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Abstract. The import of preproteins into mitochon- 
dria involves translocation of the polypeptide chains 
through putative channels in the outer and inner mem- 
branes. Preprotein-binding proteins are needed to 
drive the unidirectional translocation of the precursor 
polypeptides. Two of these preprotein-binding proteins 
are the peripheral inner membrane protein MIM44 
and the matrix heat shock protein hsp70. We report 
here that MIM44 is mainly exposed on the matrix 
side, and a fraction of mt-hsp70 is reversibly bound to 
the inner membrane. Mt-hsp70 binds to MIM44 in a 
1:1 ratio, suggesting that mt-hsp70 is localizing to the 
membrane via its interaction with MIM44. Formation 
of the complex requires a functional ATPase domain 

of mt-hsp70. Addition of Mg-ATP leads to dissoci- 
ation of the complex. Overexpression of mt-hsp70 res- 
cues the protein import defect of mutants in MIM44; 
conversely, overexpression of MIM44 rescues protein 
import defects of mt-hsp70 mutants. In addition, yeast 
strains with conditional mutations in both MIM44 and 
mt-hsp70 are barely viable, showing a synthetic growth 
defect compared to strains carrying single mutations. 
We propose that MIM44 and mt-hsp70 cooperate in 
translocation of preproteins. By binding to MIM44, 
mt-hsp70 is recruited at the protein import sites of the 
inner membrane, and preproteins arriving at MIM44 
may be directly handed over to mt-hsp70. 

I 
MPORT of preproteins into mitochondria is a complex 
process requiting a large number of components in dis- 
tinct cellular subcompartments, the cytosol, outer mem- 

brane, inner membrane, and matrix. In the cytosol, molecu- 
lar chaperones (70-kD heat shock protein [hspT0] ~ and 
Ydjlp/Mas5p) and additional import stimulating factors 
(such as presequence-binding factor PBF and mitochondrial 
import stimulating factor MSF) support transfer of the pre- 
proteins to mitochondria (Chirico et al., 1988; Murakami et 
al., 1988; Deshaies et al., 1988; Murakami and Mori, 1990; 
Hachiya et al., 1993; Cyr et al., 1994). The mitochondrial 
outer membrane contains a high molecular mass complex 
which includes several subunits constituting a general inser- 
tion pore and two import receptors (S611ner et al., 1992; 
Kassenbrock et al., 1993; Ramage et al., 1993). Recently, 
three essential proteins of the mitochondrial inner mem- 
brane were identified that are involved in import of pre- 
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proteins. MIM44 (formerly named Mpilp) is a peripheral 
membrane protein that binds preproteins (Maarse et al., 
1992; Blom et al., 1993). The import site protein ISP45 was 
reported to be identical to MIM44 (Scherer et al., 1992; 
Horst et al., 1993). MIM23 (Mas6p) and MIM17 (Smslp) 
are integral membrane proteins that may constitute part of 
a translocation channel (Dekker et al., 1993; Emtage and 
Jensen, 1993; Maarse et al., 1994; Kiibrich et al., 1994; 
Ryan et al., 1994). In the matrix, the heat shock protein 
hsp70 (Ssclp) is essential for translocation of preproteins and 
transfers the polypeptides to hsp60; partners of these heat 
shock proteins are mitochondrial GrpE, possibly mitochon- 
drial DnaJ, and hspl0 (cpnl0) (Ostermann et al., 1989; Kang 
et al., 1990; Stuart et al., 1994a). Several specific process- 
ing enzymes operate in the matrix and inner membrane. 

Little is known how these import components cooperate 
in the translocation of preproteins. In particular, it has not 
been understood so far if and how components of distinct 
subcompartments cooperate. 

For this report we analyzed two essential yeast proteins 
that have been shown to function as binding proteins for 
preproteins during translocation across the mitochondrial 
inner membrane, MIM44 and mt-hsp70 (Kang et al., 1990; 
Manning-Krieg et al., 1991; Blom et al., 1993; Gambill et 
al., 1993). These two preprotein-binding proteins can both 
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be found at the matrix side of the mitochondrial inner mem- 
brane and interact in a nucleotide-sensitive manner. The 
functional interaction of mt-hsp70 and MIM44 was also 
demonstrated by genetic analysis. MIM44 and mt-hsp70 
seem to directly cooperate in mitochondrial protein import, 
providing an interesting analogy to the interaction of BiP, the 
hsp70 of the endoplasmic retlculum lumen, and Sec63p in 
protein translocation into the endoplasmic reticulum. We 
propose that the reversible binding of mt-hsp70 to MIM44 
is an important step in the efficient and ordered function of 
the mitochondrial protein import machinery. 

Materials and Methods 

Isolation of  Temperature-Sensitive mim44 Mutants 

Temperature-sensitive alleles of M1M44 (previously termed MPI1 [Maarse 
et ai., 1992]) were generated by the low fidelity PCR technique as modified 
by Kassenbrock et al. (1993) and with further modifications of the reaction- 
buffer (50/zM MnC12, 1.5 mM MgC12, pH 9). Four separate PCR reac- 
tions were performed and in each case the concentration of one dNTP was 
reduced fivefold with respect to the three others (25 /zM vs 125 ttM). 
MIM44 sequences were amplified with the M13 forward sequencing primer 
and the M13 reverse sequencing primer, using YCplaclll::MIM44 as tem- 
plate DNA. After 30 cycles of 1 rain at 94°C, 2 rain at 50°C and 3 rain 
at 74°C, the expected 2.8-kb product was obtained. The products from the 
four reactions were pooled and digested with EagI and EcoRI. The 1.8-kb 
EagI-EcoRI fragments containing the MIM44 coding region were purified 
by agarose gel electrophoresis and cloned into YCplacl 11: :MIM44, cut with 
the same enzymes, thereby replacing most wild-type M1M44 sequences by 
potentially mutated sequences. The mutant  DNA library, obtained by 
isolating plasmid DNA from about 1,000 E. coil transformants, was used 
to transform the mim44 deletion strain MB6 which harbors the URA3 
marked plasmid YEplac195::MIM44. Leu-positive transformants were 
plated on solid medium containing 5-fluoroorotic acid (Boeke et al., 1987) 
and incubated at 23 or 35.4°C. Plasmid DNA was isolated from colonies 
with a temperature-sensitive phenotype, and, after a passage of E. coil, in- 
troduced into the beterozygous MIM44 diploid MB2-22 (Maarse et a l ,  
1992). After random sporulation, haploid cells with a disrupted nuclear 
MIM44 gene and harboring the rescuing plasmid were also tested for tem- 
perature sensitivity. Temperature sensitivity could be established for several 
plasmid-borne mim44 alleles and two of them were designated mim44-6 and 
mim44-7 (Table I). 

Construction of  Plasmids 

YCplacl 11: :MIM44, YEplacl 81::MIM44 and YEplac195::MIM44 were iso- 
lated by cloning the 2.7-kb HindIH fragment containing the complete 
MIM44 gene (Maarse et al., 1992) into YCplacllI(LEU2), YEplaclSI- 
(LEU2), and YEplacI95(URA3), respectively (Gietz and Sugino, 1988). 
Centromeric plasmids containing either the wild-type MIM44 gene or the 
mim44-6 or mim44-7 alleles were constructed by cloning the 2.7-kb HindIH 
fragment into the HindIII site of YCplac22(TRP1) or YCplac33(URA3) 
(Gietz and Sngino, 1988). To generate YCplaclll::SSC1 and YEplacl81:: 
SSC1, a 6-kb EcoRI fragment bearing the SSCI gene was liberated from a 
YEpl 3 derivative and cloned into YCplacl 11 and YEplacl81. 

Covalent Coupling of Antibodies to 
Protein A-Sepharose 

300 ttl wet volume of protein A-Sepharose (Pharmacia LKB Biotechnol- 
ogy, Piscataway, NJ), 2 ml 100 mM potassium phosphate buffer, pH 7.5, 
and 1 ml antiserum were gently shaken for 1 h. After two times washing 
with 0.1 M sodium borate buffer, pH 9, the protein A-Sepharose was 
resuspended in 7-ml sodium borate buffer and 35 rag solid dimethyl 
pimelimidate (Sigma Chem. Co., St. Louis, MO; D-8388) were added. Af- 
ter an incubation of 30 min, the coupling reaction was stopped by washing 
and incubation for 2 h in 1 M Tris-HCl, pH 7.5. All steps were performed 
at room temperature. The Sepharose matrix with coupled antibodies was 
stored in 10 mM Tris-HC1, pH 7.5, 0.9% (wt/vol) NaCI at 4"C. 

Submitochondrial Fractionation 
Mitoplasts were generated by dilution of a suspension of mitochondria 
(1 mg/ml) in SEM (250 mM sucrose, 1 mM EDTA, 10 raM MOPS, pH Z2) 
with a 10-fold excess of EM (1 mM EDTA, 10 mM MOPS, pH 7.2). After 
an incubation for 15 min on ice, the mitoplasts were reisolated by centrifu- 
gation (10 min 16,000 g). For sonication, 200/zg of isolated mitoehondria 
were suspended in 450 t~l SEM in the presence of pepstatin A (2/~g/ml). 
The samples were sonified (Branson Sonifier 250; Duty circle 50, output 
control 5) six times for 10 s, with intervals of 15 s for cooling on ice. Some 
samples received 12/~g/ml trypsin before sonieation and were subsequently 
incubated on ice for 20 min. The reaction was stopped by a 30-fold excess 
(wt/wt) of soybean trypsin inhibitor (Sigma Chem. Co., T-9003). 

Coimmunoprecipitations 

35S-labeled rnitochondria (25 ttg per sample) were suspended in 500 t~l 
lysis-buffer (1% Triton X-100, 300 mM KCI, 10 mM Tris-HCl, pH 7.4, Pep- 
statin A [2/zg/ml]). The samples were shaken at 8"C for 10 rain. After a 

Table L S. cerevisiae Swains Used in This Study 

Strain Genotype Source 

PK82 M A T s  his4-713 lys2 ura3-52 Atrpl 1eu2-3,112 Gambill  et al., 1993 
PK83 MATt~ ade2-101 lys2 ura3-52 Atrpl 1eu2-3,112 sscl-3(LEU2) Gamhill et al., 1993 
MB6 ade2-101 his3 leu2 lys2-801 trp1-289 ura3-52 mim44::LYS2 + YEplac195(URA3)::MIM44 this study 
MB3 MATt~ ade2-101 his3-A200 leu2-A1 lys2-801 ura3::LYS2 Maarse et al., 1992 
MB3-4 M A T s  ade2-101 his3-A200 leu2-A1 lys2-801 ura3::LYS2 mim44-1 Dekker et al., 1993 
MB3-42 MATer ade2-101 his3-A200 leu2-A1 lys2-801 ura3::LYS2 mim44-2 Dekker et al., 1993 
MB3-52 MATt~ ade2-101 his3-A200 leu2-A1 lys2-801 ura3::LYS2 mira44-3 Maarse et al., 1992 
MB3-68 MATo¢ ade2-101 his3-A200 leu2-A1 lys2-801 ura3::LYS2 mim44-4 Dekker et al., 1993 
MB3-75 MATs ade2-101 his3-A200 leu2-A1 1ys2-801 ura3::LYS2 mira44-5 Dekker et al., 1993 
MB3-27 M A T s  ade2-101 his3-A200 leu2-A1 lys2-801 ura3::LYS2 sscl Dekker et al., 1993 
MB3-43 MATc~ ade2-101 his3-A200 leu2-A1 lys2-801 ura3::LYS2 sscl Dekker et al., 1993 
MB2-22 MATa/c~ ADE2/ade2-101 his3/his3-A200 leu211eu2-A1 lys2-801/lys2-801 Maarse et al., 1992 

TRP1/trp1-289 ura3-52/ura3-52 MIM441mim44::LYS2 
MATa his3 leu2 lys2 trpl ura3-52 mim44::LYS2 + YCplac22(TRP1)::MIM44 
MATa his3 leu2 lys2 trpl ura3-52 mim44::LYS2 + YCplac22(TRP1)::mim44-6 
MATa his3 leu2 lys2 trpl ura3-52 mim44::LYS2 + YCplac22(TRP1)::mim44-7 
MATa leu2 lys2 trpl ura3-52 ade2-201 mira44::LYS2 sscl-3(LEU2) + YCplac22(TRP1)::mim44-6 
MATa leu2 lys2 trpl ura3-52 ade2-201 mim44::LYS2 sscl-3(LEU2) + YCplac22(TRP1)::mim44-7 
MATa leu2 lys2 trpl ura3-52 ade2-201 mim44::LYS2 sscl-3(LEU2) + YCplac22(TRP1)::MIM44 

LK201 this study 
LK208 this study 
LK209 this study 
LK215 this study 
LK218 this study 
LK221 this study 
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spin of 16,000 g for 10 min, the supernatants were added to antibodies pre- 
bound to protein A-Sepharose, and shaken at 8°C for 35 min. Subsequently 
the protein A-Sepharose was washed three times with lysis-buffer. The 
coimmunoprecipitations were analyzed by SDS-PAGE and fluorography. 
Where indicated, 5 mM MgC12 and 4 mM ATP or 4 mM ATP'yS were in- 
eluded in the lysis-buffer. The presence of additional protease inhibitors did 
not significantly change the pattern of the interaction of MIM44 with hsp70 
in this assay. For a second immunoprecipitation under denaturing condi- 
tions, the immunocomplexes were dissociated in 20 #1 2 % SDS, 60 mM 
Tris-HC1, pH 7.2, before dilution with a 30-fold excess of lysis-buffer. 

Affinity-purified antibodies against MIM44 were obtained by elution of 
antibodies from a fragment of MIM44 (amino acid residues 68 to 345 with 
addition of six histidine residues at the amino terminus) expressed in E. coli 
(Blom et al., 1993). The MIM44 fragment was isolated by Ni-NTA affinity 
purification, and blotted on nitrocellulose from an SDS-polyacrylamide gel. 
Prebound antibodies were eluted from slices of the nitrocellulose by shaking 
with 100 mM glycine, pH 2.5, at 0*C for 10 rain (Harlow and Lane, 1988). 
The pH was readjusted by addition of 1 M Tris-HCl, pH 8, and the antibod- 
ies were collected by protein A-Sepharose. 

35S-labeling of  Mitochondria 

35S-labeling of yeast mitochondria followed in principle the procedure of 
Campbell and Duff'us (1988). A first preculture of wild-type S. cerevisiae 
was diluted 400-fold with minimal medium, containing 0.1% (wt/vol) glu- 
cose and 2.2% (vol/vol) lactic acid (pH 5.5 with KOH) and 30 ~M Na2SO4 
(for further components see Campbell and Duffus, 1988), and shaken at 
30°C for 50 h, the final OD57s was 5.5. An aliquot was diluted into 50 ml 
of the medium at an ODsTs of 0.04. After addition of 50 #1 [35S]sulfate 
(250 #Ci; Amersham SJS1), this second preculture was grown for 43 h at 
30°C to a final OD~Ts of 3.3. For the main culture, 300 ml medium were 
inoculated with 5 ml of the second preculture. 650 t~l [35S]sulfate (3.25 
mCi) were added and the culture was shaken in a 1,000-ml fask for 24 h. 
At an OD57s of 1.1, cells were harvested and mitochondria were isolated as 
published previously (Daum et al., 1982; Hartl et al., 1987). The yield was 
1.3 nag mitochondrial protein/300 rnl culture, the specific radioactivity was 
44,000 cpm/#g protein. 

Miscellaneous 

Synthesis of preproteins in rabbit reticulocyte lysate, Cross-linking of mito- 
cbondrial proteins to Su9-DHFR by disuccinimidyl suberate (DSS) (Blom 
et al., 1993), TCA-precipitation, SDS-PAGE, immunodecoration, fluorog- 
raphy (Planner et al., 1987), and storage phosphor imaging technology 
(Molecular Dynamics, Sunnyvale, CA) were performed according to pub- 
lished procedures. 

Results 

Localization of  MIM44 and a Fraction of  mt-hsp70 at 
the Matrix Side of  the Inner Membrane 

While MIM44 has been previously determined to be local- 
ized to the inner membrane, its topology in the inner mem- 
brane remained ambiguous. MIM44 behaves as a peripheral 
membrane protein and contains no hydrophobic membrane 
anchor sequence suggesting that MIM44 is not an integral 
membrane protein. Antibodies directed against MIM44 
(ISP45) were reported to inhibit protein import into mito- 
chondria having a disrupted outer membrane (mitoplasts) 
(Scherer et al., 1992; Horst et al., 1993); in addition, a 
carboxy-terminal epitope tag was accessible to proteases in 
mitoplasts (Maarse et al., 1992). Authentic MIM44, how- 
ever, was not cleaved by proteases added to mitoplasts even 
at high concentrations (Blom et al., 1993). These results can 
be explained if, (a) MIM44 is mainly located on the inter- 
membrane space side of the inner membrane, but is folded 
in such a manner that no protease-accessible site is exposed 
on the intermembrane space side, or (b) if major portions of 
MIM44 are located on the matrix side and thus MIM44 has 
to span the inner membrane at least once. 

To distinguish between these possibilities, a more careful 
assessment of the protease sensitivity of MIM44 was under- 
taken. As expected MIM44 was resistant to protease diges- 
tion in intact mitochondria (Fig. 1, lane 3). In addition, 
MIM44 in mitoplasts, whose formation was carefully moni- 
tored by the release of the intermembrane space protein 
cytochrome b2 (Fig. 1, lanes 5-8), was also protease inac- 
cessible (Fig. 1, lane 7). However, MIM44 of mitochondria 
and mitoplasts sonicated to open the matrix space in the 
presence of low amounts of trypsin (Fig. 1, lanes 4 and 8) 
or proteinase K (not shown) was degraded. Thus MIM44 
had the same protease accessibility as the hsp70 of the mito- 
chondrial matrix. No immunodetectable fragments of 
MIM44 remained after this treatment. It should be noted that 
MIM44 was digested by very low concentrations of trypsin 
after opening of the matrix by sonication, which are not 
sufficient to fully degrade soluble cytochrome b: that is 
known to possess some endogenous protease resistance 
(Rassow and Pfanner, 1991). These results together with 
previous experiments (Maarse et al., 1992; Blom et al., 
1993) suggest the following topology of MIM44. The major 
portion of the molecule is located on the matrix side of the 
inner membrane. The extreme carboxy terminus is exposed 
to the intermembrane space side, implying that a carboxy- 
terminal region of MIM44 crosses the inner membrane, 
probably in association with integral membrane proteins. 
MIM17 and MIM23 are possible candidates as anchor pro- 
teins for MIM44, however, such a function of the two 
smaller MIM proteins has not been demonstrated so far. 

Figure L Topology of MIM44 in the mitoehondriai inner mem- 
brane. Isolated yeast mitochondria from strain PK$2 were sub- 
jected to swelling to form mitoplasts (samples 5-8) and/or sonica- 
tion (samples 2, 4, 6, and 8), and the accessibility of MIM44 for 
trypsin was monitored as indicated. Proteins were TCA precipi- 
tated and subjected to SDS-PAGE and Western blotting. MIM44 
and marker proteins were analyzed by immunodecoration with 
specific antibodies, mt-hspTO, mitochondrial hsp70 (matrix); Cyt. 
b2, cytochrome b2 (intermembrane space). 
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We then determined the localization of another essential 
preprotein-binding protein of the mitochondrial import ma- 
chinery, mt-hsp70. Mt-hsp70 had previously been shown to 
behave as a soluble protein of the mitochondrial matrix 
(Kang et al., 1990; Scherer et al., 1990). However, when a 
fractionation was performed in the absence of Mg-ATP, 
",,20% of mt-hsp70 was found in the membrane pellet after 
sonication of mitochondria (Fig. 2). This fraction of mt- 
hspT0 remained bound to the membrane vesicles after floata- 
tion in a sucrose density gradient (not shown), excluding that 
mt-hsp70 was found in the membrane pellet due to aggrega- 
tion or association with ribosomes. Upon addition of Mg- 
ATE mt-hsp70 was efficiently released from the membrane 
vesicles and recovered in the supernatant (Fig. 2). Dissipa- 
tion of the membrane potential across the inner membrane 
by addition of the potassium ionophore valinomycin did not 
affect the membrane association of mt-hsp70. We conclude 
that a fraction of mt-hsp70 is reversibly bound to the mito- 
chondrial inner membrane, independent of a membrane 
potential, and is released from the membranes by Mg-ATP. 

Figure 2. Partitioning of mitochondrial hsp70 between the inner 
membrane and the mitochondrial matrix. Mitochondria were soni- 
cated in the presence of 10 mM MOPS pH 7.2, 100 mM KC1, and 
1 mM EDTA or 4 mM MgATP and separated into membrane pellet 
and supernatant by centrifugation. Mitochondria of one sample 
were uncoupled by addition of 1/zM valinomycin (Val.) before soni- 
cation. Proteins were analyzed by SDS-PAGE, Western-blotting, 
and 2D-densitometry. AAC, ADP/ATP carrier (inner membrane). 

Immunoprecipitation of a Complex between MIM44 
and mt-hsp70 
Since MIM44 and mt-hsp70 have at least in part a similar lo- 
ealization at the matrix side of the inner membrane, we asked 
if they interact with each other. 3sS-labeled yeast mitochon- 
dria were lysed with the non-ionic detergent Triton X-100 
and subjected to immunoprecipitations under non-denatur- 
ing conditions in the absence of Mg-ATP with antibodies 
directed against MIM44. The immunoprecipitates were ana- 
lyzed by SDS-PAGE and autoradiography. Besides MIM44 
itself, the most prominent band seen in the precipitate was 
a protein of '~70 kD (Fig. 3 A, lanes 2 and 4). Other bands 
seen in the immunoprecipitate were not significantly above 
the background level observed in a precipitation with pre- 
immune serum (Fig. 3 A, lane 3). The 70-kD protein was 
not precipitated by antibodies against MIM44 under dena- 
turing conditions (Fig. 3 A, lane 1 ). In a second immunopre- 
cipitation with antibodies directed against mt-hspT0, carried 
out under denaturing conditions, the 70-kD protein was 
identified as mt-hsp70 (Fig. 3 A, lane 6). We conclude that 
the major protein associated with MIM44 in the presence 
of Triton X-100 is mt-hsp70. Considering the number of 
35S-labeled amino acids in each protein, MIM44 and mt- 
hsp70 interact in a ratio that is close to 1:1 (Fig. 3 B). 

It was possible that the binding of mt-hsp70 to MIM44 oc- 
curred after the lysis of mitochondria. In this case, unlabeled 
mt-hspT0 added during the lysis should compete with the 
35S-labeled mt-hspT0 for binding to MIM44. To test this 
possibility, we included a 10-fold excess of unlabeled mt- 
hspT0 (compared to the amount of hsp70 present in the 
35S-labeled mitochondria) in the Triton X-100 buffer (Fig. 
3 B, column 2). However, the amount of labeled mt-hsp70 
coprecipitated with anti-MIM44 antibodies was not re- 
duced, demonstrating that the association between mt-hsp70 
and MIM44 occurred in intact mitochondria. 

By titrating the immunoreactivity of anti-MIM44 antibod- 
ies with mitochondria and purified expressed MIM44 on 
Western blots, MIM44 was found to represent '~0.25% of 
mitochondrial protein. Mt-hspT0 represents ,~1% of mito- 
chondrial protein. The abundance of MIM44 is thus suffi- 
cient to explain binding of "~ 20% of mt-hspT0 to the inner 
membrane in a ratio of MIM44:mt-hsp70 of 1:1. 

ATP Dependence of Interaction of MIM44 
and mt-hspTO 
To quantitatively analyze the interaction of MIM44 and mt- 
hspT0, we prepared an affinity column with covalently cou- 
pled antibodies directed against MIM44. Unlabeled mito- 
chondria were lysed with Triton X-100 and passed over the 
column. After several washing steps, bound proteins were 
eluted by lowering the pH to 2.5. Fig. 4 A shows that MIM44 
quantitatively bound to the column (columns 6, 9, and 12), 
whereas about 15% of mt-hsp70 was found in the bound 
fraction (column 6). Addition of Mg-ATP or of the non- 
hydrolyzable analog ATP'yS led to efficient release of mt- 
hspT0 from MIM44 (Fig. 4 A, columns 9 and 12). ATP- 
dependent dissolution of the MIM44:mt-hspT0 complex 
detected by immunoprecipitation was also observed as addi- 
tion of Mg-ATP promoted a quantitative release of mt-hsp70 
from MIM44 in extracts of 35S-labeled mitochondria (Fig. 
3 A, lane 5). 
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Figure 3. Identification of a complex between MIM44 and mito- 
chondrial hspT0. (A) 35S-labeled mitochondria were lysed in 1% 
Triton X-100, 300 mM KCI, 10 mM Tris-HC1, pH 7.2, and tested 
for coimmunoprecipitation of associated proteins by antibodies 
directed against MIM44 or antibodies from preimmune serum. The 
mitoehondria of sample 1 were denatured in SDS-containing buffer 
before dilution in Triton X-100 buffer. With sample 5, the first 
precipitation was performed in the presence of 4 mM Mg-ATP. 
With samples 5 and 6, the immunoprecipitated complex was dis- 
sociated by SDS and diluted in Triton X-100 buffer, followed by a 
second immunopreeipitation with antibodies directed against mt- 
hsp70 (Ssclp). Analysis was by SDS-PAGE and fluorography. A mi- 
nor band corresponding to 32 kD (lanes 2 and 4) is probably 
unspecific since it also appeared with preimmuna serum (lane 3). 
(B) Coimmunoprecipitations of mt-hsp70 were performed in the 
presence and in the absence of a 10-fold excess of unlabeled mt- 
hsp70 (extracted from mitochondria by sonication). Indicated are 
the molar ratios of mt-hsp70 and M1M44 in the precipitated com- 
plexes. The standard errors of the means (SEM) were calculated 
from 5 (colunm 1) or 2 (column 2) independent experiments, 
respectively. The precipitable amount of a mitochondrial marker 
protein (such as AAC) was not influenced by the excess of unlabeled 
mt-hsp70. 

Figure 4. Binding of mt-hspT0 to MIM44 is nucleotide-sensitive. 
(A) Mt-hspT0 stays bound to MIM44 in the presence of EDTA and 
is released in the presence of Mg-ATP. Antibodies of preimmune 
serum (columns 1-3) and antibodies directed against MIM44 
(eoltmms 4-12) were covalently coupled to protein A-Sepharose 
and tested for coimmunoprecipitations of mt-hspT0 from wild-type 
mitoebondria in the presence of 1 mM EDTA (cohmms 1-6), 4 mM 
Mg-ATP (columns 7-9) or 4 mM Mg-ATP'yS (columns 10--12). The 
immunocomplexes were analyzed by SDS-PAGE, immunoblotting, 
and 2D-densitometry. Preliminary results suggest that addition of 
Mg-ADP also led to some release of mt-hspT0 from MIM44. (B) 
Mt-hspT0 containing a point mutation in the ATP-binding domain 
(Sscl-3p) does not bind to MIM44. Mitocbondria of wild-type 
PK82 (colunms 1-3) and of the mutant sscl-3 (PK83) (columns 
4-6) were incubated for 10 min at 37"C, cooled on ice, and then 
lysed and used for coimmunoprecipitations by covalently bound 
anti-MIM44 antibodies as described above. 

We also tested the interaction of  a temperature-sensitive 
mutant form of mitochondrial hspT0, sscl-3. As previously 
described, the mutant phenotype can be induced in vitro by 
preincubating isolated sscl-3 mitochondria at 37°C for 10 
min (Gambill et al., 1993). The mitochondria were then 
lysed and passed over the anti-MIM44 affinity column. 
Whereas the binding of MIM44 to the column was un- 
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changed, the mutant Sscl-3p did not bind to the column (Fig. 
4 B, column 6). A preincubation of wild-type mitochondria 
at 37°C did not change the binding of mt-hsp70 (Ssclp) to 
MIM44 (Fig. 4 B, column 3). When the sscl-3 mitochondria 
were not preincubated at the non-permissive temperature, 
binding of Sscl-3p to MIM44 was not inhibited (data not 
shown). Since Sscl-3p has a mutation in the amino terminal 
ATPase domain, this result indicates that a functional ATP- 
ase domain of mt-hsp70 is needed for binding to MIM44. 

Mitochondria with a Defective mt-hsp70 Accumulate 
Preproteins at MIM44 

In the following, we tried to analyze how the interaction of 
preproteins with MIM44 and mt-hspT0 is affected by the as- 
sociation between MIM44 and mt-hsp70. We previously 
reported that mitochondria from the mutant sscl-3 were un- 
able to completely import preproteins into the mitochondrial 
matrix (Gambill et al., 1993). However, an amino-terminal 
portion of a preprotein was imported. This partial import 
was shown with a fusion protein between the presequence 
of Fo-ATPase subunit 9 and dihydrofolate reductase (Su9- 
DHFR) that is processed twice by the processing peptidase 
of the mitochondrial matrix, sscl-3 mitochondria were able 
to process Su9-DHFR to the intermediate-sized form, which 
is 35 amino acid residues constituting the first half of the 
presequence were cleaved off. When the preprotein was 
denatured with urea before import, most accumulated as an 
intermediate that spanned across the inner membrane, with 
the major portion of the preprotein located in the intermem- 
brane space and the presequence cleaved to the intermediate 
form (Gambill et al., 1993) (in addition, part of the pre- 
protein was accumulated as the uncleaved precursor form) 
(Fig. 5 A). A similar intermediate was obtained when dena- 
tured Su9-DHFR was imported into wild-type mitochondria 
depleted of matrix ATE probably due to the impairment of 
hsp70 function (Manning-Krieg et al., 1991; Gambill et al., 
1993). Su9-DHFR accumulated in ATP-depleted wild-type 
mitochondria was efficiently cross-linked to MIM44 (Blom 
et al., 1993; Horst et al., 1993). With ATP-depleted wild- 
type and sscl-3 mitochondria, chemical cross-linking should 
thus be an ideal procedure to test in organello if the presence 
or absence of association between MIM44 and mt-hsp70 in- 
fluenced the interaction of preproteins with each of the two 
proteins. 

35S-labeled Su9-DHFR was accumulated in mitochon- 
drial import sites at low ATP (Fig. 5 A). Cross-linking with 
the homobifunctional amino-reactive cross-linking reagent 
DSS (Blom et al., 1993) was performed, and cross-linked 
proteins were identified by immunoprecipitation under dena- 
turing conditions. Su9-DHFR was efficiently cross-linked to 
MIM44 in both wild-type and sscl-3 mitochondria (Fig. 5 
B, columns 1 and 2), demonstrating that the preprotein is 
translocated to MIM44 even in the absence of mt-hsp70 
binding to MIM44. As previously described, Su9-DHFR 
yields two cross-link products with MIM44 of slightly differ- 
ent gel mobility that possibly represent cross-linking to the 
precursor- and the intermediate-forms of Su9-DHFR (Blom 
et al., 1993). 

The cross-linking of Su9-DHFR to mt-hsp70, however, 
was strongly decreased in the sscl-3 mitochondria (Fig. 5 B, 
lane 4). In wild-type mitochondria, the cross-link product 
of 100 kD is of a size consistent with Su9-DHFR and a 

Figure 5. Cross-linking of MIM44 and hsp70 to a preprotein ar- 
rested in translocation across the mitochondrial membranes. (A) 
Su9-DHFR accumulates in translocation sites of wild-type (PK82) 
and sscl-3 (PK83) mitochondria with similar efficiency. The 
preprotein Su9-DHFR was synthesized in rabbit reticulocyte lysate 
in the presence of ['S]methionine and imported into ATP- 
depleted mitochondria of the mt-hsp70 mutant sscl-3 and of the cor- 
responding wild-type (WT). p, precursor protein; i, processing in- 
termediate (cleavage of the first part of the presequence); m, mature 
protein. (B) Cross-linking of Su9-DHFR. The translocation inter- 
mediates of Su9-DHFR were cross-linked by disuccinimidyl suber- 
ate (DSS). The products of the reaction were analyzed by im- 
munoprecipitations with antibodies against MIM44 (lanes I and 2) 
or mt-hspT0 (lanes 3 and 4), respectively. MIM44*, mt-hsp70*, 
cross-linking products between Su9-DHFR and MIM44 or mt- 
hsp70, respectively. 

monomer of mt-hsp70 (Fig. 5 B, lane 3). The cross-link 
product of 170 kD probably includes a dimer of mt-hsp70. 
In addition, a high molecular mass aggregate is precipitated 
with the anti-mt-hsp70.antibodies. All three mt-hsp70 con- 
taining cross-linking bands are strongly reduced in sscl-3 
mitochondria. Previously we were unable to show an associ- 
ation between accumulated Su9-DHFR and mt-hsp70 using 
coimmunoprecipitation experiments starting from ATP- 
depleted wild-type mitochondria or sscl-3 mitochondria, in- 
dicating that ATP and a functional ATPase domain of mt- 
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hsp70 were needed to obtain a binding of the preprotein to 
mt-hsp70 that was stable enough to survive the coim- 
munoprecipitation procedure (Gambill et al., 1993). How- 
ever, by cross-linking we now demonstrate that mt-hsp70 in 
ATP-depleted wild-type mitochondria is in close proximity 
to the preprotein in transit. Since only a short portion of the 
presequence of accumulated Su9-DHFR is located on the 
matrix side of the inner membrane, this cross-linking pro- 
vides independent evidence that mt-hsp70 is in very close 
proximity to the protein import site, that is to MIM44. 

Genetic Evidence for Interaction of MIM44 and 
mt-hsp70 

We applied two genetic approaches to obtain independent 
evidence for an interaction of MIM44 and mt-hsp70, mul- 
ticopy suppression and synthetic lethal analysis. 

We previously constructed a test plasmid encoding the 
URA3 gene product orotidine 5tphosphate decarboxylase 
(OMP decarboxylase) with the amino-terminal mitochon- 
drial-targeting sequence of superoxide dismutase (SOD). 
When this test plasmid was introduced into the yeast strain 
MB3, carrying a deletion of the chromosomal URA3 coding 
region, the fusion protein was efficiently imported into mito- 
chondria and the cells remained inviable in uracil-free me- 
dium due to lack of OMP decarboxylase activity in the cyto- 
sol (Maarse et al., 1992). The mim44 mutants MB3-4, 
MB3-42, MB3-52, MB3-68, and MB3-75 are at least par- 
tially blocked in mitochondrial import of the SOD-OMP de- 
carboxylase fusion protein, which allows them to grow in the 
absence of exogenously added uracil (Maarse et al., 1992; 
Dekker et al., 1993). The dependence of growth on the addi- 
tion of uracil can thus be taken as an indication of the effi- 
ciency of the import of the test protein into mitochondria in 
vivo. To test the effects of overexpression of mt-hsp70 on the 
growth ofmim44 mutants in the absence of uracil, the mim44 
mutants carrying the test plasmid were transformed with the 
mt-hsp70 gene SSC1, cloned on either the centromeric vector 
YCplaclll or the multi-copy vector YEplacl81. Double 
transformants in which mt-hsp70 was expressed from the 
multi-copy plasmid showed a greatly diminished growth on 
uracil-free medium (Table II). This decrease in growth dem- 

onstrates that overexpression of mt-hsp70 can at least par- 
tially suppress the import defect of all five mim44 mutants. 
Overexpression of mt-hspT0, however, did not rescue the le- 
thal phenotype of a mim44 deletion mutant (not shown), in- 
dicating that mt-hsp70 cannot fully replace the function of 
MIM44. 

In a similar way we tested whether overexpression of 
MIM44 will suppress the ura-positive mutant phenotype of 
the sscl mutants MB3-27 and MB3-43 isolated in the manner 
described for the mira44 mutants (Dekker et al., 1993). Ex- 
pression of MIM44 from the multi-copy vector YEplacl81, 
but not from the centromeric vector YCplaclll, reduced 
growth of double transformed strains on medium lacking 
uracil (Table II). Thus, overexpression of MIM44 can par- 
tially relieve the import defect of the SOD-OMP decarboxy- 
lase fusion protein in both mt-hsp70 mutant strains, again in- 
dicating a genetic interaction of MIM44 and mt-hsp70. 

The phenomenon of mutations in different genes produc- 
ing a severe growth defect or lethality can be indicative of 
functional interaction between gene products (Huffaker et 
al., 1987; Kaiser and Schekman, 1990; Scidmore et al., 
1993). To determine if strains carrying both sscl-3 and 
mim44 temperature-sensitive alleles are viable, a strain con- 
taining sscl-3 and a deletion of the MIM44, rescued by a 
wild-type MIM44 gene on a low copy number plasmid also 
containing the URA3 gene was constructed. The strain was 
then transformed with plasmids containing the TRP1 gene 
and either the wild-type MIM44 gene, the mim44-6 allele, 
or the mira44-7 allele. All three strains were able to lose the 
URA3-containing plasmid, as evidenced by growth on media 
containing 5-fluoroorotic acid. However, while patches of 
strains containing the wild-type plasmid grew well, those 
with the temperature-sensitive alleles grew very poorly. 
At 23°C the strains containing the temperature-sensitive 
MIM44 alleles could only form very small colonies which 
were extremely difficult to propagate. At 30°C, very little 
growth was observed, whereas the individual sscl-3 and 
mim44 ts mutants grew reasonably well compared to wild- 
type (Fig. 6). The strongly pronounced temperature sensitiv- 
ity of the sscl and mira44 double mutants indicates a syn- 
thetic effect which argues in favor of a genetic interaction of 
MIM44 and mt-hsp70. 

Table IL Multi-Copy Suppression of mim44 Mutants by SSC1 and sscl Mutants by MIM44 

Additional plasmid 
Strain containing 
test-plasmid None YCplac l l I : :MIM44  YEplac181::MIM44 YCplaclII::SSC1 YEplacI81::SSC1 

MB3 

mira44 mutants  

MB3-4  + + + - - + + + + 

MB3-42  + + + - - + + + + 

MB3-52  + + + - - + + + + 

MB3-68  + + + - - + + + + 

MB3-75  + + + - - + + + + 

sscl mutants  

M B 3 - 2 7  + + + + + + + 

MB3-43  + + + + + + + 

-indicates no growth after 6 d at 23°C on selective minimal medium plates lacking uracil (i.e., complementation of mutants); + indicates very slow growth after 
4-5 d at 23"C on selective minimal medium plates lacking uracil (partial complementation); + + + indicates growth after 2-3 d at 23°C on selective minimal 
medium plates lacking uracil (no complementation). All transformants grow well (+  + +)  after 2-3 d at 23°C on selective minimal medium plates containing 40 
ttg/ml uracil. 
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Figure 6. Synthetic growth defects of mim44 and ssd temperature- 
sensitive mutations. Strains containing temperature-sensitive mu- 
tations in MIM44 and SSC1 were streaked on plates containing rich 
media and incubated at 30°C for 3 d. WT (LK201), mira44-6 
(LK208), mim44-7 (LK209), sscl-3 (LK221), mim44-6 ssd-3 
(LK215), and mira44-7 sscl-3 (LK218). 

In summary, we conclude that these genetic data strongly 
support the biochemical evidence for an interaction of 
MIM44 and mt-hsp70. 

Discussion 

We report a new partner for the hsp70 of the mitochondrial 
matrix, the peripheral inner membrane protein MIM44. 
Both proteins were previously shown to be required for 
translocation of preproteins across the mitochondrial mem- 
branes and to function as binding proteins for the precursor 
polypeptides. It has not been anticipated, however, that these 
two import components directly cooperate, since mt-hsp70 
was considered as a soluble protein of the mitochondrial ma- 
trix, while several reports indicated a location of MIM44 on 
the intermembrane space side of the inner membrane. How- 
ever, we found major portions of MIM44 exposed to the ma- 
trix side of the inner membrane and ,020% of mt-hsp70 as- 
sociated with the inner membrane in the absence of ATE 

This binding of mt-hsp70 was transient and relieved by addi- 
tion of Mg-ATP. 

Coimmunopreeipitations showed that MIM44 and mt- 
hsp70 associate in a complex in a ratio of about 1:1. We can- 
not exclude that other proteins are present in this complex, 
yet analysis from 35S-labeled mitochondria indicates that 
the abundance of other putative components in the complex 
would be below the stoichiometric level in the presence of 
Triton X-100. The abundance of MIM44 in mitochondria is 
,020-25 % of that of mt-hsp70, such that MIM44 could pro- 
vide enough binding sites for the nucleotide-dependent 
membrane association of mt-hsp70. 

We consider the interaction between MIM44 and mt- 
hsp70 as specific for the following reasons. (a) The associa- 
tion was shown by two distinct procedures, coimmunopreci- 
pitation and affinity chromatography, and control experiments 
indicate that the interaction occurs inside mitochondria. (b) 
The association requires a functional ATPase domain of mt- 
hsp70 and is dissociated by addition of Mg-ATP. A functional 
ATPase domain thus seems to be required for both binding 
to and release from MIM44. (c) The molar ratios of MIM44 
to mt-hsp70 in the complex and in total mitochondria are 
consistent with the degree of membrane association of mt- 
hsp70. (d) In vivo, overexpression of mt-hsp70 rescues the 
protein translocation defect of MIM44 mutants and vice 
versa. (e) Double mutants between temperature-sensitive al- 
leles of mt-hsp70 and MIM44 show a synthetic growth de- 
feet. The combined biochemical and genetic findings thus 
provide strong indication for a cooperation of MIM44 and 
mt-hsp70 in mitochondrial biogenesis and function. 

We propose that the cooperation of these two essential 
components of the mitochondrial protein import machinery 
is facilitated by direct binding to each other. In a nucleotide- 
dependent manner, matrix hsp70 cycles between a soluble 
state and a membrane bound state. A fraction of mt-hsp70 
thus stays in a "stand by" modus in closest vicinity to the 
translocation site. After the AC/-mediated import of the 
presequence, hsp70 could trap the preprotein by immediate 
binding and initiate the A~/,-independent translocation of the 
mature protein. Some data indicate an extended structure of 
the polypeptide in transit across the mitochondrial mem- 
branes (Rassow et al., 1990). In this conformation the 
preprotein is an ideal substrate for hsp70 binding (Landry et 
al., 1992). Besides trapping the preprotein in the transloca- 
tion site, hsp70 is necessary to prevent the hydrophobic col- 
lapse of the translocating protein and facilitate binding of ad- 
ditional hsp70 molecules to the preprotein (Stuart et al., 
1994a). Hsp70 localized directly at the exit of the transloca- 
tion channel would have a chance to interfere with a process 
such as a hydrophobic collapse which takes only millise- 
conds. Because of this time scale a direct interaction of hsp70 
with MIM44 may be essential, although the general concen- 
tration of hsp70 and possibly of other chaperone proteins in 
the mitochondrial matrix is high. 

It was previously proposed that mt-hsp70 has a dual role 
in membrane translocation of preproteins, not only facilitat- 
ing the unfolding of preproteins (unfoldase function), but 
also actively driving unfolded polypeptide chains across the 
inner membrane (translocase function) (Gambill et al., 
1993; Voos et al., 1993; Stuart et al., 1994b; Wachter et al., 
1994). We speculate that the ATP-dependent release of mt- 
hsp70 from MIM44, possibly accompanied by conforma- 
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tional changes of MIM44 and mt-hsp70, adds to the force 
driving polypeptide chains across the mitochondrial inner 
membrane. In support of this view, a stable association be- 
tween mt-hsp70 and a preprotein in transit (stable enough to 
survive a coimmunoprecipitation) is only obtained in the 
presence of ATP (Manning-Krieg et al., 1991; Gambill et 
al., 1993), while cross-linking under ATP-depleted condi- 
tions in organello indicates that mt-hsp70 is already in close 
proximity to the preprotein when it is bound to MIM44. We 
suggest that an ATP-dependent reaction cycle of mt-hsp70 
(Hartl et al., 1994), which includes interaction with MIM44 
and preproteins, is an essential step in protein import into 
the mitochondrial matrix. 

Our results do not exclude a function of MIM44 in initial 
steps of translocation across the inner membrane in addition 
to its function at the matrix side of the membrane. MIM44 
seems to funnel preproteins by a A~/-dependent step into the 
mitochondrial hsp70 system. Cross-linking studies suggest 
that MIM44 is a major component of the translocation site 
(Blom et al., 1993), and antibodies bound to MIM44 at the 
outer surface of the inner membrane apparently shield the 
translocation sites from preproteins (Scherer et al., 1992). 
We assume that a small carboxy-terminal portion of MIM44 
is sufficient to mediate the effect of the antibodies. 

Interestingly, Brodsky and Schekman (1993) reported that 
a fraction ofBiP (Kar2p), the hsp70 of the endoplasmic retic- 
ulum (ER), interacts with the membrane protein Sec63p in 
yeast in an ATP-dependent manner. Sec63p is part of the pro- 
tein import machinery of the ER and contains a domain of 
about 70 amino acid residues in its lumenal part that is ho- 
mologous to DnaJ, termed J-domain (Sadler et al., 1989; 
Feldheim et al., 1992; Cyr et al., 1994). Prokaryotic DnaJ 
and eukaryotic homologs have been shown to function as 
binding partners of hsp70 (Wickner et al., 1991, 1992; 
Liberek et al., 1991; Langer et al., 1992; Cyr et al., 1992, 
1994). The transient interaction of BiP and Sec63p was pro- 
posed to occur via the J-domain and to be part of a reaction 
cycle required for protein translocation into the ER (Sanders 
et al., 1992; Brodsky and Schekman, 1993; Scidmore et al., 
1993). MIM44 does not reveal a significant overall homol- 
ogy to known chaperones or other proteins, indicating that 
MIM44 is a new partner of hsp70. However, a comparison 
of the sequences of Sec63p and MIM44 revealed a motif of 
18 amino acid residues with similarity between Sec63p 
(residues 138-155) and MIM44 (residues 185-202) (7 iden- 
tical and 5 isofunctional residues). The motif is located in 
the J-domain of Sec63p. When MIM44, Sec63p, and E. coli 
DnaJ were aligned together (Fig. 7), the similarity of the 18- 
residue motif was indicated to be of high significance accord- 
ing to the MACAW program (Schuler et al., 1991). Feldheim 

~[I]VI44 185 E R D L A S G K R H R A V K S N E D 202 

5ec63p ~3~ D R D I K S A Y R K L S V K F H P D 155 

DnaJ 18E R E I R K A Y K R L A M K Y H P D35 

: I : : " : : : : : : I I 

Figure 7. A short motif of MIM44 with sequence similarity to 
Sec63p and DnaJ in a triple alignment. Vertical lines indicate iden- 
tical residues and double dots indicate isofunctional residues in all 
three proteins. Sequences were adopted from Ohki et al. (1986) (E. 
coli DnaJ), Sadler et al. (1989) (S. cerevisiae Sec63p), and Maarse 
et al. (1992) (S. cerevisiae MIM44). 

et al. (1992) demonstrated that the highly conserved aspar- 
tate (the last residue of the motif found here) is required for 
the function of Sec63p. However, in MIM44 only this aspar- 
tate is present from the conserved HPD motif (histidine, pro- 
line, aspartate) that is found in all DnaJ-like proteins ana- 
lyzed so far, and the sequence similarity of MIM44 to the 
DnaJ-like proteins is over a much more limited region than 
was described between Sec63p and DnaJ (Sadler et al., 
1989). Thus MIM44 cannot be seen as a DnaJ-like protein, 
yet future studies will have to address the possibility if this 
short conserved motif is involved in the interaction of 
MIM44 and mt-hsp70. It should be noted that, in contrast 
to MIM44, a direct interaction between Sec63p and prepro- 
teins in transit has not been found so far. The available 
evidence thus suggests an interesting analogy of association 
of the luminal hsp70 of both mitochondria and ER with a 
membrane-bound component of the translocation complex, 
although mechanistic details may be distinct for each or- 
ganelle. Very recently, a mitochondrial homolog of DnaJ 
(MDJ1) was identified that is located on the matrix side of 
the inner membrane (Rowley et al., 1994). While MDJ1 is 
involved in folding of imported proteins, it has not been pos- 
sible so far to demonstrate an interaction of MDJ1 and mt- 
hsp70 (Cyr et al., 1994). More importantly in the context of 
this study, a deletion of MDJ1 does not affect the transloca- 
tion of preproteins into mitochondria, making it very un- 
likely that MDJ1 plays a critical role in polypeptide translo- 
cation and the translocase function of mt-hsp70. Instead, we 
propose that MIM44 is responsible for accumulation of mt- 
hsp70 at the import sites, thus linking the A~k-dependent 
translocation machinery of the inner membrane to the ATP- 
driven motor of mitochondrial protein translocation. 
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