracts. The relative 
amounts of V120 and V95 mRNA in hepatocytes did not 
change during injury (data not shown). 

Sinusoidal Endothelial Cells. As in whole liver, normal 
non-parenchymal cells expressed very little fibronectin 
mRNA. By contrast, in liver injury, A+ mRNA in sinusoi- 
dal endothelial cells increased rapidly to a peak at 12-24 h 
and constituted most (>80%) of the total fibronectin mRNA 
(Figs. 3 and 4, A and C). Under the same conditions, B+ 
fibronectin was minimally increased (Figs. 3 and 4 B). Small 
increases in endothelial cell A+ mRNA occurred also in the 
12- and 24-h sham-operated animals, representing less than 
10% of the values for bile duct-ligated animals and disap- 
pearing by 48 h (Fig. 4 A, inset). V120 mRNA levels paral- 
leled those for A +, peaking at 12 h then declining over sew 
eral days (data not shown). 

Lipocytes. A small increase in A+ mRNA was noted in 
lipocytes at 24 h after liver injury (Figs. 3 and 4 A), but this 
was present also in sham-operated animals. Beyond 24 h, 
increased A+ expression persisted in the injury model but 
not in the sham-operated animals. In contrast to endothelial 
cells from the injured liver, lipocytes displayed an increase 
also in B+ mRNA, which reached statistical significance at 
24 h and progressively increased (Figs. 3 and 4 B). The A+ 
form, representing 7 % of total fibronectin mRNA in normal 
cells, increased to 42 % at 7 d after liver injury; B + was <1% 
in normal cells and increased to 9% at 7 d (Fig. 4 C); V120 
mRNA was fourfold above normal at 7 d (data not shown). 

Kupffer Cells. Initial studies on a conventionally prepared 
Kupffer cell fraction from injured liver suggested relatively 
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Figure 2. Expression of total 
fibronectin and variants after liver in- 
jury in whole-liver extracts. A repre- 
sentative RNase protection assay 
with 10 /zg total cellular RNA is 
shown; 5 txg RNA was used for the 
assay of S-14. Lane 1, normal liver; 
lane 2, 7 d bile duct-ligated liver; 
lane 3, negative control (yeast tRNA). 
(A) Total fibronectin (pSR270) 
mRNA. (B) A+ fibronectin mRNA. 
A+ indicates inclusion and A -  ex- 
clusion, respectively, of the EfflA 
region of fibronectin. (C) B+ fibro- 
nectin mRNA expression. B+ indi- 
cates inclusion and B -  exclusion, 
respectively, of the EIIIB region of 
fibronectin. (D) V-region mRNA. 
V120 and V95 indicate inclusion of 
the respective fibronectin V-region 
mRNA fragments. (E) S-14 mRNA, 
an internal control for the mRNA 
content of each extract. (F) Denatur- 
ing gel electrophoresis of typical ex- 
tracts, showing the 18S and 28S ribo- 
somal bands stained with ethidium 
bromide; normal liver (lane 1), and 
injured liver 7 d after bile duct liga- 
tion (lane 2). Sham operation yielded 
data essentially identical to that from 
unoperated normal controls. 

high levels of mRNA for both A+ and B+ fibronectin, but 
the isolates contained significant numbers of lipocytes and, 
to a lesser extent, biliary epithelial cells. Magnetically 
purified Kupffer cells (see Methods) expressed a low level of 
A+  mRNA and no B+ mRNA (data not shown). 

In summary, the earliest change in fibronectin mRNA ex- 
pression after liver injury is a transient, but striking, in- 
crease in the A+  form in sinusoidal endothelial cells. This 
is followed by a gradual increase in B+ expression by lipo- 
cytes. 

Immunohistochemical Detection of A + l~bronectin in 
Injured Liver. The observed changes in A+  fibronectin ex- 
pression were present also at the protein level as seen im- 
munohistologically in whole-liver sections. Staining of nor- 
mal or sham-operated liver with monoclonal antibody IST-9 
yielded faint, but specific, reaction within portal triads, 
which appeared to be localized to arterioles. Staining within 
the lobule was undetectable (Fig. 5 A). By contrast, 2 d after 
bile duct ligation, perisinusoidal staining was extensive (Fig. 
5 B); at 5 and 9 d, it was virtually continuous (Fig. 5, C and 
D). The monoclonal antibody, ED-A, derived independently 
but having the same specificity as IST-9, gave identical 
results (not shown). When either monoclonal antibody was 
replaced by nonimmune IgG, no specific staining was ob- 
served (not shown). 

Lipocyte Activation by Endothelial Cell-Derived 
A + Fibronectin 

The next set of studies examined production of A+  fibronec- 
tin by endothelial cells and the effect of endothelial cell- 

Figure 3. Fibronectin and S-14 mRNA expression in normal and in- 
jured liver. Representative RNAse protection assays are shown in 
which the same RNA extract was used for all probes at a given time 
point. Lipocytes and endothelial ceils for each time point were har- 
vested from a single animal. 5/zg total RNA was used with S-14; 
20/zg RNA was used with the remaining probes. Arrows indicate 
the position of the specific bands. Yeast tRNA served as the negative 
control. Total fibronectin mRNA was measured using pSR270. A+ 
indicates inclusion and A -  exclusion, respectively, of the EILIA re- 
gion. B+ indicates inclusion and B -  exclusion, respectively, of the 
EIIIB region. 

derived matrices on lipocyte activation. In preliminary 
work, it was noted that sinusoidal endothelial ceils isolated 
from normal liver and cultured on a plastic substratum un- 
dergo spontaneous changes that include increased expres- 
sion of A+  fibronectin. The latter was evident at 72 h of cul- 
ture and increased progressively. A similar phenomenon 
occurs in cultured large-vessel endothelium (Burke and Dan- 
ner, 1991). For this reason, the period of culture was limited 
to three days, which sufficed for deposition of a stable ECM. 
Cultures were examined for the presence of A+  fibronectin 
by fluorescence immunohistochemistry with monoclonal an- 
tibody to the EIIIA segment (Fig. 6). Endothelial cells from 
both normal liver and bile duct-ligated liver produced detect- 
able A+ fibronectin (Fig. 6, g and h), but the amount depos- 
ited by cells from the ligated liver clearly exceeded that de- 
posited by cells from normal liver (Fig. 6, a and b). In 
keeping with the increase in total fibronectin mRNA after 
bile duct ligation (Fig. 3), staining by anti-fibronectin anti- 
body to an invariant segment (1/I-9) was increased in en- 
dothelial cell cultures from bile duct-ligated liver (Fig. 6, c 
and d). In contrast, deposition of type IV collagen was simi- 
lar in the two types of culture (Fig. 6, e and f ) .  Type IV colla- 
gen is known to be produced by normal sinusoidal en- 
dothelial cells (Irving et al., 1984; Maher and McGuire, 
1990). 

Normal lipocytes were plated on the various substrata, and 
their activation was monitored using smooth-muscle a-actin 
as a marker (Fig. 7). Fresh isolates contained no detectable 
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Figure 4. Cell-specific changes 
in fibronectin splicing with 
liver injury. Each point rep- 
resents the mean of at least 
three separate experiments + 
SEM. The signal for A+ or 
B+ mRNA has been cor- 
rected for the level of S-14 
mRNA in the same samples. 
Values obtained following 
sham operation (inset) have 
been subtracted. Note differ- 
ent scale of inset graphs. (A) 
A+ mRNA relative abun- 
dance. The difference be- 
tween endothelial cells and 
lipocytes is significant (p < 
0.05) at all time points after in- 
jury except at 7 d. **P < 0.05 
versus lipocytes at the same 
time points and control en- 
dothelial cells. *P < 0.05 
versus normal controls. (B) 
B+ mRNA relative abun- 
dance. *P < 0.05 versus con- 
trol (0 -  time) lipoeytes. (C) 
Fibronectin variant mRNA as 
a percentage of total fibronec- 
tin expressed for each cell 
type. The percentage of A+ 
and B+ mRNA, respectively, 
was calculated after correc- 
tion of the autoradiographic 
signals for the size of the pro- 
tected fragment. 
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Figure 5. Immunohistochemical detection of A+ fibronectin deposition in the rat liver after bile duct ligation. Photomicrographs of whole 
liver sections stained with IST-9, a monoclonal antibody specific for A+ fibronectin, are shown. (,4) Normal whole liver. Reaction is present 
around a portal arteriole, indicated by the arrow. There is no specific A+ staining along sinusoids. Staining was identical in sham-operated 
controls (not shown). (B) Liver 2 d after bile duct ligation. Specific staining is present along many sinusoids. (C) Liver 5 d after bile 
duct ligation. A+ fibronectin is prsent along essentially all sinusoids. (D) Liver 9 d after bile duct ligation. The pattern is similar to that 
shown in C. 

smooth-muscle o~-actin but in culture on type I collagen un- 
derwent spontaneous activation that was detectable after 
2-3 d and increased progressively (Rockey et al., 1992). 
Lipocytes incubated for the same period of time on a matrix 
containing A+ fibronectin (deposited by endothelial cells 
from the injured liver) expressed substantially higher levels 
of smooth muscle ot-actin, while lipocytes plated on a matrix 
with a low level of A+ fibronectin (elaborated by endothelial 
cells from normal liver) exhibited a small but nonsignificant 
increase in smooth-muscle ot-actin. The activating effect of 
the endothelial cell-derived matrices was completely blocked 
by IST-9 or EDA, two independently derived monoclonal an- 
tibodies to the EIIIA segment. An antibody to an adjacent 
invariant region (C6F10) had no significant effect (Fig. 7). 

While the blocking effect of IST-9 clearly pointed to a role 
of the EIIIA segment, lipocyte activation conceivably was 
related in part to the difference in total fibronectin in the ma- 
trices deposited by endothelial cells from normal or injured 
liver (Fig. 6, c and d). To address this issue, we prepared cul- 

ture substrata of plasma (EIIIA-,  EIIIB-) or cellular 
fibronectin (EIRA+ and/or EII1B+), presented in type I col- 
lagen. Normal lipocytes were plated and monitored as before 
(Fig. 7). The substratum containing cellular fibronectin in- 
duced twice the level of smooth-muscle et-actin as did that 
containing plasma fibronectin (Fig. 8); the increase was 
blocked by IST-9, confirming that activation was related to 
the presence of the EIIIA segment. 

Lipocyte Activation by b~bronectin Fusion Proteins 
Containing the EIIIA Domain 

The fibronectin fusion proteins were characterized by SDS- 
PAGE and Western blot. Single bands of appropriate size for 
all three proteins were visualized by Coomassie blue stain- 
ing, and the immunological reactivity of fusion proteins 
EIRA and llEIRA12 was confirmed by Western blot with 
monoclonal antibodies IST-9 and ED-A (not shown); 
l l 1 2 A - ,  which lacks the EIIIA segment, did not react. Tis- 
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Figure 6. Fibronectin and type 
IV collagen immunostaining 
of extracellular matrix and 
cells from normal and injured 
liver, in primary culture. Af- 
ter 3 d of culture, cells were 
fixed as described in Methods 
and stained with the indicated 
antibody. IST-9 recognizes the 
EIIIA region; C6FIO is 
specific for the tenth type HI 
repeat, common to all forms 
of Fn. Type IV collagen is 
elaborated by both normal and 
bile duct-ligated endothelial 
cells. Normal (a, c, and e) and 
bile duct-ligated (b, d, and f) 
endothelial cell matrix: the 
cell monolayers were stripped 
and then stained with the indi- 
cated antibodies, as described 
in Methods. Intact normal (g) 
and bile duct-ligated (h) en- 
dothelial cells, before strip- 
ping, were fixed and stained 
with IST-9. 

sue culture dishes were coated with the proteins (see Meth- 
ods), incubated in medium and then stained to verify that the 
proteins were present and uniformly distributed. Normal 
lipocytes plated on substrata containing proteins EMA or 
llEIIIA12 exhibited a threefold increase in smooth muscle 
o~-actin expression compared with cells plated on l l l 2 A -  
(Fig. 9); the latter substratum was not different from collagen 
controls. To exclude an effect of the maltose-binding protein 
within the fusion product, recombinant peptide containing 
only the 6xhis tag (see Methods) was studied and produced 
similar results. To test the effect of the ECM environment, 
the peptides were presented in EHS gel, in place of collagen. 
The EHS gel is rich in laminin and serves as a model base- 
ment membrane (Bissell et al., 1987). In this environment 

also, the EIIIA segment caused significantly greater lipocyte 
activation than did the control peptide (flanking segments 
without EIIIA), although the magnitude of stimulation was 
somewhat less than that of peptide presented within a colla- 
gen matrix (Fig. 10). 

Discussion 

The appearance of the EMA and EIIIB variable domains 
during development (ffrench-Constant and Hynes, 1989; 
Laitinen et al., 1991; Pagani et al., 1991), their near-total 
disappearance in the adult and reappearance in the context 
of wound-healing suggest a specific biological role for these 
variant fibronectins. However, while mapping has defined 
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Figure Z Expression of smooth muscle-specific c~-actin by lipocytes 
cultured on various substrata. Lipocytes were isolated from normal 
liver, and aliquots from the same preparation were plated on 
preformed matrices deposited in situ by endothelial cells from ei- 
ther normal liver (NL EC) or liver subjected to bile duct ligation 
(BDL EC). In the latter case, the endothelial ceils were isolated 
12 h after the injury (see Methods). Some BDL EC matrices were 
pretreated with fibronectin monoelonal antibodies (4 #g IgG) prior 
to lipocyte plating. IST-9 and EDA recognize the EIIIA region; 
C6F10 is directed against the adjacent, invariant M-9 segment (see 
Methods). Type I collagen, which moderately induces lipocyte ac- 
tivation (Rockey et al., 1992), served as a positive control. A typi- 
cal immnoblot is shown at the upper left, with the expected smooth 
muscle c~-actin band at 42 kD. Immnoblot results were quantitated 
by scanning densitometry (lower left). The bars represent the mean 
of four separate experiments ± SEM (except for BDL EC + EDA, 
which was performed twice). The difference between BDL EC ma- 
trix and BDL EC matrix + C6F10 was not statistically significant. 
*P < 0.05 versus all conditions; **P < 0.05 versus all conditions 
except NL EC matrix. Graded amounts of protein extract from rat 
aorta were used in the same assay to demonstrate that the signal 
was proportional to the amount of smooth muscle c~-actin. The 
Western blot is shown at the upper right, with the indicated quantity 
of protein; the scanning densitometry results, with the correlation 
coefficient, is shown at the lower right. 

several important regions of  fibronectin, the function of the 
variable segments has remained unclear. In the present 
studies, we have examined this question in a liver model of 
wound healing, taking advantage of cell-isolation techniques 
available for this tissue. Individual isolates yield sufficient 
RNA for immediate analysis, so that expansion of starting 
samples in culture is unnecessary. By this approach, an "in 
vivo" profile of  fibronectin mRNA expression for individual 
cell populations can be obtained. The results indicate that 
A +  fibronectin increases rapidly after liver injury and that 
it derives from sinnsoidal endothelial cells. 

Bile duct ligation was selected as the injury model because 
it rapidly and reproducibly induces fibrosis in association 
wi th  up-regulation of ECM gene expression in lipoeytes 
(Maher and McGuire, 1990). The injury is centered on por- 
tal areas, in contrast to other models. Open to question is 
whether the observed endothelial cell response is unique to 
bile duct ligation. Injury produced by administration of car- 
bon tetrachloride contrasts with that caused by bile duct li- 
gation in being mechanistically distinct and involving 
centrilobular areas rather than portal tracts. In a direct com- 
parison of the two models, the changes in lipocyte gene 

Figure 8, The effect of"cellular" (cFN) or "plasma ~ (pFn) fibronec- 
tin on activation of normal lipocytes. The human proteins were pur- 
chased from Fibrogenex (Chicago, IL), and 220 ttg were mixed 
with 50 ttg of type I collagen and applied to culture plates. Collagen 
alone served as a control substratum. Some plates containing the 
cellular form were pretreated with IST-9, as described for Fig. 7; 
the control antibody was IST-6, which reacts with a segment adja- 
cent to EMB, present in all forms of fibronectin (Carnemolla et al., 
1992). Fresh normal lipocytes were plated and monitored as de- 
scribed in Fig. 7. The effect of the cellular form was significantly 
greater than that of the plasma form and was neutralized by pretreat- 
ment of the substratum with IST-9 but not by IST-6. Although the 
mean value for pFn was greater than that for the collgen control, 
the difference was not significant. * pFn vs. cFn, p < 0.01, n = 4; 
• * cFn vs. cFn+IST9, P < 0.01, n = 4; cFn vs. cFn+IST6, P > 0.2, 
n = 4 .  

expression were virtually identical (Maher and McGuire, 
1990). With respect to A +  fibronectin also, carbon tetra- 
chloride elicits an increase resembling that produced by bile 
duct ligation (Odenthal et al., 1993). Taken together, the 
data suggest that early production of A +  fibronectin by en- 
dothelial cells in fibrosing injury is independent of  the type 
of liver injury and likely to be broadly relevant to the repair 
response in wound healing. 

Previous work has suggested that splicing of the fibronec- 
tin EIIIA and EIIIB regions, respectively, proceeds indepen- 
dently (Barone et al., 1989; ffrench-Constant and Hynes, 
1989). The present data support this conclusion, showing 
that not only the time course of expression of the two forms 
differ following liver injury but that different cell types are 
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Figure 9. Smooth muscle c~-actin expression in lipocytes cultured 
on MBP-fibronectin fusion proteins. The graph shows the combined 
scanning densitometry results of three separate experiments ± 
SEM. In each experiment, the values obtained with MBP-1112A- 
were similar to the collagen control and arbitrarily set at 1. * P < 
0.05 by comparison with MBP-1112A-. 
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Figure 10. Activation of normal lipocytes cultured on recombinant 
6xhis-tagged fibronectin peptides. Substrata were prepared by com- 
bining the indicated peptides (100 #g) with 100 #1 of EHS extract 
prepared as described (Bissell et al., 1987) and applying the solu- 
tion to culture plates; a similar amount of EHS extract alone served 
as control. Some matrices were pretreated with IST-9, to block the 
EMA segment. Fresh normal lipocytes were plated and monitored 
as described for Fig. 7. * 1142 vs. I1-EMA-12 or EIIIA, P < 0.01, 
n = 4; ** ll-EIIIA-12 + IST9 vs. II-EIIlA-12 or EMA, P < 0.01, 
n = 4; ll-EIIIA-12 + IST9 vs. 11-12 P > 0.2, n = 4. 

involved. These findings are consistent with studies of the 
developing embryo (Pagani et al, 1991) and of fibrosing in- 
jury in adult tissues. In human renal allograft rejection, for 
example, the A+ form predominates early in the process; in 
chronic rejection, both A+ and B+ are expressed, and in 
fibrotic glomeruli only B+ is detected (Gould et al., 1992). 

This study has not addressed the role of the EMB and V 
regions, except to show that B+ fibronectin expression after 
bile duct ligation is localized to lipoeytes and that its profile 
is similar to that for collagen I mRNA in the same injury 
model (Maher and McGuire, 1990). This may be consistent 
with a role in matrix assembly. With regard to the V region, 
the V120 form increased after bile duct ligation in sinusoidal 
endothelial cells, paralleling the change in the A+ form. 
However, the mRNA for V120 is constitutively expressed by 
normal hepatocytes and also by lipocytes, implying that the 
corresponding protein is present normally in the perisinusoi- 
dal matrix. For this reason, we have chosen to focus on the 
increase in A+ fibronectin as being unique to the wound 
healing process. At no time were the A+ and B+ forms de- 
tectable in hepatocytes. The reported production of A+ 
fibronectin by hepatocytes maintained in culture appears to 
be a culture phenomenon only and is quantitatively minor 
(Magnuson et al., 1991; Odenthal et al., 1992). 

Previous studies of lipocytes in primary culture have indi- 
cated the sensitivity of these cells to extracellular matrix: 
lipocytes maintained on basement membrane-like ECM re- 
tain their normal quiescent phenotype, while cells on fibril- 
lar (type I) collagen undergo spontaneous change that 
closely mimics in vivo activation (Friedman et ai., 1989). 
The perisinusoidal ECM in normal liver, which presumably 
surrounds lipocytes, consists of basement-membrane pro- 
teins (Bissell et al., 1987) and may play a role in maintaining 
lipocyte quiescence. Extrapolating from the culture data, 
one may speculate that injury impacts on lipocytes not only 
by presenting de novo the EMA region but also by perturbing 
the structure of the existing ECM. The data add to the evi- 
dence that the basement membrane ECM in epithelia is het- 
erogeneous, with regions of local specialization. A hetero- 

geneous distribution of fibronectin has been documented 
previously in morphological studies of the microcirculation. 
For example, capillary pericytes and endothelial cells are 
joined by patches of fibronectin-rich ECM (Courtoy and 
Boyles, 1983). While it is uncertain whether analagous 
patches exist around the sinusoids of normal liver, the pres- 
ent data suggest that they arise in liver injury. 

In these studies, we used very early primary cultures of 
sinusoidal endothelial cells and lipocytes, respectively, for 
examining the direct effect of the EIIIA region on lipocyte 
activation. The rationale initially was to model the in vivo 
interaction of these ceils as closely as possible. It emerged 
that use of early primary culture was essential to demonstrat- 
ing the effect of endothelial-derived ECM on lipocytes, due 
to the rapidity with which liver cells in primary culture un- 
dergo phenotypic change. This has been well-documented 
for hepatocytes in conventional culture (Bissell and Guzel- 
ian, 1980). Also for lipocytes plated on plastic, changes that 
mimic activation in vivo proceed spontaneously and are 
marked after 3-5 d of primary culture (Friedman, 1993). 
With regard to sinusoidal endothelial cells, we showed previ- 
ously that the number of open fenestrae, which are charac- 
teristic of these cells, decreases by 90% in conventional pri- 
mary culture within 48 h of plating (McGuire et al., 1992). 
The present studies indicate that production of EMA- 
fibronectin accompanies this morphological change. In 
brief, beyond the first three days of culture of lipocytes and 
sinusoidal endothelial cells, spontaneous change supervenes 
to the extent that the cell culture models no longer reflect the 
differences that exist in vivo between "normal" and "injured :' 

The response of lipocytes to A+ fibronectin, monitored 
as increased expression of smooth-muscle ot-actin, becomes 
evident only after 1-2 d in culture and may require longer 
than this in vivo (Rockey et al., 1992). Lipocyte activation 
constitutes a program of phenotypic change that proceeds 
through several days. We monitored smooth-muscle o~-actin 
in the present studies not because it is the earliest marker of 
activation (receptors for PDGF or TGF-fl appear earlier) but 
because it presumably represents a commitment of the cell 
to a myofibroblast-like phenotype. 

We suggest that elaboration of A+ fibronectin by endo- 
thelial cells is a very early, if not the initial, change in the 
perisinusoidal ECM in liver injury and that the EMA seg- 
ment is a key element in a milieu that directs lipocyte activa- 
tion. EMA could act, in theory, by affecting the conforma- 
tion of a second region that interacts with lipocytes. A 
precedent is the finding that EMB affects the conformation 
of its immediately adjacent type M repeat (111-8) (Car- 
nemolla et al., 1992). The principal cell-binding region 
(RGD site) is only one type M repeat removed from EMA, 
and lipocytes express its receptor, the otsB1 integrin (S. S. 
Wang and D. M. Bissell, unpublished data). Two points, 
however, argue against a significant interaction of the EMA 
and RGD regions. The first is that recombinant peptide con- 
tainlng EMA but lacking the cell-binding site was stimula- 
tory for lipocytes. The second is that intact "cellular" fibro- 
nectin, containing EII]A and/or EIIIB, while more active 
than "plasma" fibronectin (without either region), was no 
more stimulatory to lipocytes than the EIUA peptide alone. 
This does not rule out other interactions, those between 
EMA and the V region, for example: the question merits fur- 
ther study. 
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Lipocyte activation is an event with important clinical 
ramifications, in that hepatic fibrosis often results in clini- 
cally evident liver disease. Because inflammation generally 
accompanies fibrosis, a number of studies have explored the 
role of proinflammatory cytokines in this process (Bissell 
and Roll, 1990; Gressner, 1991; Friedman, 1993). Most pro- 
ceed from the assumption that cytokines initiate lipocyte ac- 
tivation. To date, however, exposure of lipocytes to such fac- 
tors in culture has yielded unimpressive results, suggesting 
that cytokines act in concert with other elements of the injury 
milieu. The present findings point to the possibility that 
endothelial-derived A+ fibronectin forms part of that mi- 
lieu. Similarly, A+ fibronectin appears to accelerate, rather 
than absolutely control, the activation response and thus may 
function cooperatively rather than in isolation; its interaction 
with lipocytes may render these cells sensitive to specific 
cytokines, perhaps by modulating receptor expression. The 
latter remains to be examined. Similarly, the ECM context 
may influence the biological effect of the EIIIA segment. Al- 
though not formally examined here, this is suggested by the 
general greater effect of A+ fibronectin within a "complete" 
endothelial-derived ECM relative to that of cellular fibro- 
nectin presented with collagen I. 

A final issue concerns factors that regulate A+ fibronectin 
production by sinusoidal endothelial cells, and proinflamma- 
tory cytokines are obvious candidates. Indeed, in cultured 
human fibroblasts (Borsi et al., 1990) and in human umbili- 
cal vein endothelial cells (Kocher et al., 1990), transforming 
growth factor-/~ increased the expression of A+ fibronectin. 
Studies of the effect of this and other candidate factors on the 
ECM phenotype of hepatic sinusoidal endothelial cells are 
anticipated. 

We are grateful to L. Zardi for providing monoclonal antibodies IST-9 and 
IST-6 and to I. Virtanen for ED-A (52DH1); to R. Hynes for cDNA probes 
to the rat fibronectins; to K. B. Chang for expert technical assistance; and 
to J. Doherty for manuscript preparation. 

The work was supported by National Institutes of  Health grants 
T32DK07573, T32GM08258, DK31198, DK26743, and DK02124 and by 
the American Liver Foundation. 

Received for publication 15 February 1994 and in revised form 14 Octo- 
ber 1994. 

References 

Barnes, J. L., R. R. Hastings, andM. A. De La Garza. 1994. Sequential expres- 
sion of cellular fibronactin by platelets, macrophages, and mesangial cells 
in proliferative glomerulonephritis. Am. J. Pathol. 145:585-597. 

Barone, M. V., C. Henchcliffe, F. E. Baralle, and O. Paolella. 1989. Cell type 
specific trans-acting factors are involved in alternative splicing of human 
fibronectin pre-mRNA. EMBO (Fur. Mol. Biol. Organ.) J. 8:1079-1085. 

Bienkowski, R. S., M. J. Cowan, J. A. MacDonald, and R. G. Crystal. 1978. 
Degradation of newly synthesized collagen. J. Biol. Chem. 253:4356-4363. 

Bissell, D. M., and P. S. Gnzelian. 1980. Phenotypic stability of adnit rat hepa- 
tocytes in primary monolayer culture. Ann. NYAcad. Sci. 349:85-97. 

Bissell, D. M., and F. J. Roll. 1990. Connective tissue metabolism and hepatic 
fibrosis. In Hepatology: A Textbook of Liver Disease. D. Zakim, and T. D. 
Boyer, editors. W. B. Sannders Company, Philadelphia. 424--444. 

Bissell, D. M., L. Hammaker, and R. Schmid. 1972. Liver sinusoidal cells. 
Identification of a subpopniation for erythrocyte catabolism. J. Cell Biol. 
54:107-119. 

Bissell, D. M., D. M. Arenson, J. J. Maher, and F. J. Roll. 1987. Support of 
cultured hepatocytes by a laminin-rich gel. Evidence for a functionally 
significant subendothelial matrix in normal rat liver. J. Clin. Invest. 79: 
801-812. 

Bisseli, D. M., S. L. Friedman, J. J. Maher, and F. J. Roll. 1990a. Connective 
tissue biology and hepatic fibrosis: report of a conference. Hepatology. 
11:488-498. 

Bissell, D. M., J. M. Caron, L. E. Babiss, and J. M. Friedman. 1990b. Tran- 

scriptional regulation of the albumin gene in cultured rat hepatocytes. Role 
of basement-membrane matrix. Mol. Biol. Med. 7:187-197. 

Borsi, L., B. Carnemolla, P. Castellani, C. Rosellini, D. Vecchio, G. AI- 
lemanni, S. E. Chang, J. Taylor-Papadimitriou, H. Pande, and L. Zardi. 
1987. Monoclonal antibodies in the analysis of fibronectin isoforms gener- 
ated by alternative splicing of mRNA precursors in normal and transformed 
human cells. J. Cell Biol. 104:595-600. 

Borsi, L., P. CasteUani, A. M. Risso, A. Leprini, and L. Zardi. 1990. Trans- 
forming growth factor-B regulates the splicing pattern of fibronectin mes- 
senger RNA precursor. FEBS (Fed. Fur. Biochem. Soc. ) Left. 261 : 175-178. 

Brown, L. F., D. Dubin, L. Lavigne, B. Logan, H. F. Dvorak, L. Vandewater. 
1993. Macrophages and fibroblasts express embryonic fibronectins during 
cutaneous wound healing. Am. J. Pathol. 142:793-801. 

Burke, E. M., and D. B. Danner. 1991. Changes in fibronectin mRNA splicing 
with in vitro passage. Biochem. Biophys. Res. Commun. 178:620-624. 

Carnemolla, B., A. Leprini, G. Allemanni, M. Saginati, and L. Zardi. 1992. 
The inclusion of the type HI repeat ED-B in the fibronectin molecular gener- 
ates conformational modifications that unmask a cryptic sequence. J. Biol. 
Otem. 267:24689-24692. 

Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation 
by acid guanidinium thiocyanate-phenol-CHC13 extraction. Anal. Biochem. 
162:156-159. 

Courtoy, P. J., and J. Boyles. 1983. Fibronectin in the microvasculature: local- 
ization in the pericyte-endothelial interstitium. J. Ultrastruct. Res. 83: 
258-273. 

Darribtre, T., V. E. Koteliansky, M. A. Chernousov, S. K. Akiyama, K. M. 
Yameda, J. P. Theiry, and J. C. Boucant. 1992. Distinct regions of human 
fibronectin are essential for fibril assembly in an in vivo developing system. 
Dev. Dyn. 194:63-70. 

ffrench-Constant, D., and R. O. Hynes. 1989. Alternative splicing of fibronec- 
tin is temporally and spatially regulated in the chicken embryo. Development 
(Camb.). 106:375-388. 

ffrench-Constant, C., L. Van De Water, H, F. Dvorak, and R, O. Hynes. 1989. 
Reappearance of an embryonic pattern of fibronectin splicing during wound 
healing in the adult rat. J. Cell Biol. 109:903-914. 

Friedman, S. L. 1993. The cellular basis of hepatic fibrosis. N. Engl. J. &led. 
328:1828-1835. 

Friedman, S. L., and F. J. Roll. 1987. Isolation and culture of hepatic lipocytes, 
Kupffer cells and sinusoidal endothelial cells by density gradient centrifuga- 
t.ion with Stractan. Anal. Biochem. 161:207-218. 

Friedman, S. L., F. J. Roll, J. Boyles, and D. M. Bissell. 1985. Hepatic lipo- 
cytes: the principal collagen-producing cells of normal rat liver. Proc. Natl. 
Acad. Sci. USA. 82:8681-8685. 

Friedman, S. L., F. J. Roll, J. Boyles, D. M. Arenson, and D. M. Bissell. 1989. 
Maintenance of differentiated phenotype of cultured rat hepatic lipecytes by 
basement membrane matrix. J. Biol. Chem. 264:10756-10762. 

Glukhova, M. A., M. G. Frid, B. V. Shekhonin, T. D. Vasilevskaya, J. Grun- 
wald, M. Saginati, and V. E. Koteliansky. 1989. Expression of extra 
domain-A fibronectin sequence in vascular smooth muscle cells is phenotype 
dependent. J. Cell Biol. 109:357-366. 

Olukhova, M. A., M. G. Frid, B. V. 5hekhonin, Y. V. Balabanov, and V. E. 
Koteliansky. 1990. Expression of fibronectin variants in vascular and 
visceral smooth muscle cells in development. Dev. Biol. 141:193-202. 

Gould, V. E., V. Martinez-Lacabe, I. Virtanen, K. M. Sahlin, and M. M. 
Schwartz. 1992. Differential distribution oftenascin and cellular fibronectins 
in acute and chronic renal allografi rejection. Lab. Invest. 67:71-79. 

Gressner, A. M. 1991. Liver fibrosis: perspectives in pathobiochemical re- 
search and clinical outlook. Fur. J. Clin. Chem. Clin. Biochem. 29:293-311. 

Hynes, R. O. 1985. Molecular biology of fibronectin. Anna. Rev. Cell Biol. 
1:67-90. 

Hynes, R. O. 1987. Fibronectins: a family of complex and versatile adhesive 
glycoproteins derived from a single gene. Harvey Lect. 81:133-152. 

Irving, M. G., F. J. Roll, S. Huang, and D. M. Bissell. 1984. Characterization 
and culture of sinusoidal endothelium from normal rat liver: lipoprotein up- 
take and collagen phenotype. Gastroenterology 87:i233-1247. 

Kocher, O., S. P. Kennedy, and J. A. Madri. 1990. Alternative splicing of en- 
dothelial cell fibronectin mRNA in the IIICS region. Am. J. Pathol. 137: 
1509-1524. 

Kornblihtt, A. R., K. Umezawa, K. Vibe-Pedersen, and F. E. Baralle. 1985. 
Primary structure of human fibronectin: differential splicing may generate 
at least 10 polypeptides from a single gene. EMBO (Eur. Mol. Biol. Organ.) 
J. 4:1755-1759. 

Koteliansky V. E., E. L. Arsenyeva, G. T. Bogacheva, M. A. Chernousov, 
M. A. Glukhova, A. R. Ibraghimov, M. L. Metsis, M. N. Petrosyan, and 
O. V. Rokhlin. 1982. Identification of the species-specific antigenic deter- 
minant(s) of human plasma fibronectin by monoclonal antibodies. FEBS 
(Fed. Eur. Biochem. Soc.) Lett. 142:199-201. 

Kuhn, C., J. Boldt, T. E. King. Jr., E. Crouch, R. Vartio, and J. A. McDonald. 
1989. An immunohistochemical study of architectural remodeling and con- 
nective tissue synthesis in pulmonary fibrosis. Am. J. Respir. Dis. 140: 
1693-1703. 

Laitinen, L., T. Vartio, I. Virtanen. 1991. Cellular fibronectins are differen- 
tially expressed in human fetal and adult kidney. Lab. Invest. 64:492-498. 

Maher, J. J., and R. F. McGuire. 1990. Extracellular matrix gene expression 
increases preferentially in rat lipocytes and sinnsoidal endothelial cells dur- 

Jarnagin et al. Fibronectin Variants in Hepatic Fibrosis 2047 



ing hepatic fibrosis in vivo. J. Clin. Invest. 86:1641-1648. 
Magnuson, V. L., M. Young, D. G. Sehattenberg, M. A. Mancini, D. Chen, 

B. Steffensen, and R. J. Klebe. 1991. The alternative splicing of fibronectin 
pre-mRNA is altered during aging and in response to growth factors. J. Biol. 
Chem. 266:14654-14662. 

Mak, K. M., A. M. I.~3, and C. S. Lieber. 1984. Alcoholic liver injury in ba- 
boons: transformation of lipocytes to transitional cells. Gastroenterology. 
87:188-200. 

Martinez-Hernandez, A. 1984. The hepatic extracellular matrix. II. Electron 
immunohistochemical studies in rats with CCl4-ioduced cirrhosis. Lab. In- 
vest. 53:166-186. 

McGuire, R. F., D. M. Bissell, J. Boyles, and F. J. Roll. 1992. Role of ex- 
tracellular matrix in regulating fenestrations of sinusoidal endothelial cells 
isolated from normal rat liver. Hepatology. 15:989-997. 

Milaul, S., H. Herbst, D. Sehuppan, E. (3. Hahn, and H. Stein. 1989. In situ 
hybridization for procollagen types I, III and IV in RNA in normal and 
fibrotic rat liver: evidence for predominant expression in non-parenchymal 
cells. Hepatology. 10:84-29. 

Milani, $., D. Sehuppan, H. Herbst, E. O. Reicken, E. G. Hahn, C. Surrenti, 
and H. Stein. 1990. Procoilagen expression by nonparenchymal rat liver 
cells in experimental hiliary cirrhosis. Gastroenterology. 98:175-184. 

Minato, Y., Y. Hasamura, and J. Takeuchi. 1983. The role of fat-storing cells 
in Disse space fibrogenesis in alcoholic liver disease. Hepatology. 3:559- 
566. 

Nakasukasa, H., P. Nagy, R. P. Evarts, C.-C. Hsia, E. Marsden, and S. S. 
Thorgiersson. 1990. Cellular distribution of transforming growth factor-/~l 
and procollagen types I, HI, and IV transcripts in carbon tetracldoride- 
induced rat liver fibrosis. J. Clin. Invest. 85:1833-1843. 

Norton, P. A., and R. O. Hynes. 1987. Alternative splicing of chicken fibronec- 
tin in embryos and in normal and transformed cells. Mol. Cell. Biol. 
7:4297-4307. 

Odenthal, M., K. Neubaner, F. E. Baralle, H. Peters, K. H. Meyer zum 
Buschenfelde, and G. Ramadori. 1992. Rat hepatocytes in primary culture 
synthesize and secrete cellular fibronectin. Exp. Cell Res. 203:289-296. 

Odenthal, M., K. Neubaner, K. H. M. Meyer zum Buschenefelde, and G. 
Ramadori. 1993. Localization and messenger RNA steady-stute level of cel- 

lular fibronectin in rat liver undergoing a CCh-induced acute damage or 
fibrosis. Bioehim. Blophys. Acta. 1181:266-272. 

Odermatt, E., J. W. Tamlmn, and R. O. Hynes. 1985. Repeating modular struc- 
ture of the fibronectin gene: relationship to protein structure and subunit vari- 
ation. Proc. Natl. Acad. Sei. USA. 82:6571-6575. 

Pagani, F., L. Zagato, C. Vergani, (3. Casari, A. Sidoli, and F. E. Baralle. 
1991. Tissue-specific splicing pattern of fibronectin messenger RNA precur- 
sor during development and aging in rat. J. Cell Biol. 113:1223-1229. 

Rhoeds, D. D., A. Dixit, and D. J. Roufa. 1986. Primary structure of human 
ribosomal protein S14 and the gene that encodes it. Mol. Cell. Biol. 
6:2774-2783. 

Rockey, D. C., J. K. Boyles, G. G-abbiani, and S. L. Friedman. 1992. Rathe- 
patic lipocytes express smooth muscle actin upon activation in vivo and in 
culture. J. Submicrosc. Cytol, Pathol. 24:193-203. 

Rous, P., and J. W. Beard. 1934. Selection with magnet and cultivation of 
reticulo-endothelial cells (Kupffer cells). J. Erp. Med. 59:577-591. 

Rutenburg, A. M., H. Kim, J. W. Fischbein, J. S. Hanker, H. L. Wasserkrug, 
and A. H. Slignum. 1969. Histochemical and ultrastructural demonstration 
of c-glutamyl transpeptidase activity. J. Histochem. Cytochem. 17:517-526. 

Schwarzbaner, J. E. 1990. The fibronectin gene. In Extracellular Matrix Genes. 
L. J. Sandell, and C. D. Boyd, editors. Academic Press, San Diego. 
195-219. 

Schwarzbaner, J. E., J. W. Tamkun, I. R. Lemischka, and R. O. Hynes. 1983. 
Three different fibronectin mRNAs arise by alternative splicing within the 
coding region. Cell. 35:421--431. 

Schwarzbauer, J. E., R. S. Patel, D. Fonda, and R. O. Hynes. 1987. Multiple 
sites of alternative splicing of the rat fibronectin gene transcript. EMBO (Fur. 
Mol. Biol. Organ.) J. 6:2573-2580. 

Tamkun, J. W., J. E. Sehwarzbaner, and R. O. Hynes. 1984. A single rat 
fibronectin gene generates three different mrNAs by alternative splicing of 
a complex exon. Proc. Natl. Acad. Sci. USA. 81:5140-5144. 

Vartio, T., L. Laitinen, O. Narvanen, M. Cutolo, L.-E. Thornell, L. Zardi, 
and I. Virtanen. 1987. Differential expression of the ED sequence-containing 
form of cellular fibronectin in embryonic and adult tissue. J. Cell Sci. 
88:419-430. 

The Journal of Cell Biology, Volume 127, 1994 2048 


