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Abstract. Chromosomes can move with the ends of 
depolymerizing microtubules (MTs) in vitro, even in 
the absence of nucleotide triphosphates (Coue, M., 
V. A. Lombillo, and J. R. Mclntosh. 1991. J. Cell 
Biol. 112:1165-1175.) Here, we describe an immuno- 
logical investigation of the proteins important for this 
form of motility. Affinity-purified polyclonal antibodies 
to kinesin exert a severe inhibitory effect on 
depolymerization-dependent chromosome motion. 
These antibodies predominantly recognize a polypep- 
tide of Mr ~'250 kD on immunoblots of CHO chromo- 
somes and stain kinetochores as well as some vesicles 
that are in the chromosome preparation. Antibodies to 
CENP-E, a kinetochore-associated kinesin-like pro- 
tein, also recognize a 250-kD eleetrophoretic compo- 
nent, but they stain only the kinetochroe region of iso- 

lated chromosomes. Polyclonal antibodies that recog- 
nize specific domains of the CENP-E polypeptide 
affect MT disassembly-dependent chromosome motion 
in different ways; antibodies to the head or tail por- 
tions slow motility threefold, while those raised 
against the neck region stop motion completely. Anal- 
ogous antibodies that block conventional, ATP-depen- 
dent motility of cytoplasmic dynein (Vaisberg, G., 
M. P. Koonce, and J. R. Mclntosh. 1993. J. Cell Biol. 
123:849-858) have no effect on disassembly-dependent 
chromosome motion, even though they bind to kineto- 
chores. These observations suggest that CENP-E helps 
couple chromosomes to depolymerizing MTs. A simi- 
lar coupling activity may allow spindle MTs to remain 
kinetoehore-bound while their lengths change during 
both prometaphase and anaphase A. 

T 
HE idea that tubulin dynamics might generate forces 
sufficient to move objects attached to cytoplasmic 
microtubules (MTs) t has been considered for many 

years. The "dynamic equilibrium ~ model for mitotic chromo- 
some movement constitutes one of the most important ex- 
pressions of this idea (for review see Inoue, 1981). Early 
evidence for the concept came from experiments which sug- 
gested that the state of polymerization of MTs could affect 
chromosome movements within cells. For example, the 
direction of chromosome movement reversed during ana- 
phase when tubulin assembly was promoted after chromatid 
separation (Bajer et al., 1982; Sheldon and Wadsworth, 
1992). Experiments in vitro have demonstrated that grow- 
ing MTs can do work by deforming membranes when grown 
within liposomes (Miyamoto and Hotani, 1989) and by elon- 
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gating membranous networks in Xenopus extracts (Water- 
man-Storer, personal communcation). Shortening MTs are 
also able to provide sufficient force to move chromosomes 
in vitro, as was initially suggested by the work of Koshland 
et al. 0988). Real time observations have shown that depoly- 
merizing MTs can exert forces greater than 1 pN on chromo- 
somes bound at or near their ends, even when the nucleotide 
triphosphate concentrations are too low to support the activ- 
ity of MT-dependent motor enzymes (Coue et al., 1991). 
Analogous depolymerization-dependent phenomena have 
also been seen in sea urchin ooplasm with MTs growing from 
axonemes added to this system (Glicksman and Salmon, 
1993). It is therefore well established that MT dynamics can 
generate force. 

An assay developed in our lab for studying depoly- 
merization-dependent chromosome motion in vitro uses 
polymers of bovine brain tubulin initiated by the basal bodies 
within a Tetrahymena "pellicle; i.e., the cortex that remains 
after exhaustive detergent lysis of this ciliate (Lombillo et 
al., 1993). PeUicles will bind tightly to glass coverslips, 
providing not only an initiator of MTs with known structural 
polarity (Heidemann and McIntosh, 1981), but also an an- 
chor to hold the minus ends of the MTs to a fixed position 
on the microscope stage during continuous perfusion in a 
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flow cell. Chromosomes and other particles can be intro- 
duced into the chamber and allowed to bind to the pellicle- 
initiated MTs, so their motile properties can be studied. The 
pellicle-initiated MTs will depolymerize upon either tubulin 
dilution or calcium addition, and the bound chromosomes 
move with the disassembling plus end, even in the absence 
of ATP. This motion of chromosomes in association with 
shortening MTs implies that kinetochore proteins can couple 
chromosomes to tubulin polymers in such a way that subunit 
depolymerization provides the energy necessary for move- 
ment against a load. The question arises, how do objects re- 
main coupled to a disassembling polymer? Motor enzymes 
located on the chromosomes-are plausible candidates for 
such coupling factors, but this activity of motors would be 
unusual, since it is independent of ATP. Motors that act as 
coupling factors may require, for example, a continuous 
state of weak binding to the shortening MT polymer. Prece- 
dent for such loose-binding states of motor enzymes and 
MTs is seen in the ability of both flagellar dynein (Vale et 
al., 1989) and some kinesin-like proteins (KLPs) (Stewart 
et al., 1993; Chandra et al., 1993) to bind MTs and dis- 
play one-dimensional (l-D) diffusive movements without 
ATP hydrolysis. 

Here, we investigate the identity of the chromosome- 
associated proteins that bind to MTs in our assay. There are 
several likely candidates for chromosome-MT coupling fac- 
tors: cytoplasmic dynein, which is associated with the co- 
rona region of kinetochores (Pfarr et al., 1990; Steuer et al., 
1990; Wordeman et al., 1991) and the members of the kine- 
sin super family, which have been localized to both kineto- 
chores and membrane-bound vesicles (Schroer et al., 1988; 
Yen et al., 1992; Wordeman and Mitchison, 1994). Function- 
blocking antibodies have recently become available as 
probes with which to study the roles of these proteins in a 
specific motility event. For example, polyclonal antibodies 
(pAbs) raised against a recombinant fragment encompassing 
the motor domain of conventional kinesin block motility of 
MTs in vitro and MT-dependent vesicle motion in vivo (Ro- 
dionov et ai., 1991). In addition, pAbs to bacterially ex- 
pressed polypeptides that contain dynein's putative active 
site can block ATP-dependent gliding of MTs over glass and 
early mitotic centrosome separation in PtK1 calls (Vaisberg 
et al., 1993). To probe the role of dynein and kinesin in the 
chromosome motility we observe in vitro, we have treated 
chromosomes with these antibodies and others raised against 
kinetochore KLPs, including CENP-E. Our results strongly 
suggest that a KLP is involved in disassembly-dependent 
chromosome motility in vitro. 

Materials and Methods 

In Vitro Assay for MT Depolymerization-driven 
Chromosome Motion 
The procedures for chromosome isolation, for peUicle preparation, and for 
initiating disassembly-dependent motion are described briefly in Coue et al. 
(1991), and more completely in Lombillo et ai. (1993). 

Chemical Reagents 
Pipes used in our buffers was purchased from Boehringer Mannheim Corp. 
(indianapolis, IN) and unless otherwise specified all other reagents were 
purchased from Sigma Chem. Co. (St. Louis, MO). 

Antibodies 
DD1. Function-blocking antibodies to dynein were isolated from the blood 
of rabbits immunized with a bacterially expressed polypeptide of 70 kD that 
included the putative ATP hydrolytic domain of cytoplasmic dynein from 
Dictyostelium discoideum. Dynein-specitic antibodies were collected by 
affinity chromatography, using antigen immobilized on cyanogen bromide- 
activated-Sepbarose (Vaisberg et al, 1993) and used at a final conoentration 
of 1.25 mg ml -l .  This concentration blocks ATP-dependent MT motility in 
vitro but does not affect the binding of dynein to MTs (Vaisberg et 
al., 1993). 

Kin2/HD. Function-blocking antibodies to ldnesin were raised in rabbits 
against a bacterially expressed fragment of the Drosophila kinesin motor 
domain (RJ3dionov et al., 1991). They were affinity purified on a column 
containing immobilized antigen, concentrated on a protein-A column, and 
eluted by reducing the buffer pH to ",,2.0, and then neutralizing it to a pH 
7.0 with phosphate buffer. 

anti-CENP-E. A mouse monoclonai antibody (mAb-177) that recognized 
CENP-E was raised using salt washed chromosomal scaffolds as antigen 
(Yen et ai., 1991). Rabbit pAbs were generated against three non- 
overlapping subdomains of CENP-E. Antibodies Not and 1.6 were raised 
against the motor (amino acids 1-256) and the neck (amino acids 256--817) 
regions, respectively. The appropriate restriction fragments that encode 
these two regions of CENP-E were cloned and expressed in the pMAL ex- 
pression vector (New England Biolabs, Beverly, /vIA). HX antibody is 
directed against the COOH-terminal portion of the central rod domain 
(amino acids 1601-1889), which was expressed from a pATH vector as a 
trpE fusion protein. A schematic illustrating the subdomains recognized by 
these CENP-E antibodies is shown in Fig. 7. Expression of these fusion pro- 
teins in bacteria was performed as described in Rattner et al. (1993). All 
CENP-E polyclonal IgGs were purified by binding to protein A, eluted as 
described above for kin2/HD, and further concentrated by ion exchange 
chromatography. 

anti-MCAK. Linda Wordeman (University of Wastfington) kindly sup* 
plied a rnAb (used at 12 m~ mi-i)  and pAbs (used at 4.7 mg rnl -l) that 
were raised and affinity purified against a recombinant portion of MCAK, 
an inner kinetochore 90 kD KLP (Wordeman and Mitchison, 1994). 

Immediately before use, a sample of concentrated chromosomes was 
thawed, mixed with antibodies (at a ratio of 1:10, vol:vol, chromo- 
somes:antibody) and incubated on ice for 1-5 h. Antibodies that inhibited 
chromosome motion (kin2/HD and 1.6) did so after as tittle as one hour of 
incubation; longer incubations of up to 6 h with each antibody yielded 
results similar to those obtained after only one hour. 

UV-VO~ Cleavage of Kinetochore Dynein 
25-td samples of chromosomes (in 10 mM Pipes, pH 7.2, 1 mM EDTA, 
2 mM MgC12, 0.25 mM spermidine, 0.1 mM spermine, 0.1%/~-mercapto- 
ethanol, 50% sucrose + 5/~g/rni a-macroglobulin and a cocktail of other 
protease inhibitors listed in Lombilio et al., 1993) were made 100/~M with 
sodium orthovanadate and 1 mM with MgATP, and then placed on parafllm 
on ice. The chromosomes were exposed to light from a long wave (365 run) 
UV lamp (model EN-280L, Spectroline Corp., Westbury, NY) at a distance 
of I cm for up to 1.5 b. This exposure is sufficient to cleave flagellar dynein 
(Gibbons and Gibbons, 1987). The treated chromosomes were used imme- 
diately for motility in the MT-depolymerization assay or were boiled in 
SDS-PAGE sample buffer for subsequent analysis by electrophoresis. 

Immunofluorescence 
Chromosomes were allowed to attach to coverslips for 25 rnin in a humid 
chamber on ice. These coverslips were then rinsed by gentle immersion in 
PME buffer (80 mM Pipes, pH 6.9, 2 mM MgC12, 1 raM EGTA, 1 mM 
DTT) and fixed in methanol at -20°C for 10 rain, followed by acetone (also 
at -20°C)  for another 10 min. After three washes in PBS, for 5 min each, 
the coverslips were incubated with primary antibody in a humid chamber 
for 1 h at 370C. The coverslips were washed three times in PBS, and then 
overlaid with secondary antibody (goat-anti-rabbit) conjugated to Texas red 
(Jackson Labs, West Grove, PA). Chromosomes were stained with 10 pg 
mi-i DAPI for 1 rain. Finally, samples were rinsed in PBS and mounted 
on slides for observation on a Zeiss Universal microscope equipped with 
epi-illumination and Texas red or DAPI filters made by Chroma Technolo- 
gies (Bratfleboro, VT). 
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SDS-PAGE and lmmunoblots 

ATP-extracted microtubule-associated proteins (MAPs) were prepared 
from HeLa cells egactly as described in Vmsberg et al. (1993). MAPs and 
isolated chromosomes were separated by SDS-PAGE using 7% polyacryl- 
amide and electroblotted to Immobilon-P membranes (MiUipore, Bedford, 
MA). Chromosomal proteins were probed with primary antibodies used at 
roughly 1 /~g/ml -l. Secondary antibodies were diluted at 1:10,000 and 
visualized with the enhanced chemiluminescence kit from Amersham Corp. 
(Arlington Heights, IL). 

Results 

An Antibody Raised against the Putative ATP 
Hydrolytic Domain of Cytoplasmic Dynein Does 
Not Affect Depolymerization-induced Mofflity 
of  Chromosomes or Vesicles 

We have examined the role of cytoplasmic dynein in depoly- 
merization-dependent chromosome motions in vitro by us- 
ing DD1, an affinity purified anti-dynein antibody known to 
block both ATP-dependent MT gliding in vitro and centro- 
some separation in PtK cells (Vaisberg et al., 1993). Purified 
DD1 antibody binds both native and chemically fixed dy- 
nein; it localizes exclusively to the kinetochores of isolated 
CHO chromosomes (Fig. 1). After incubation in a concen- 
tration of DD1 that disrupted dynein function both in vivo 
and in vitro (1.25 mg/ml-~), chromosomes and vesicles 
were still able to bind pellicle-initiated MTs and move as the 
MTs depolymerized. Even 5 h of incubation with DD1 anti- 
bodies did not affect chromosome motility after tubulin dilu- 
tion. Antibody binding to kinetochores of incubated chromo- 
somes was confirmed by immunofluorescence (not shown). 
DDl-treated chromosomes moved all the way to the pellicle 
surface, and the mean distance of movements was within the 
range observed in control experiments (not shown). Mean 
rates of chromosome movement after incubation in DD1 
were statistically indistinguishable from untreated controls 
(Fig. 2). In addition, the frequency with which bound objects 
moved was not altered by the DD1 antibody; as reported ear- 
lier (Coue et al., 1991), approximately half of the bound 
chromosomes moved during any given experiment. 

We have previously shown that adding sodium orthovana- 
date to our assays, which is a potent inhibitor of dynein 
ATPase activity, does not alter depolymerization-dependent 
chromosome motility in vitro (Coue et al., 1991). To further 
test dynein's role in disassembly-dependent chromosome 
movement, we asked whether UV-vanadate induced cleavage 
(Gibbons and Gibbons, 1987) of kinetochore dynein in situ 
might affect motility in our assay. Most of the chromosomal 
dynein was cleaved, as determined by its faster mobility on 
SDS-PAGE after treatment (not shown). Chromosomes ex- 
posed to UV-ATP-vanadate induced cleavage were still able 
to bind to MTs and move in our assay (Fig. 2). Taken to- 
gether, these results suggest that if dynein has a role in the 
depolymerization-dependent motility of chromosomes, its 
role does not depend on the conventional mechanochemical 
properties of this enzyme. 

Antibodies Raised against Kinesin's Motor 
Domain Inhibit Depolymerization-dependent 
Chromosome Movement 

We have also used antibodies to examine kinesin's involve- 

Figure 1. Dynein stains kinetochores of isolated CHO cells. A is 
an image of two chromosomes, one of which is telocentric, stained 
with the same affinity-purified antibody (DD1) used to test dynein's 
role in depolymerization-dependent motion. B is the image visual- 
izing DNA with DAPI. 

ment in coupling cellular objects to the ends of shortening 
MTs. KLPs have been localized to kinetochores (Yen et al., 
1991; Rodionov et al., 1993; Wordeman and Mitchison, 
1994), so it is plausible that a KLP could contribute to 
chromosome-MT binding. Although conventional kinesin is 
a plus-end directed MT motor (Vale et al., 1985), and the 
motions we have observed are minus-end directed, several 
KLPs such as NCD (Walker et al., 1988; McDonald et al., 
1990) and KAR3 (Endow et al., 1994) are minus-end di- 
rected. A KLP is therefore a reasonable candidate for cou- 
pling MT disassembly to chromosome movement. As a first 
step to test this possibility, we used kin2/HD, an antibody 
that recognizes a broad range of kinesins and KLPs and 
effectively blocks kinesin-dependent motility both in vitro 
and in vivo (Rodionov et al., 1991; Gyoeva and Gelfand, 
1991; Redionov et al., 1993a,b). 

Chromosomes were incubated with affinity-purified kin2/ 
HD antibody at 1.4 mg ml-', a concentration that reduces 
MT binding and inhibits motility in vitro. Standard assays 
for depolymerization-dependent motility were then per- 

Figure 2. Histogram demonstrating that there is no significant effect 
on disassembly-dependent chromosome motility when kineto- 
chore-bound dynein is either UV-VO4 cleaved or bound by a 
known inhibitory dose of the function-blocking anti-dynein anti- 
body, DD1 (Vaisberg et al., 1993). Control assays for the cleavage 
experiment were performed on chromosomes under identical con- 
ditions, but not exposed to UV. Controls experiments using anti- 
dynein were performed on untreated chromosomes in alternating 
assays. 
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formed with these chromosomes. Chromosome motility was 
dramatically reduced by the antibody treatment. Most chro- 
mosomes did not move at all after tubulin dilution and even- 
tually washed off the peUicle-initiated MTs in the flow of 
buffer (e.g., Fig. 3). Only 3 chromosomes out of 16 moved 
and they traveled <1 #m before falling off the disassembling 
MT; the mean distance traveled by the chromosomes assayed 
was reduced from 7.1/zm (n = 5) in controls, to 0.25/~m 
(n = 16) by the kin2/HD antibody (Fig. 4). Although the 
normal efficiency of chromosome binding to pellicle-initi- 
ated MTs varies somewhat from assay to assay, there was no 
obvious effect of the antibodies on the frequency of chromo- 
some binding. 

We examined the inhibitory effect of the kin2/HD antibody 
further by performing identical experiments on chromosomes 
that had previously been incubated in: (1) the kin2/HD anti- 
body affinity purified on a column with immobilized kinesin 
head domain. (2) The flow through from this affinity column, 
i.e., immune serum that was partially depleted of kin2/HD 
antibody. This flow-through fraction was then chromato- 
graphed on a column containing immobilized protein A. 
Preparation number 3 was the fraction that did not bind to 
the protein A column. Preparation number 4 comprised the 
immunoglobulins eluted from the protein A column, a frac- 
tion in which the kin2/HD IgGs that were present in the flow 
through were now concentrated. Chromosomes were treated 
with these four solutions without knowing their identity after 
a single blind experimental design, and then the treated chro- 
mosomes were tested for MT disassembly-dependent motil- 
ity. Motility was unaffected by incubation in either solution 
2 or 3, which contained little or no kin2/HD IgG. Chromo- 
some motility was blocked by solutions 1 and 4, both of 
which contained concentrated kinesin antibodies (not shown). 
These experiments corroborate the data presented in Fig. 4. 

To learn the subcellular location of the antigen affected by 
kin2/HD, we processed chromosomes treated with this anti- 

k i n 2 / H D  inhibits chromosome movement in vitro 

untreated 
cont~'ols 

1.4 mg/ml 

Figure  4. 

0 
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Histogram demonstrating that 1.4 mg ml -~ affinity- 
purified kin2/HD inhibits depolymerization-dependent chromosome 
motion. Controls using untreated chromosomes were alternated 
with experimental assays using kin2/HD-treated chromosomes. 
Flow-through immune sera from an affinity column and flow- 
through proteins off a protein A column were also used as control 
conditions. Chromosomes treated with these flow-through samples 
also failed to affect the frequency or rate of in vitro chromosome 
motion. 

body for immunofluorescence. Fig. 5 shows a panel of repre- 
sentative images of chromosomes stained with ldn2/HD 
(Fig. 5 A) and DAPI (Fig. 5 B); both kinetochores and vesi- 
cles are stained by kin2/HD. The pattern of vesicle staining 
resembles that seen with the lipophilic dye DiOC5 (Lom- 
billo et al., 1993), so we infer that most of the vesicles that 
contaminate the chromosomes are associated with kinesin or 
a KLP. Given that dynein does not localize to this subset of 
vesicles (Fig. 1), it is likely that kinesin or KLPs are the prin- 
cipal MT-associated proteins responsible for the interactions 
of pellicle-initiated MTs with the arms of chromosomes, as 
described in a previous study (Coue et al., 1991). Since this 
antibody also binds to kinetochores, Kin2/HD may be dis- 
rupting chromosome motility by interfering with a kinesin 
or a KLP situated at either the kinetochore or the chromo- 
some-bound vesicles or both. It is important to note that the 
localization experiments were performed on the same chro- 
mosome samples used in our assays; therefore we infer that 
the kin2/HD antibody can bind its antigen in an unfixed or 
"native" state. 

Figure 3. The kin2/HD antibody inhibits depolymerization-depen- 
dent chromosome motion. In this sequence the chromosome re- 
mains bound to a MT bundle (arrowhead) for over 90 s after perfu- 
sion of tubulin-free buffer. Other unbound MTs initiated from this 
same pellicle have already depolymerized. As the MTs associated 
with this chromosome shorten (in B), the chromosome shifts 
slightly in its position, but then is unable to move, and is released 
from the shortening MTs and is washed away in the flow (C). Time 
is in seconds. 

Figure 5. Immunofluorescent detection of kin2/HD on isolated 
CHO chromosomes. A shows that the kin2/HD antibody localizes 
to kinesin or KLP's on both kinetochores (arrow) and vesicles (ar- 
rowheads). B is the corresponding image of DNA using the dye, 
DAPI. 
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MgAMP-PNP Affects Depolymerization-dependent 
Chromosome Motions 

AMP-PNP, a non-hydrolyzable analogue of ATE is a potent 
inhibitor of the mechanochemistry of kinesin (Lasek and 
Brady, 1985) and some KLPs (Yen et al., 1992; Nislow et 
al., 1992). Micromolar concentrations of MgAMP-PNP in- 
hibit the release of kinesin from MTs, locking kinesin into 
a tight-binding state (Vale et al., 1985; Lasek and Brady, 
1985). We therefore asked whether MgAMP-PNP would 
affect chromosome motility in our assay (Table I). Even in 
the absence of ATP, 1-2 mM MgAMP-PNP does not detect- 
ably alter chromosome or vesicle motility. Incubations in 5 
mM MgAMP-PNP gave variable results that ranged from 
slowing chromosome movement by a factor of 2 to inhibiting 
motion entirely. 10 mM MgAMP-PNP completely blocked 
motions of chromosomes to the pellicle. In all assays with 
MgAMP-PNP, MTs attached to chromosomes appeared to 
be both more stable and more bundled than those in un- 
treated controls, yet motility was affected only by concentra- 
tions >--5 mM. In all assays, MgAMP-PNP does not stabilize 
the free MTs in solution, so the slowing and inhibition effects 
do not appear to be due to a general increase in stability 
of MTs. 

Immunoblot Analysis of Mitotic Chromosomes with 
kin2/HD and CENP-E Antibodies 

Isolated chromosomes and MAPs were fractionated by SDS- 
PAGE, blotted, and probed with kin2/HD, to determine how 
many chromosomal proteins might be affected by the kin2/ 
HD antibody. The blots of chromosomes revealed a single 
polypeptide of ,,o 250 kD (Fig. 6, lane 3), while blots of 
MAPs revealed a component of the same Mr as well as one 
with the apparent molecular mass of kinesin heavy chain. 
Rodionov et al. (1993a) also detected this high molecular 
mass band when probing chromosomal proteins with kin2/ 
HD. By stripping and reprobing these blots with other, more 
specific anti-KLP antibodies, we learned that the high mo- 
lecular mass polypeptide is likely to be CENP-E. For exam- 
ple, a mAb to CENpoE binds a component of the same elec- 
trophoretic mobility (compare Fig. 6, lanes 3 and 5). 
CENP-E is a 312-kD kinetochore-associated KLP that con- 
sists of a conventional kinesin-like motor domain and an ex- 
ceptionally long tail domain that migrates at ,0250 kD on 
SDS-PAGE (Yen et al., 1992). A pAb raised against a portion 
of CENP-E, pAb 1.6 also recognizes a band of the same elec- 
trophoretic mobility (Fig. 6, lane 7), as do the other CENP-E 
pAbs tested in our assays (not shown). The CENP-E antibod- 
ies recognize different components in the MAP preparations, 
raising the possibility that this enzyme is altered upon chro- 
mosome binding. 

Table L Treatments with MgAMP-PNP Affect 
Depolymerization-dependent Chromosome Movements 

TreaUnent Mean rate 

/an/m/n 

Untreated 31 Jr 6 (n = 3) 
1-2 m M  AMP-PNP  28 + 8 (n = 4) 
5 m M  AMP-PNP 16 + 1 (n = 3) 
10 m M  AMP-PNP 0 (n = 3) 

Figure 6. Kin2/HD primarily recognizes a peptide of'~250 kD on 
CHO chromosomes. Gels of chromosomal proteins (lane 1) and 
ATP-extracted MT-associated proteins (MAPs) from HeLa cells 
(lane 2) were probed with ldn2/HD (lanes 3 and 4), the CENP-E 
mAb 177 (lanes 5 and 6), and the CENP-E pAb-l.6 (lanes 7 and 
8). Chromosome strips are marked as C and MAP strips are 
marked as M. Kin2/HD in lane 3 recognizes a 250-kD polyI~tide 
recognized by both CENP-E antibodies in lanes 5 and Z Molecular 
mass is labeled on the left (in kD). 

We also probed these immunoblots with antibodies that 
recognize MCAK, a 90-kD KLP, that localizes to kineto- 
chores (Wordeman and Mitchison, 1994). Both a mAb and 
pAbs to this polypeptide recognize their antigen on the blots 
(not shown), but not the high molecular mass polypeptide 
bound by kin2/HD and CENP-E antibodies. 

Using More Specific Antibodies to 
Test the Involvement of Particular KLPs in 
Depolymerization-driven Motion 
Since kin2/HD is known to recognize several KIPs in addi- 
tion to kinesin, we performed motility experiments with 
more specific antibodies that would recognize individual 
KLPs, hoping to identify the specific chromosomal anti- 
gen(s) whose activity is (are) affected by kin2/HD. The fre- 
quency and velocity of chromosome motility was unaffected 
by the antibodies to the 90-kD kinetochore-associated KLP, 
MCAK (not shown). A CENP-E specific monoclonal anti- 
body, that recognized a portion of the rod domain showed no 
effect on motility (Table II), even though this antibody slows 
mitotic progression in vivo after microinjection (Yen et al., 
1991). However, three polyclonal antibodies raised against 
specific domains of bacterially synthesized CENP-E did 
affect chromosome motion in our assay. The locations of the 
portions of CENP-E used to raise these pAbs are illustrated 
schematically in Fig. 7. All the CENP-E antibodies recog- 
nized their antigens in CHO kinetochores (as seen in Fig. 8 
a), but there was no corresponding staining of chromosome- 
bound vesicles. Antibodies that recognized either the motor 
(Not) or a portion of the central rod (HX) of CENP-E re- 
duced the velocity of moving chromosomes nearly threefold 
(Table II). A third antibody (1.6), raised against a portion of 
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Table II. Effect of CENP-E Antibodies on 
Depolymerization-driven Chromosome Movement 

Treatment Region on CENP-E Mean rate 

Oun/min) 
Control n/a 36.2 (SD 8.5, n = 9) 
mAb 177 rod 41.1 (SD 2.8, n = 5) 
HX rod 15.6 (SD 3.3, n = 5) 
Not motor domain 12.2 (SD 4.7, n = 5) 
1.6 "neck" domain 0.0 (n = 7) 

the molecule that comprises part of the motor and part of the 
stalk (the so called "neck" region), blocked motion entirely 
The specificity of this antibody on immunoblots is docu- 
mented in Fig. 6, lane 7. Chromosomes incubated in this 
neck region antibody for over 1 h on ice did not move in our 
assay. The effect caused by pAb-l.6 resembled that seen with 
kird/HD. Control (untreated) chromosomes assayed during 
alternating experiments (on the same day) behaved normally 
(see Table II). 

CENP-E Localizes to Mammalian Kinetochores 
throughout Anaphase A 

Initial work on the cellular localization of CENP-E suggested 
that it began to leave kinetochores at anaphase onset, the 
time when chromosome motion is most obviously associated 
with MT depolymerization (Yen et al., 1991). In light of our 
observations that CENP-E may be involved in disassembly- 
dependent chromosome motion, we reinvestigated CENP-E 
localization in U2-OS cells, a human osteosarcoma line in 
which cells in anaphase A are seen more frequently than in 
the previously studied HeLa cells. With this cell type, as with 
PtK cells (not shown), it is evident that CENP-E stays on 
kinetochores until sometime late in anaphase A (Fig. 8 b), 

Figure 7. Schematic diagram showing the regions of the CENP-E 
molecule that were used for antibody production in rabbits (Not, 
1.6, and HX). 

by which time the disassembly of kinetochore-associated 
MTs is over. 

Discuss ion  

We have used an immunological approach to examine the 
role of various chromosomal proteins in depolymerization- 
dependent chromosome movement in vitro. Our results im- 
plicate CENP-E in coupling chromosomes to depolymeriz- 
ing MTs. 

This report does not support a role for cytoplasmic dynein 
in depolymerization-dependent motility of chromosomes. 
Although the anti-dynein antibody used has been shown to 
bind kinetochores and to inhibit ATP-dependent dynein mo- 
tor activity in vitro (Vaisberg et ai., 1993), it does not affect 
MT-depolymerization-dependent chromosome movement. 
This result is consistent with the observation that UV-VO4 
cleavage of dynein fails to block chromosome motion in our 
assay. Neither of these negative results, however, rules out 
a role for dynein in disassembly-dependent chromosome 
movement. UV-cleaved cytoplasmic dynein retains the abil- 
ity to bind and cosediment with MTs, even though its ATP- 

Figure 8. CENP-E staining on 
chromosomes in vitro and in 
vivo. (A) CENP-E is localized 
to kinetochores of isolated 
CHO chromosomes. The im- 
age is representative of kineto- 
chore staining observed with 
all CENP-E antibodies used in 
this study (mAb 177 and pAbs- 
1.6, Not, and HX). This par- 
ticular chromosome is stained 
with mAb 177 (in A) and 
DAPI (in ,4). (B) CENP-E 
is localized to kinetochores 
throughout anaphase A in ceils. 
Staining U2-OS human osteo- 
sarcoma cells with CENP-E 
antisera (HX) revealed that 
CENP-E relllain~ kil:)etochore- 
bound throughout anaphase 
A. As reported earlier (Yen et 
al., 1991), CENP-E loses its 
kinetochore localization to- 
ward the later stages of mi- 
tosis and is then diffusely lo- 
calized to spindle fibers. B' is 
the same cell stained with 
DAPI to visualize the DNA. 
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dependent motility is inhibited (Pfarr, 1990). Thus, if dynein 
is involved in coupling chromosomes to pellicle-initiated 
MTs, the cleavage reaction may not affect the binding re- 
quired for disassembly-dependent motility. Moreover, the 
DD1 antibodies used here do not affect dynein's binding to 
MTs (Vaisberg et al., 1993), so this antibody may not inacti- 
vate the functions of dynein that are important for the motil- 
ity we observe. A more appropriate reagent for assessing 
dynein's role in disassembly-dependent motility might be an 
antibody that recognizes the entire dynein motor domain or, 
more specifically, its MT-binding site. More direct tests of 
dynein's contribution to this kind of movement using dynein- 
coated spheres show that purified cytoplasmic dynein alone 
does not support depolymerization-driven motility in vitro 
(Lombillo et al., 1995). A role for dynein in depolymeriza- 
tion-dependent chromosome motility thus remains to be de- 
termined. 

Results of our experiments with the kin2/HD antibody 
strongly support a role for a KLP in disassembly-dependent 
motility. This antibody is known to inhibit kinesin-driven 
vesicle dispersion in melanophores (Rodionov et al., 1991) 
and the extension of vimentin networks in vivo (Gyoeva and 
Gelfand, 1991). In vitro, kin2/HD blocks the binding of MTs 
to kinesin-eoated glass (if MTs are added last) or inhibits 
motility of glass-botmd MTs (if antibodies are added las0 
(Rodionov et al, 1991). Kin2/HD does not noticeably inhibit 
the binding of isolated chromosomes to MTs in our assay, al- 
though this reaction is difficult to quantify. Our assays with 
kin2/HD do, however, reveal that this antibody inhibits the 
ability of a chromosome to remain associated with the end 
of a MT as it shortens, which in turn causes the chromosome 
to fall off the MTs with which it is associated. 

Given the broad range of reactivity of kin2/HD, we sought 
to determine which particular KLP might be affected by the 
kin2/HD antibody, by using more specific probes against 
kinetochore-associated KLPs. Wordeman and Mitchison 
(1994) have recently identified a 90-kD KLP that localizes 
specifically to kinetochores of isolated CHO chromosomes, 
called MCAK. Antibodies raised against MCAK showed 
no effect on depolymerization-dependent motion. It is not 
known if these antibodies are able to block the function of 
their antigen (Wordeman, L., personal communication), but 
the observation that kin2/HD does not recognize MCAK on 
immunoblots of chromosomal proteins suggests that this an- 
tigen is not a target of kird/F1D on chromosomes. 

CENP-E is another KLP associated with the kinetochore 
during several stages of mitosis (Yen et al., 1992). The 
kin2/HD antibody strongly reacts with a chromosomal pro- 
tein whose mobility is identical to CENP-E on immunoblots. 
Rodionov et al. (1993a) have also observed a strong cross 
reaction of ldrd/HD with a 250-kD polypeptide. Kin2/HD 
typically recognizes several polypeptides in cell extracts and 
in isolated spindles, the most prominent polypeptide being 
conventional kinesin migrating at 120 kD (Rodionov et al., 
1993a). Kinesin is associated with many vesicles (Schroer 
et al., 1988), so it is interesting that our immunoblots do not 
reveal a 120-kD band from the vesicles that are present in 
the chromosome preparation. These results suggest that the 
primary target affected by the kin2/HD antibody on chromo- 
somes is the kinetochore-associated CENP-E. 

Antibodies raised against bacterially expressed segments 
of CENP-E also affect chromosome movement in our as- 

say. Though chromosome motility was not altered by an 
anti-CENP-E mAb, pAbs raised against either the motor do- 
main or the tail of CENP-E slowed motility nearly threefold. 
The mechanistic implications of this "slowing phenotype " are 
not yet clear. One possibility is that CENP-E is indeed a 
coupling molecule, but it is only partially inactivated by 
these antibodies. Perhaps the compromised antigen can still 
bind near the end of the MT, but the resulting complex 
decreases the overall MT disassembly rate. In contrast, the 
antibodies raised against the "neck" region of CENP-E (part 
of the motor, part of the stalk) inhibited motion completely, 
as we observed with the kin2/HD antibody. Further studies 
on the function of this neck region of CENP-E should prove 
interesting. The neck of CENP-E could conceivably act like 
a hinge in an analogous manner to such a domain in the myo- 
sin molecule. Thus, bound 1.6 antibodies might change the 
molecular flexibility of this region and thereby alter some 
property that enables CENP-E to "ride" along a shortening 
MT lattice. 

The ATP-dependent motility characteristics of purified 
CENP-E are not yet known. Neither its direction of move- 
ment along MTs nor its velocity have yet been observed. 
However, the directionality of a motor enzyme during its 
ATP-dependent motion might not be relevant here, since in 
our assays, the ATP concentration is much too low to allow 
motors to work by their conventional mechanism. Under our 
conditions, the disassembly-dependent motility may over- 
ride a motor's ATP-dependent mechanochemicai polarity. 
Further experiments will be needed to distinguish these mul- 
tiple activities of kinetochore-associated motors. 

Although our results with AMP-PNP are consistent with 
a role for a kinesin in disassembly-dependent motility, the 
effective concentrations are high relative to those required to 
block motility of true kinesin, especially since our experi- 
ments are performed in the absence of competing ATE 
NCD, another KLP, displays mechanochemistry very similar 
to kinesin (l.x~khart and Cross, 1994), but other KLPs show 
a variety of responses to AMP-PNP: CENP-E binds to and 
cosediments with stable MTs in the presence of 1 mM 
MgAMP-PNP (Yen et ai., 1992; Liao et al, 1994) and 
MKLP-1 will bind tightly to MTs only at >t2.5 mM AMP- 
PNP (Nislow et al., 1992). Given these observations, ifkine- 
sin or a KLP is involved in this form of chromosome move- 
ment, it may well possess a different sensitivity to AMP-PNP 
than that described for kinesin or known KLPs. On the other 
hand, depolymerization-dependent motility may simply be 
less sensitive to AMP-PNP than conventional motor activity. 

The physiological significance of motility driven by MT 
dynamics is not yet clear. Most spindle MTs are highly dy- 
namic during mitosis (Salmon et al., 1984; Saxton et al., 
1984). Until anaphase, even the connections between chro- 
mosomes and MTs are labile (Gorbsky and Borisy, 1989), 
and kinetoehore-associated MTs are continually changing 
length (for review see Bajer and Mole-Bajer, 1972). During 
anaphase A the MTs connecting kinetochores to spindle 
poles shorten, primarily depolymerizing at their kineto- 
chores (Mitchison et al., 1986; Gorbsky et al., 1987, 1988; 
Michison and Salmon, 1992). It is therefore conceivable that 
kinetochore components like CENP-E could interact with 
dynamic MTs to contribute to chromosome motion during 
mitosis. 

The movements studied here occur in the absence of ATE 
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but it is unlikely that cellular ATP levels vary appreciably 
during mitosis. Furthermore, disassembly-dependent mo- 
tion in our system is usually achieved by lowering the con- 
centration of tubulin, but the cellular tubulin concentration 
is unlikely to drop dramatically during mitosis. While these 
properties of cells might imply that the motions we have 
studied are not relevant in vivo, disassembly-dependent 
movements can occur in the presence of ATP, both in princi- 
ple and in fact (Lombillo et al., 1995). We have omitted 
nucleotide triphosphates in the experiments reported here to 
minimize the chances that the motions observed were con- 
taminated by ATP-dependent events. In a similar vein, MT 
dynamics codd be altered by changes less dramatic than sub- 
unit dilution, e.g., by posttranslational modification of tubu- 
lin or of MT-associated proteins, so physiological changes 
might promote an analogous MT disassembly to power mo- 
tion in cells. Indeed, chromosome motions seen in our sys- 
tem are faster than all but the earliest prometaphase move- 
ments of chromosomes in vivo. If MT dynamics play a role 
in cellular chromosome movement, the factors that modulate 
tubulln polymerization in vivo are probably subtle depar- 
tures from the steady state. 

Efforts to interpret the biological significance of the data 
so far available must consider two important caveats: (/) we 
are working outside the cell and (2) we are following the be- 
havior of kinetochores, which are biochemically complex 
structures. Kinetoehores contain at least 2 KLPs, at least 1 
cytoplasmic dynein, MT-associated structural proteins, and 
potentially modifying enzymes such as kinases and phospha- 
tases. Given this complexity, the antibody effects described 
here could be indirect. For example, an antibody specific for 
a single protein might inactivate not only its target antigen 
but also other proteins that lie nearby. So, in conjunction 
with the "native" assay used here, we have recently developed 
an assay that uses only defined components (Lombillo et al., 
1995). Accordingly, we have tested directly whether purified 
molecules bound to latex microspheres support motion on 
disassembling MTs and observed that kinesin isolated from 
HeLa cells will support minus end-directed, depolymeriza- 
tion-driven motion of microspheres (Lombillo et al., 1995). 

The immunological study reported here strongly suggests 
that a KLP at the kinetochore is involved in depolymeriza- 
tion-dependent motility of chromosomes. Given the results 
with both the kird/HD and the CENP-E (1.6) antibodies, 
CENP-E is likely to be part of the machinery that couples 
MT dynamics to chromosome motion. 
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