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Abstract. Two microtubule-stimulated ATPases, cyto- 
plasmic dynein, and kinesin, are believed to be 
responsible for the intracellular movement of 
membrane-bound organelles in opposite directions 
along microtubules. An unresolved component of this 
model is the mechanism by which cells regulate these 
two motors to direct various membrane-bound or- 
ganelles to their proper locations. To determine if 
phosphorylation may play a role in the regulation of 
cytoplasmic dynein, the in vivo phosphorylation state 
of cytoplasmic dynein from two cellular pools was ex- 
amined. The entire cellular pool of brain cytoplasmic 
dynein was metabolically labeled by the infusion of 
[32P]orthophosphate into the cerebrospinal fluid of rat 
brain ventricles. To characterize the phosphorylation 
of dynein associated with anterograde membrane- 
bound organelles, the optic nerve fast axonal transport 
system was used. Using a monoclonal antibody to the 

74-kD polypeptide of brain cytoplasmic dynein, the 
native dynein complex was immunoprecipitated from 
the radiolabeled tissue extracts. Autoradiographs of 
one and two dimensional gels showed labeling of 
nearly all of the polypeptide isoforms of cytoplasmic 
dynein from rat brain. These polypeptides are phos- 
phorylated on serine residues. Comparison of the 
amount of 32p incorporated into the dynein polypep- 
tides revealed differences in the phosphorylation of 
dynein polypeptides from the anterograde and the cel- 
lular pools. Most interestingly, the 530-kD heavy 
chain of dynein appears to be phosphorylated to a 
lesser extent in the anterograde pool than in the cellu- 
lar pool. Since the anterograde pool contains inactive 
dynein, while the entire cellular pool contains both in- 
active and active dynein, these results are consistent 
with the hypothesis that phosphorylation regulates the 
functional activity of cytoplasmic dynein. 

T 
~E directed movement of membrane-bound organelles 
microtubules is important for various cellular func- 
tions including membrane transport, secretion, and 

axonal transport (38, 58). Data from a variety of experimen- 
tal approaches support the model that two motor proteins, 
kinesin and dynein, move membrane-bound organdies in 
opposite directions along microtubules (for review see refer- 
ences 1, 7, 60, 68). Kinesin moves organdies in the antero- 
grade direction, toward the plus ends of microtubules, while 
cytoplasmic dynein moves organelles in the retrograde direc- 
tion toward the minus ends of microtubules (4, 17, 56, 57, 
58). One unexplained component of this model is the mecha- 
nism by which cells coordinate the activity of these two mo- 
tor proteins to target specific organelles to their proper loca- 
tions (1, 7, 38, 58). The movement of membrane-bound 
organelles in neuronal axons, termed fast axonal transport, 
provides a unique model system to address this question in 
vivo. In the neuron, the protein synthetic machinery is local- 
ized to the somatodendritic compartment (20). Therefore, 
newly synthesized dynein must be moved down the axon to 
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the synaptic terminal by anterograde transport before it can 
function as the motor for retrograde axonal transport. 

Immunocytochemical localization studies of ligated nerves 
have demonstrated that dynein is present on both antero- 
gradely and retrogradely moving organelles (25, Pfister, K., 
J. Li, S. Brady, and A. Dahlstrom, manuscript in prepara- 
tion). Biochemical studies indicate that dynein is associated 
with membrane-bound organelles, including highly purified 
synaptic vesicles, a class of anterogradely moving organelles 
(31, 77). Observations such as these led to the proposal that 
neurons regulate the motor activity of cytoplasmic dynein; 
that is, inactive dynein is transported on anterogradely mov- 
ing membrane-bound organeUes to synaptic terminals where 
it is activated to become the motor for retrograde transport 
(1, 24, 25, 60). The additional observations that cytoplasmic 
dynein and kinesin colocalize to some of the same organelles 
both in cultured cells and in ligated nerves (Lin, S. X. H., 
K. K. Pfister, and C. A. Collins. 1991. J. Cell Biol. 115: 
168a; Ptister, K., J. Li, S. Brady, and A. Dahlstrom, manu- 
script in preparation) support the proposition that inactive 
cytoplasmic dynein is transported on anterograde organelles 
by kinesin. 

One candidate mechanism for regulating cytoplasmic 
dynein is phosphorylation (1, 25, 38, 60). Protein phos- 
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phorylation regulates a wide range of cellular processes (71) 
and experimental evidence implicates phosphorylation in the 
regulation of numerous microtubule-based motile systems 
(6, 14, 22, 29, 35, 54, 63, 65). Considerable evidence indi- 
cates that phosphorylation regulates the movement of pig- 
ment granules along microtubules in fish pigment cells (34, 
35, 53, 54, 65). It has recently been shown that the antero- 
grade motor, kinesin, is phosphorylated in vivo, and in vitro 
experiments suggest that phosphorylation may regulate kine- 
sin function (26, 37, 55). Phosphorylation of axonemal 
dynein polypeptides has been implicated in the regulation of 
flagellar function (for reviews see references 64, 72). Brain 
cytoplasmic dynein is a protein complex with a proposed 
structure consisting of two 530-kD heavy chains, three 74- 
kD polypeptides, and four polypeptides of 53, 55, 57, and 59 
kD (referred to hereafter as the 53-59 kD set of polypep- 
tides), for a total molecular mass of 1.2-1.5 × 106 D (39, 
45, 69). If phosphorylation regulates cytoplasmic dynein 
motor activity, then differences in the level of phosphoryla- 
tion in vivo of one or more of these polypeptides in various 
cellular pools of dynein would be expected. 

To test this hypothesis, we examined two functionally dis- 
tinct pools of cytoplasmic dynein that were labeled in vivo 
with 32p. In both experiments, [32p]orthophosphate was 
provided to mature neural tissue with minimal perturbation 
of the physiological environment of the cells, thus avoiding 
phosphorylation artifacts which are often associated with 
cultured cells and other in vitro systems. (a) To characterize 
the phosphorylation of a mixture of both active and inactive 
dynein, the entire cellular pool of brain cytoplasmic dynein 
was metabolically labeled by infusion of [32p]orthophos- 
phate into the cerebrospinal fluid of rat brain ventricles (13). 
This method provides 32p, which is metabolized into ATP 32, 
to all cells and cellular compartments in the brain, including 
axons, dendrites, and glial and neuronal cell bodies. 32p is 
also provided to the numerous synaptic terminals where dy- 
nein is presumably converted from an inactive protein to an 
active, functional motor for retrograde transport. (b) The rat 
optic nerve fast axonal transport system, which exploits the 
spatial separation of dynein synthesis and function in axons, 
was used to examine the phosphorylation state of dynein as- 
sociated with small tubulo-vesicular anterogradely moving 
organelles (8, 20). Dynein has no known function in the 
movement of these organelles, which are believed to be 
transported down the axon by kinesin; therefore dynein as- 
sociated with these organdies is likely to be in an inactive 
state. [32P]Orthophosphate was injected into the vitreous of 
the eye and radiolabeled cytoplasmic dynein associated with 
organelles moving with the anterograde fast axonal transport 
component of the optic nerve was analyzed. 

The optic nerve system takes advantage of the fact that pro- 
teins, synthesized exclusively in the retinal ganglion cell 
bodies, are transported into their axons, which comprise the 
optic nerve, at different rates (7, 8, 20). When the retinal gan- 
glion cells are provided radioactive precursors for protein 
synthesis by intravitreal injection and the optic nerve is re- 
moved within 2-5 h after injection, the proteins associated 
with small tubulo-vesicular organelles in the fast anterograde 
transport compartment of the nerve are radiolabeled (7, 8, 
20). Longer time intervals between injection and analysis are 
required to detect labeling in the slower moving mitochon- 
dria, as well as the components of slow transport a, slow 

transport b, and retrograde transport (7, 8, 20). In addition 
to radiolabeled amino acids, a variety of radiolabeled metab- 
olites, including 32p, have been successfully used to study 
the transport of posttranslationally modified proteins and 
other membrane components in anterograde transport model 
systems (8, 20, 62). Snyder et al. (62) showed that the trans- 
port of protein and other macromolecules labeled by 32p 
from the cell bodies into nerves parallels that of [35S]methi- 
onine-labeled protein. 

We report here that nearly all of the cytoplasmic dynein 
subunits from the entire cellular pool of brain cytoplasmic 
dynein are phosphorylated in vivo. These polypeptides are 
phosphorylated on serine residues. We also find that the in- 
corporation of 32p into dynein polypeptides associated with 
the anterograde pool of cytoplasmic dynein differs from the 
incorporation of 32p into dynein polypeptides from the en- 
tire cellular dynein pool. Most interestingly, our quantitative 
results indicate that there is less radiolabel incorporated into 
the 530-kD heavy chain of dynein from the anterograde pool 
than into the 530-kD heavy chain of dynein from the entire 
cellular pool. This is direct evidence that cytoplasmic dynein 
polypeptides are differentially phosphorylated in neural tis- 
sue in vivo and is consistent with the hypothesis that phos- 
phorylation regulates the motor activity of dynein. 

Materials and Methods 

Purification of Cytoplasmic Dynein 
Bovine brains were procured from Dinner Bell Meats (Lynchburg, VA) and 
cytoplasmic dynein was isolated to •85% purity essentially as described 
by Paschal et al. (45) using a microtubule affinity step followed by ATP re- 
lease and sucrose density gradient centrifugation. Dynein injected into mice 
for monoclonal antibody production was further purified by hydroxyapatite 
column chromatography. 

Production of Monoclonal Antibodies 
Monoclonal antibodies against cytoplasmic dynein were produced using the 
procedure of Brodsky (10) as modified by Pfister et al. (48), except that 13 
injections of hydroxyapatite column purified bovine brain cytoplasmic 
dynein (30-90 #g/injection) were used. 

Phosphorylation of Cytoplasmic Dynein In Vivo 
Adult male Sprague-Dawley rats (225-250 g) were obtained from Hilltop 
(Scottdale, PA) or Harlan (Indianapolis, IN). All surgery was done under 
anesthesia using ketamine (80 mg/kg, IM) and xylazine (8 mg/kg, IM). 

Stcreotaxic intraventricular injections were performed with a 10-pl 
Hamilton syringe. Right lateral ventricles were injected at coordinates 0.0 
mm anterior to bregma, 1.5 mm lateral to the midline, 3.0 mm ventral to 
the dural surface (13, 46) with 2 mCi of [32P]orthophosphate (New En- 
gland Nuclear, Boston, MA; 8500-9120 Ci/mmol) diluted to 8-10 #1 with 
PBS and administered by infusion over 8-10 min. The animal remained 
anesthetized during the 1-3-h labeling period. The animal was then 
sacrificed by decapitation and the brain removed. 

Intravitreal injections were performed essentially as described by Brady 
and Lasek (8). In each experiment five anesthetized animals were injected 
with 1 mCi [32P]orthophosphate in 4/~1 PBS per eye for a total of 10 mCi 
of 32p in 10 rat eyes. After 4 h the animals were anesthetized and sacrificed 
by decapitation. The brains were removed and segments of optic nerve 
(from "~2 mm posterior to the retina to •2 mm posterior to the optic 
chiasm) were collected in liquid nitrogen. 

lmmunoprecipitation 
Dynein was immunoprecipitated using a modification of the method devel- 
oped by Elluru et al. (14a) described briefly here. All operations were per- 
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formed at 4"C unless otherwise noted. For most experimotts, antibody 74.1 
(from aseites fluid) was hound to protein A-Sepharose beads (Zymed Labs 
Inc., San Francisco, CA). In the immunopreeipitation used in the experi- 
ment presented in Fig. 3, the antibody was first purified by protein A affinity 
chromatography, and then covalently coupled to cyanogen bromide acti- 
vated Sepharose 413 (Pharmacia LKB Biotechnology, Piscataway, NJ). Rat 
brains or rat optic nerves were homogenized in Triton X-100 lysis buffer 
(25 raM Tris-Cl, pH 8.1, 50 told NaC1, 0.5% Triton X-100, 1 mM PMSF, 
1 mg/ml leupeptin, 1 mg/ml pepstatin, 1 mM benzamidine, 2 mM EDTA, 
3.3 U/ml apyrase, 20 nM microcystin-LR, 20 nM caiyculin A, 200 nM 
staurosporine). The homogenate was spun at 27,000 g (SS-34 rotor; Sorvall 
Instruments Div., Dupont Co., Newton, CT) for 15 rain. The superuatant 
was recovered, respun, and then precleared using fixed Staphylococcus 
aureus. The precleared supernatant was incubated with the antibody-linked 
beads in the presence of NET gel (50 mM Tris-C1, pH 7.4, 150 mM NaC1, 
5 told EDTA, 0.25% gelatin, 0.05% Triton X-100, 0.02% NAN3) and pro- 
tease inhibitors (1 mM PMSF, I mg/ml leupeptin, 1 mg/ml pepstatin, I mM 
benzamidine) for 3 h. The beads were washed with 0.5% Triton X-100, 
0.05% deoxyeholate, 0.01% SDS, 0.02% NAN3, in PBS, pH 7.4, followed 
by washes with 125 mM Tris-Cl, pH 8.1, 500 rnM NaC1, 0.5% Triton 
X-100, 10 mM EDTA, 0.02% NaN3, and finally with water. The protein 
was eluted from the beads with electrophoresis sample buffer, lmmunoblots 
analyzed by ECL (Amersham Corp., Arlington Heights, 1I,) were used to 
demonstrate that >95 % of the dynein was removed from homogenates and 
supernates by this immunoprecipitadon procedure, lmmunoprecipitation 
after lysis of tissue in 2% SDS lysis buffer was performed after the method 
of Haipain and Greengard (21). 

Electrophoretic Procedures 
The method of Laemmli (32) was used for one dimensional SDS-PAGE, ex- 
cept that piperazine diacrylamide (27) was substituted for bis-acrylamide. 
To resolve the 530-kD heavy chain of dynein, the separating gel was 4% 
acrylamide, 8 M urea, and 1.5 nun thick; to resolve all the polypeptides 
of the dynein complex, a gradient from 4% to 16% acrylamide, and 0-6 M 
urea was used. 

Two dimensional electrophoresis was modified from the methods of 
Brady et al. (9) and O'Farrell (43). Isoelectric focusing gel solution (3.6% 
acrylamide, 0.09% bis-acrylamide, 7.8 M urea, 1.9% Triton X-100, 1.9% 
pH 5-7 ampholines, 1.9% pH 6-8 ampholines, 2.8% pH 3-10 ampholines) 
was poured to a height of 12 cm in glass tubes (I.D. of 0.3 cm). Gels were 
polymerized for 2 h and used the same day. After prefocusing the gels, sam- 
pies were loaded and electrophoresis was carried out for 7,100 V-h. 

To reduce contamination due to airhorne keratin (42), the extruded iso- 
electric focusing gels were washed with equilibration buffer (2.3% SDS, 
10% glycerol, 0.625 M Tris-Cl, pH 6.8) containing 0.1 M dithiothreitol for 
5 min, washed briefly in equilibration buffer alone, and incubated for 15 
min in equilibration buffer containing 0.3 M iodoaeetamide (19). The IEF 
gel was loaded on an 8% acrylamide, 1.5-ram thick slab gel and electropho- 
resed at 8 W. 

Protein in the gels was visualized with Coornassie blue or by the silver 
staining method of Wray et ai. (75). Western blotting and immunostaining 
were carried out according to the methods of Towbin et al. (66) and Bloom 
and Vailee (5), with horseradish peroxidase-oonjogated secondary antibod- 
ies and either 4-ehloro-l-napthol, or enhanced chemiluminescence (ECL, 
Amersham) was used to detect the antibody. 

One and two dimensional gels from the same experiment were analyzed 
by autoradiography. The two dried gels were exposed either to the same 
sheet of x-ray film (Kodak XAR-5) with one intensifying screen or to the 
same storage phosphor screen (Molecular Dynamics, Sunnyvale, CA). A 
single photographic negative was made of the exposed x-ray film and it was 
printed to ensure that the photographic reproduction of each of the exposed 
gels was identical. The storage phosphor screen was analyzed with a Molec- 
ular Dynamics Phosphorlrnager, and dye sublimation prints of each gel 
were made using identical gray scale settings to provide comparable repro- 
ductions of the gels. 

Quantitative Analyses 
Quantitation of the 32p incorporated into the polypeptides of cytoplasmic 
dynein resolved by one and two dimensional electrophoresis was performed 
using a Phosphorlmager supported by ImageQuant software. Each pair of 
gels was exposed to the same storage phosphor screen. The digitized an- 
toradiographic images were quantified by volume integration of the back- 
ground corrected pixel values assigned to each polypeptide region. Phos- 
phorImager exposures were calibrated to give a sum pixel volume for all 

dynein polypeptides equal to 100,000 per experiment. The protein concen- 
tration of the individual immunoprecipitated dynein polypeptides resolved 
by gel eleetrophoresis was determined by quantitative densitometry of 
Coomassie blue-stained gels with a Molecular Dynamics Personal Den- 
sitometer and the data analyzed with ImageQuant. Student's t test was used 
to statistically compare the data. TCA precipitable counts per minute (clam) 
in immunoprecipitated dynein were determined after the method of Marls 
and Novelli (36). 

Phosphoamino Acid Analysis 
Phosphoamino acid analysis was performed after the method of Hemmings 
et al. (23). Briefly, polypeptides were excised from gels and the gel pieces 
were treated with thermolysin (0.15 mg/ml in 20 mM NI~HCO3) for 
12-20 h. The digest was dried and resuspended in 6 N HCI; the tube was 
then evacuated with N2 and capped. The samples were incubated at I05°C 
for 90 rain, transferred to fresh tubes, and dried. They were then 
resuspended in 2% formic acid, 8% acetic acid, pH 1.9, and spotted onto 
thin layer chromatography plates (Kodak 13255 cellulose) and electropho- 
resed in the same buffer at 500 V until the dye front traveled 1/3 the length 
of the plate. The plates were then transferred to 1% pyridine, 10% acetic 
acid, pH 3.5, and electrophoresed at 350 V until the dye front was 3 cm 
from the end of the plate. 

Biochemical Reagents 
Caiyculin A and microcystin-LR were obtained from GIBCO-BRL 
(Gaitbersburg, MD). Acrylamide and ammonium persulfate were obtained 
from Polysciences, Inc. OVarrington, PA). Piperazine diacrylarnide (PDA), 
was obtained from Bio-Rad Labs. (Hercules, CA). Ampholines were ob- 
tained from Pharmacia LKB Biotechnology. Thermolysin was from 
Boehringer Mannheim Corp. (Indianapolis, IN). All other reagents were 
obtained from Sigma Chem. Co. (St. Louis, MO). 

Results 

Characterization of Monoclonal Antibody 74.1 
The hybridoma cell line which secretes monoclonal antibody 
74.1 was generated from a fusion of NS-1 myeloma calls and 
lymphocytes from mice injected with highly purified bovine 
brain cytoplasmic dynein. Tissue culture supernatants from 
the hybridomas were screened on Western blots of sucrose 
density gradient purified dynein. Antibody 74.1 demon- 
strated cross-reactivity with two isoforms of the 74-kD poly- 
peptide of cytoplasmic dynein (Fig. 1 A). High specificity for 
the 74-kD dynein polypeptide was seen when a crude rat 
brain extract was screened (Fig. 1 B). This monoclonal anti- 
body has affinity for all the isoforms of the 74-kD polypep- 
tide of purified bovine brain cytoplasmic dynein resolved by 
two dimensional gel electrophoresis, and cross-reacts with 
cytoplasmic dynein from various tissues of a number of other 
vertebrates, including fish, mouse, and sheep. 

Phosphorylation of Rat Brain Cytoplasmic Dynein 
In Vivo 
To characterize the phosphorylation of cytoplasmic dynein 
polypeptides in vivo, dynein was metabolically labeled by 
infusion of [32p]orthophosphate into rat brain ventriclOs. 
[32p]Orthophosphate infused into the cerebrospinal fluid of 
brain ventricles is circulated throughout the brain. There- 
fore, the 32p may be used by protein kinases in cell bodies, 
axons, and synaptic terminals. One hour after injection of 
[32p]orthophosphate into the ventricles of the brain, cyto- 
plasmic dynein was immunoprecipitated and equal amounts 
of protein were resolved by one and two dimensional gel 
electrophoresis and stained. The phosphorylated polypep- 
tides were visualized by autoradiography of the dried gels. 

Dillman and Pfister Differential Phosphorylation of Cytoplasmic Dynein 1673 



Figure 1. Characterization of monoclonal antibody 74.1 against the 
74-kD polypeptide of cytoplasmic dynein. (,4) Sucrose density gra- 
dient purified cytoplasmic dynein polypeptides were resolved by 
SDS-PAGE, a portion of the curtain gel was stained with Coomas- 
sie blue and the remainder of the gel was transferred to nitrocellu- 
lose. Strips of nitrocellulose were probed with tissue culture super- 
natants from cloned hybridoma colonies. Cell line 74.1 produced 
an IgG2b which cross-reacts with two isoforms of the 74-kD cyto- 
plasmic dynein polypeptide. (Lane D) Sucrose density gradient 
purified cytoplasmic dynein; (lane IB) corresponding immunoblot. 
(B) A crude rat brain extract was resolved by SDS-PAGE, a portion 
of the gel was stained for total protein with Coomassie blue, and 
the rest of the gel was transferred to nitrocellulose. When the 
nitrocellulose strip was probed with monoclonal antibody 74.1, two 
isoforms of the 74-kD polypeptide were detected. (Lane E) Crude 
rat brain extract stained for protein; (lane IB) corresponding immu- 
noblot. Molecular mass standards are 205 kD, rabbit skeletal mus- 
cle myosin; 116 kD,/5-galactosidase; 97.4 kD, phosphorylase B; 66 
kD, bovine serum albumin; 45 kD, egg albumin; 29 kD, carbonic 
an_hydrase. The positions of the 530-kD heavy chain and the iso- 
forms of the 74-kD polypeptide are also indicated. 

Fig. 2 A shows a portion of a two dimensional gel contain- 
ing the 74-kD and 53-59-kD set of  polypeptides of  cyto- 
plasmic dynein immunoprecipitated from a rat brain ho- 
rnogenized in Triton X-100 lysis buffer. Multiple isoforms 

Figure 2. Phosphorylation of cytoplasmic dynein from the entire 
cellular pool of rat brain. Cytoplasmic dynein was immunoprecipi- 
tared from rat brain radiolabeled by intraventricular infusion of 
[32p]orthophosphate and equal amounts were analyzed by one and 
two dimensional gel electrophoresis; ,,o3 #g and "~320 cpm of'W_.A 
precipitable protein were loaded onto each gel. (A) Portion of a sil- 
ver stained two dimensional gel revealing cytoplasmic dynein poly- 
peptides immunoprecipitated from the crude rat brain extract. A 
large diagonal arrow points out the isoforms of the 74-kD polypep- 
tide on the gel (focusing between pH 4.1 and 4.9). The isoforms 
of the 53-59-kD set of polypeptides (focusing between pH 5.9 and 
6.3) are indicated with small horizontal arrows. The molecular 
weights of the dynein polypeptides are shown on the left side of the 
gel. (B) Portion of an autoradiograph of a gel from the same experi- 
ment as A, revealing phosphorylated rat brain cytoplasmic dynein 
polypeptides. The large diagonal arrow in both A and B point to 
the B m isoform of the 74-kD polypeptide. Small arrowheads point 
to the most basic isoforms of the 55- and 59-kD polypeptides. The 
most basic, the B, isoform of the 74-kD polypeptide was not labeled 
with 32p. The most basic isoforms of the 53- and 57-kD polypep- 
tides were also not labeled with 32p. To more clearly show the 
53-59-kD set of polypeptides the isoforms of the 74-kD polypep- 
tide are slightly overexposed. (C) One dimensional SDS-PAGE 
(4% acrylamide, 8 M urea) revealing phosphorylation of the 530- 
kD cytoplasmic dynein heavy chain. Lane CB is the Coomassie 
blue-stained gel lane; lane 32/,, autoradiograph of the same lane. 
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Figure 3. Monoclonal antibody 74.1 spe- 
cifically and stoichiometrically immuno- 
precipitates the dynein complex. (a) Portion 
of an SDS-PAGE gel showing cytoplasmic 
dynein which was partially purified by mi- 
crotubule affinity and sucrose density gra- 
dient centrifugation (SG) (the major con- 
taminant is tubulin), and dynein which was 
immunoprecipitated from the sample using 
monoclonal antibody 74.1 (IP). (b) The 
530-kD heavy chain of cytoplasmic dynein 
immunoprecipitated from rat brain was 
resolved by SDS-PAGE using a 4% acryl- 
amide, 8 M urea gel, lane 1. To confirm the 
identity of the immunoprecipitated high 
molecular mass polypeptide, the high mo- 
lecular weight MAPS from a 0.6 M NaCI 
extract of a rat brain microtubule pellet 
were also analyzed, lane 2. The immuno- 
precipitated high molecular mass polypep- 
tide is the 530-kD heavy chain of the dynein 
complex (also known as MAP 1C [45]). 
Furthermore, no contaminating MAPS are 
seen in the immunoprecipitate. (c) Enlarge- 
ment of the 74-kD polypeptide region from 
two dimensional gels of cytoplasmic dynein 
immunoprecipitated from rat brain homog- 
enized in either 0.5% TX-100 (TX-100), or 
2% boiling SDS (SDS), showing the iso- 
forms of the 74-kD polypeptide. In both im- 
munoprecipitates, 6 isoforms of the 74-kD 
polypeptide are resolved. For purposes of 
discussion the isoforms have been labeled 
A, N ,  A 2 and B, B l, B 2. The positions of 
the isoforms of the 74-kD polypeptide are 
indicated with arrows. The TX-100 gel panel 
is an enlargement of the gel shown in Fig. 2 
A. Fig. 3, a and b were stained with 
Coomassie blue; 3 c was silver stained. 

of the 74-kD polypeptide and the 53-59-kD set of polypep- 
tides were resolved. In particular, at least six isoforms of the 
74-kD polypeptide that differ by charge and apparent molec- 
ular mass are consistently resolved in dynein from rat brain. 
Evidence for at least three different sequences of the 74-kD 
polypeptide has been previously reported (44). The left 
panel of Fig. 3 c shows an enlargement of the 74-kD polypep- 
tide region from the two dimensional gel shown in Fig. 2 A. 
For purposes of identification and discussion, the isoforms 
are labeled A, N ,  A 2 and B, B ~, B 2. The isoelectric point of 
the B isoform is pH 4.9, which is in agreement with that 
predicted from the deduced protein sequence (44). In the 
course of two dimensional gel analyses, occasionally one or 
another of the various dynein polypeptide isoforms appeared 
to be resolved into two spots. Furthermore, the A isoform 
is a relatively minor species and is often obscured by N .  
The A 2 and B 2 isoforms are not as well resolved as the 
other isoforms with this gel system. Unfortunately, it was 
found that modifications to the gel system which improve the 
resolution of these two isoforms decrease the resolution of 
the other dynein polypeptide isoforms. Most of the remain- 
ing spots, seen in Fig. 2 A, including the two spots which are 
directly below the 74-kD polypeptides and to the left of the 

53-59-kD set of polypeptides, are seen in "mock" im- 
munoprecipitates of lysis buffer. 

The autoradiograph (Fig. 2 B) of the two dimensional gel 
shown in Fig. 2 A reveals label incorporated into all the iso- 
forms of the 74-kD polypeptide except for the most basic iso- 
form (the B isoform), though the labeling of the A isoform 
is very faint. All the isoforms of the 53-59-kD set of poly- 
peptides appear to be labeled to some extent, with the excep- 
tion of the most basic 53-kD isoform and the most basic 57- 
kD isoform. 

The immunoprecipitated 530-kD dynein heavy chain was 
analyzed by SDS-PAGE, and the autoradiograph showed that 
the 530-kD heavy chain is also phosphorylated in rat brain 
(Fig. 2 C). 32p is also incorporated into a minor con- 
taminant of the immunoprecipitate with greater relative mo- 
bility than either the 530-kD heavy chain of cytoplasmic 
dynein or MAP 2. 

Several methods were used to verify that the immunopre- 
cipitated dynein and its phosphorylation accurately reflected 
the state of the dynein complex in vivo. To demonstrate that 
the immunoprecipitation procedure does not dissociate the 
dynein complex, dynein which was partially purified by su- 
crose gradient centrifugation was immunoprecipitated and 
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analyzed by SDS-PAGE (Fig. 3 a). Consistent with the previ- 
ous study of purified cytoplasmic dynein (58), quantitative 
densitometry indicated that the molar ratios of the immuno- 
precipitated cytoplasmic dynein polypeptides were two 
heavy chains, three 74-kD polypeptides, and four 53-59-kD 
polypeptides. It can therefore be concluded that under these 
conditions neither Triton X-100 nor 0.5 M NaC1 releases 
subunits from the immunoprecipitated dynein complex. 

As the 530-kD heavy chain of dynein is not well resolved 
by two dimensional gel electrophoresis, one dimensional 
gels (4 % acrylamide) were used to analyze this polypeptide. 
Fig. 3 b shows that the high molecular mass polypeptide im- 
munoprecipitated from rat brain by antibody 74.1 comi- 
grates with MAP 1C, which is the 530-kD heavy chain of cy- 
toplasmic dynein (36). Furthermore, the immunoprecipitate 
is not contaminated with any of several microtubule-asso- 
ciated proteins (MAPs) 1 of similar electrophoretic mobility. 

Two approaches were used to ensure that the phosphoryla- 
tion state of the cytoplasmic dynein analyzed by gel elec- 
trophoresis accurately reflected the phosphorylation state of 
dynein found in vivo. First, inhibitors of protein kinases and 
protein phosphatases were included in the lysis buffer 
(Materials and Methods). In the absence of these inhibitors, 
different dynein phosphorylation patterns were occasionally 
observed. Second, the effectiveness of the inhibitors at 
preventing charge modifications during lysis was further 
confirmed by replacing the Triton X-100 lysis buffer with a 
2 % SDS lysis buffer. SDS denatures cellular proteins during 
lysis and homogenization (21). Though treatment with SDS 
interfered slightly with the resolution of the polypeptide 
spots, the isoform pattern of the 74-kD polypeptide of dynein 
immunoprecipitated from rat brain homogenized in SDS ly- 
sis buffer was the same as that of dynein imrnunoprecipitated 
from brain homogenized in the Triton X-100 lysis buffer with 
the irdaihitors (Fig. 3 c). However, when SDS lysis buffer was 
used, the rest of the polypeptides which comprise the native 
dynein complex were not immunoprecipitated. This is pre- 
sumably due to the fact that SDS dissociated the dynein com- 
plex and antibody 74.1 is specific for the 74-kD polypeptide. 

Phosphoamino Acid Analysis 

To determine the phosphorylated amino acid residues in 
each of the polypeptides in vivo, the cytoplasmic dynein im- 
munoprecipitated from metabolically labeled rat brain was 
fractionated by gel electrophoresis. Phosphorylated dynein 
polypeptides were excised from wet gels and subjected to 
phosphoamino acid analysis as described in Materials and 
Methods. The 32p incorporated into the various cytoplas- 
mic dynein polypeptides was exclusively associated with ser- 
ine (Fig. 4). 

Phosphorylation of Anterograde Cytoplasmic Dynein 
In Vivo 
The rat optic nerve axonal transport model system was used 
to examine the phosphorylation state of dynein associated 
with organelles moving in the anterograde fast axonal trans- 
port pool. A preliminary experiment was performed to es- 
tablish that cytoplasmic dynein is associated with the antero- 
gradely moving membrane-bound organelles in the optic 

1. Abbreviation used in this paper: MAP, microtubule-associated protein. 

Figure 4. Phosphoamino acid analysis of cytoplasmic dynein poly- 
peptides reveals phosphoserine. Cytoplasmic dynein was immuno- 
precipitated from rat brain labeled with [32P]orthophosphate and 
resolved by gel electrophoresis. Phosphorylated polypeptides were 
excised from wet gels and subjected to phosphoamino acid analysis. 
530, phosphoamino acid analysis of the 530-kD dynein heavy 
chain; 74 ALIA2, analysis of the A isoforms of the 74-kD polypep- 
tide; 74 BIlB2, analysis of the B t and B 2 isoforms of the 74-kD 
polypeptide; 59157, analysis of the 59-kD and 57-kD polypeptides; 
55/53, analysis of the 55-kD and 53-kD polypeptides. The 530-kD 
heavy chain was excised from a one dimensional gel, the other poly- 
peptides were excised from two dimensional gels. The [32P]phos- 
phoamino acids were visualized with a PhosphorImager. The posi- 
tions of the standards, phosphoserine (SER), phosphothreonine 
(THR), and phosphotyrosine (/TR) are shown. Cytoplasmic dynein 
polypeptides were found to contain exclusively phosphoserine. 

nerve. [35S]Methionine was injected into the vitreous of rat 
eyes. To sample the fast anterograde transport compartment, 
the rat was sacrificed four hours later and the optic nerve was 
removed. Cytoplasmic dynein was immunoprecipitated 
from the nerve and analyzed by two dimensional gel elec- 
trophoresis. Fluorography of the dried gel demonstrated that 
the polypeptides of cytoplasmic dynein were labeled with 
35S, the result expected of a protein moving with fast an- 
terograde transport. 

Dynein associated with organelles moving with antero- 
grade fast axonal transport in rat optic nerve was then labeled 
by intravitreal injection of [32p]orthophosphate. Four hours 
after injection the optic nerves were removed and the dynein 
was immunoprecipitated. Equal amounts of the immunopre- 
cipitated dynein were resolved by one and two dimensional 
gel electrophoresis. Fig. 5 A is a portion of a two dimensional 
gel stained for protein. The stained gel reveals dynein poly- 
peptides associated with anterograde as well as retrograde 
axonal transport. The phosphorylated dynein polypeptides 
associated with anterogradely moving organdies were visu- 
alized using a Phosphorlmager. Fig. 5 B, an autoradiographic 
image of the gel in Fig. 5 A, shows 32p incorporated into 
isoforms of the 74-kD polypeptide and the 53-59-kD set of 
polypeptides of anterograde dynein. The 530-kD heavy 
chain of dynein immunoprecipitated from optic nerve was 
resolved by SDS-PAGE as described above and incorporation 
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Figure 5. Phosphorylation of cytoplasmic dynein associated with 
anterograde fast axonal transport. Cytoplasmic dynein was immu- 
nopreeipitated from rat optic nerves radiolabeled by intravitreal in- 
jection of [32p]orthophosphate and analyzed by one and two 
dimensional gel electrophoresis; "-0.5/~g and ,o144 epm of TCA 
precipitable protein were loaded onto each gel. (A) Portion of a sil- 
ver stained two dimensional gel revealing cytoplasmic dynein poly- 
peptides immtmoprecipitated from rat optic nerve extracts. The im- 
munoprecipitated polypeptides shown in this panel represent the 
total pool of optic nerve dynein. (B) Portion of an autoradiographic 
image of the same gel as A, revealing the phosphorylated antero- 
grade optic nerve cytoplasmic dynein polypeptides. The arrows in 
A and B mark the position of the B' isoform of 74 kD polypeptide. 
(C) One dimensional SDS-PAGE (4% acrylamide, 8 M urea) rev- 
ealing barely detectable phosphorylation of the 530-kD cytoplas- 
mic dynein heavy chain. Lane Ag, silver stained gel lane; lane 32p, 
autoradiographic image of the same lane. 

of 32p into the heavy chain was visualized with a Phosphor- 
Imager (Fig. 5 C). Extremely faint labeling of the 530-kD 
heavy chain of anterograde dynein is observed. 

Comparison of the Incorporation of 
J2p into Anterograde and Cellular Cytoplasmic 
Dynein Polypeptides 

The incorporation of 32p into each of the dynein polypep- 

tides from the two sets of experiments was quantified and is 
shown in Table I. There was almost 40-fold less 32p incor- 
porated into the 530-kD heavy chain than the 74-kD poly- 
peptide of cytoplasmic dynein from the anterograde pool, 
while in cytoplasmic dynein from brain, the 530-kD heavy 
chain and the 74-kD polypeptide incorporated nearly equal 
amounts of label. To rule out the possibility that this differ- 
ence in the labeling could be accounted for by differences in 
the rate of phosphate turnover on the two polypeptides, 32p 
was injected into the ventricles of a rat brain and the labeling 
time was extended to three hours, and the incorporation of 
32p into the immunoprecipitated cytoplasmic dynein poly- 
peptides was determined (Table I). No significant difference 
in the relative incorporation of 32p into the 530-kD heavy 
chain, the 74-kD polypeptide, or the 53-59-kD polypeptides 
of brain cytoplasmic dynein was seen when the results from 
the two brain labeling times were compared. 

As the specific activity of the pool of ATP 32 was different 
in brain and eye, the relative labeling of the individual dynein 
polypeptides from the two experiments, was compared by 
graphing the incorporation of 32p into each polypeptide as 
the percent of the total 32p incorporated into the immuno- 
precipitated dynein (Fig. 6). In optic nerve, the 32p incor- 
porated into the 74-kD polypeptide accounts for 56 % of the 
total label, while the heavy chain has ,,ol.5 % of the total la- 
bel. In brain, at both 1 and 3 h, the incorporation of 32p 
into both the 74-kD and the heavy chain is '~23 % of the total 
label. There is no significant difference in the labeling of the 
53-59-kD set of polypeptides. 

The optic nerve is found on the ventral surface of the 
brain, and the synaptic terminals of the optic nerve are in 
the lateral geniculate nucleus and superior colliculus. Unlike 
the retinal ganglion in the eye, the morphology of these 
regions is not suitable for the concentrated application of 
32p necessary to identify retrograde specific phosphorylation 
of dynein. However, the phosphorylation of the entire cellu- 
lar pool of cytoplasmic dynein, including active/retrograde 
dynein was characterized using rat brain. Labeling rat brain 
with 32p has the advantage of labeling all dynein in the cell, 

Table L Quantitation of 3zp Incorporation into 
Cytoplasmic Dynein Polypeptides from Anterograde Optic 
Nerve and the Entire Cellular Pool of Rat Brain 

32p Incorporation (U/pmol polypeptide) 

Brain Poly- Anterograde 
peptide organelles 
(kD) from optic nerve lh 3h 

530 1,900 (+ 938) 2,370 (+ 288) 2,330 (± 365) 
74 73,900 (± 2,250) 2,660 (± 190) 2,600 (± 345) 
59 27,600 (± 1,750) 2,860 (± 560) 1,890 (± 440) 
57 11,800 (± 2,040) 1,080 (± 342) 1,620 (± 1,050) 
55 10,300 (± 3,650) 698 (± 149) 1,760 (± 630) 
53 5,410 (± 250) 539 (± 55) 1,040 (± 203) 

As described in Materials and Methods, [32P]orthophosphate was injected into 
either the brain ventricles or vitreous of the eye of anesthetized rats and the 
immunoprecipitatcd dynein polypeptides from each experin~nt were resolved 
by one and two dimensional gel electrophoresis. The 32p incorporated into the 
polypeptides was quantified using a Phosphorlmager. The concentration of the 
individual dynein polypeptides was determined by quantitative densitometry. 
The incorporation of 32p into each polypeptide (from duplicate analyses with 
standard deviations) is expressed in units of sum pixcl voiumc/pmole polypeptide. 
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Figure 6. Comparison of the incorporation of 32p into polypep- 
tides of cytoplasmic dynein from the anterograde pool of optic 
nerve with cytoplasmic dynein from the entire cellular pool of rat 
brain. The relative incorporation of 32p into cytoplasmic dynein 
polypeptides immunoprecipitated from the anterograde and cellu- 
lar pools are graphed as the percent of 32p incorporated into a 
given polypeptide relative to the labeling of the entire dynein mole- 
cule. (Black bar) Cytoplasmic dynein from the anterograde optic 
nerve pool; (hatched bar) cytoplasmic dynein immunoprecipitated 
from rat brain labeled for I h; (white bar) cytoplasmic dynein im- 
munoprecipitated from rat brain labeled for 3 h. 

including cell bodies, processes, and synaptic terminals. 
Like the optic nerve, these cells are in their native environ- 
ment. Rat brain is, however, composed of a heterogeneous 
cell population including neurons and glia. Cultured N1E- 
115 neuroblastoma cells, which can be induced to form ad- 
renergic axon-like processes, were also used to examine the 
steady state phosphorylation of cytoplasmic dynein (2). All 
the 32p incorporated into cytoplasmic dynein in this homo- 
geneous cell type is also on serine residues. Most impor- 
tantly, in N1E cells as in brain, the incorporation of 32p into 
the 530-kD heavy chain and 74-kD polypeptide was almost 
equal (23.8 + 3.1% of total for the heavy chain and 27.6 ± 
6.0 % of total for the 74-kD polypeptide). 

Discussion 

The mechanism by which cells regulate the activity of cyto- 
plasmic microtubule-based motor proteins in order to target 
specific organelles to their proper locations is a crucial, 
though poorly understood, element of organelle transport. 
One model proposes that change in a posttranslational 
modification, in particular phosphorylation, is the basis for 
the regulation of organelle motility (1, 25, 38, 60). The 
prediction of this model is that if phosphorylation regulates 
the function of dynein, then dynein from different functional 
pools will differ in their extent of phosphorylation. To test 
this, we identified differences in the in vivo phosphorylation 
of dynein polypeptides in two functionally distinct cellular 
pools. (a) Dynein associated with membrane-bound or- 
ganelles moved by kinesin toward the plus ends of microtu- 
bules was radiolabeled with 32p using the optic nerve fast 
axonal transport system. (b) The entire cellular pool of cyto- 
plasmic dynein was metabolically labeled by infusion of 
[32p]orthophosphate into the cerebrospinal fluid of rat brain 
ventricles. 

The optic nerve system has valuable properties which 
make it useful for the identification of the phosphorylation 
state of dynein polypeptides associated with anterograde or- 
ganelles. First, the cell bodies of the optic nerve are in the 
eye, a compartment which is physically distinct from their 
axons and synapses in the brain. Although amino acids are 
incorporated into proteins only in the cell body, phosphate 
can be incorporated into proteins in the axon. Nevertheless, 
the physical separation of eye and nerve means that while 
32p injected into the vitreous of the eye will be in the fluid 
surrounding the cell bodies of the optic nerve, it will not be 
in the fluid surrounding the axons and synapses. Significant 
labeling of axonal proteins by 32p or ATP 32 which may have 
diffused from the cell body into the axon is ruled out by the 
work of Snyder et al. (62). In a careful study, they demon- 
strated that the transport of 32P-labeled material from the 
cell bodies into nerves parallels that of the [35S]methio- 
nine-labeled protein. Up to 95 % of the 32p label in the 
nerve was TCA precipitable, and the transport of the 32p_ 
labeled material was inhibited by the microtubule poison 
vinblastine. Second, because of the different velocities of fast 
and slow anterograde transport and the length of the axons 
of the optic nerve, the radiolabeled small tubulo-vesicular 
organelles moving in fast anterograde transport were physi- 
cally separated from other radiolabeled components within 
the cell body. Therefore, when the dynein in the nerve axons 
was immunoprecipitated 4 h after injection of 3:p, only the 
phosphorylation state of cytoplasmic dynein associated with 
small tubulo-vesicular anterogradely moving organdies was 
determined. In the brain-labeling experiments, 32p in the 
cerebrospinal fluid could be metabolized into ATP 32 for use 
not only by kinases in the cell bodies, but also by kinases in 
axons, dendrites, and synaptic terminals. Similarly in the 
cultured neuroblastoma experiments, ATP 32 is available to 
kinases throughout the cell. Therefore the phosphorylation 
state of the entire cellular pool of dynein, both the active and 
inactive motor protein, was determined. 

Electrophoretic analysis and autoradiography revealed 
phosphorylation of nearly all the polypeptide subunits of cy- 
toplasmic dynein from the cellular and anterograde dynein 
pools. This phosphorylation was coupled to serine residues. 
Quantitation of the incorporation of 32p into the entire cel- 
lular pool of cytoplasmic dynein from brain and neuroblas- 
toma cells, revealed approximately equal amounts of phos- 
phate were incorporated into the 74-kD polypeptide and the 
530-kD heavy chain. In contrast, quantitation of 32p incor- 
poration into cytoplasmic dynein associated with antero- 
gradely moving organelles revealed that ~40-fold more 
phosphate was incorporated into the 74-kD polypeptide than 
the 530-kD heavy chain. In brain and neuroblastoma cells, 
the labeling of the 530-kD heavy chain represented "~25% 
of the total label while only 1.5 % of the label was incorpo- 
rated into the heavy chain of dynein associated with antero- 
gradely moving organelles. There was also an approximately 
twofold difference in the percent labeling of the 74-kD poly- 
peptides from the entire cellular pool and the anterograde 
pool. 

These results demonstrate differences in the phosphoryla- 
tion of cytoplasmic dynein from different cellular pools and 
support models for the regulation of cytoplasmic dynein by 
phosphorylation. As cytoplasmic dynein has no known role 
in anterograde (plus end directed) transport (1, 7, 24, 25, 60, 
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69), and the entire cellular pool of dynein from brain in- 
cludes dynein which is functioning as a motor in retrograde 
transport, we hypothesize that the difference in the phos- 
phorylation of dynein from the cellular pool as compared to 
the anterograde pool is associated with activation of dynein 
for retrograde transport. Since the 530-kD heavy chain con- 
talns the sites of ATP hydrolysis and microtubule binding 
(16, 39, 44, 47), either or both of these functional activities 
may be regulated by phosphorylation. Alternatively, phos- 
phorylation may be involved in the interaction of dynein with 
membrane proteins on specific organelles which facilitate its 
motor function (18) or other steps involved in the shift of 
dynein from the anterograde to retrograde pathways. Changes 
in the phosphorylation of the 74-kD polypeptide, may be im- 
portant for its proposed role in mediating the interaction of 
dynein with membrane-bound organeUes (38, 44). There are 
numerous protein kinases present in the synapse which could 
be involved in phosphorylating dynein for activation for 
retrograde transport (71). 

Several observations support the hypothesis that the heavy 
chain of dynein contains a site important for the regulation 
of organelle transport. Lin et al. (33a) find that the protein 
phosphatase inhibitor okadaic acid induces a redistribution 
of cytoplasmic dynein in cultured cells, and a corresponding 
increase in the phosphorylation of the 530-kD dynein heavy 
chain. Flagellar axonemes have 5-10 different dyneins which 
function to slide microtubules past one another, producing 
the force necessary to generate flagellar bending (16, 52, 
73). Unlike the cytoplasmic dyneins (16, 41, Dillman, L E, 
and K. K. Ptister, unpublished observations), many of the 
axonemal dyneins are heteromers composed of two or more 
different heavy chains identified as the or, ~, and "y heavy 
chains (74). Several sets of proteins in the axoneme, includ- 
ing the radial spoke proteins, participate in the regulation of 
axonemal dynein (50, 61). Huang et al. (28) identified a mu- 
tation of the B heavy chain of the outer arm dynein of 
Chlamydomonas which restored the motility of paralyzed 
radial spoke deficient mutants. This mutation had no effect 
on the assembly or enzymatic properties of the outer dynein 
arm, but it does bypass the regulatory activity of the radial 
spoke-central pair complex. Recently Porter et al. (51) 
characterized this mutation as a deletion of seven amino 
acids and mapped it to an c~ helical region near the presump- 
tive nucleotide binding P loops. This region is conserved in 
all flagellar and cytoplasmic dyneins identified to date, sug- 
gesting that it has an important function in both families of 
dynein. While the B heavy chain of the outer arm dynein is 
not phosphorylated in vivo, the (x heavy chain of the outer 
arm dynein of Chlamydomonas axonemes is phosphorylated 
in vivo (30, 49). It has also been reported that phosphoryla- 
tion of the ot dynein heavy chain in cilia of marine inverte- 
brates is correlated with activation of flagellar beating (63). 
Interestingly, several of the heavy chains of the inner arm 
dyneins of Chlamydomonas are also phosphorylated (49). 

Studies on axonemal dynein also provide evidence for a 
role of other polypeptides regulating dynein function. Phos- 
phorylation of a polypeptide of 29 kD activates axonemal 
dynein in Paramecium (22, 72), however, no analogous pro- 
tein has yet been found associated with cytoplasmic dy- 
nein. The 70-kD polypeptide of the outer arm dynein of 
Chlamydomonas is 47.5 %, similar to the 74-kD polypeptide 
of mammalian cytoplasmic dynein (44). Mutations of this 

polypeptide which do not effect the assembly or structure of 
the outer arms but do alter flagellar motility have been 
identified (40). These mutations indicate that this polypep- 
tide plays a role in the function of the dynein arm indepen- 
dent of its structural (cargo-binding) role (38, 44). Interest- 
ingly, this polypeptide is not phosphorylated in vivo in 
Chlamydomonas (30). Several polypeptides, including spe- 
cies of 76 kD and 78 kD associated with dynein from Tetra- 
hymena are phosphorylated (11). Removal of these phos- 
phates has effects on the ATPase activity of this dynein. In 
fish melanophores and xanthophores, pharmacological and 
other studies on pigment granule transport demonstrate that 
the movement of the pigment granules along microtubules 
between aggregated and dispersed states is regulated by 
phosphorylation (34, 35, 53, 65). In particular, protein de- 
phosphorylation is necessary for MT-minus end directed 
(retrograde) motility (34, 35, 53, 65). 

The experiments described in this report clearly demon- 
strate that cytoplasmic dynein polypeptides are phos- 
phorylated in vivo, and that there are differences in the phos- 
phorylation of dynein from the anterograde pool compared 
to the entire cellular pool. This supports models for the regu- 
lation of motor function by phosphorylation. These results 
suggest that one step in the transition of dynein from a pas- 
sive association with anterogradely moving organdies to a 
functioning motor for retrograde transport is the phosphory- 
lation of the heavy chains. Evidence has previously been 
presented that cytoplasmic dynein has a functional role in 
nuclear migration (76), spindle orientation (15, 33, 67), 
Golgi localization (12), and endocytic transport (3). The 
results presented here, therefore, have implications for the 
regulation of these processes as well as that of axonal trans- 
port. As previous in vitro data had not demonstrated phos- 
phorylation of the cytoplasmic dynein heavy chain (70), the 
results presented here emphasize the importance of in vivo 
approaches for the study of dynein phosphorylation. 
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