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Abstract. Centromere protein-F (CENP-F) is a mam- 
malian kinetochore protein that was recently identified 
by an autoimmune serum (Rattner, J. B., A. Rao, M. J. 
Fritzler, D. W. Valencia, and T. J. Yen. Cell Motil. Cy- 
toskeleton. 26:214-226). We report here the human 
cDNA sequence of CENP-F, along with its expression 
and localization patterns at different stages of the HeLa 
cell cycle. CENP-F is a protein of the nuclear matrix 
that gradually accumulates during the cell cycle until it 
reaches peak levels in G2 and M phase cells and is rap- 
idly degraded upon completion of mitosis. CENP-F is 
first detected at the prekinetochore complex during 
late G2, and is clearly detectable as paired loci that cor- 
respond to all the centromeres by prophase. During mi- 
tosis, CENP-F is associated with kinetochores from 

prometaphase until early anaphase and is then detected 
at the spindle midzone throughout the remainder of 
anaphase. By telophase, CENP-F is concentrated 
within the intracellular bridge at either side of the mid- 
body. 

The predicted structure of the 367-kD CENP-F pro- 
tein consists of two 1,600-amino acid-long coil domains 
that flank a central flexible core. A putative P-loop nu- 
cleotide binding site (ADIPTGKT) is located within 
the globular carboxy terminus. The structural features 
deduced from our sequence studies and the spatial and 
temperal distribution of CENP-F revealed in our cyto- 
logical and biochemical studies suggest that it may play 
a role in several mitotic events. 

T 
hE kinetochore is a macromolecular structure that 
is associated with the centromeres of chromosomes 
and is responsible for establishing and maintaining 

the connections with the microtubules of the mitotic spin- 
dle, The kinetochore generates the force that is essential 
for the complex series of chromosome movements that 
lead to their alignment at metaphase and segregation at 
anaphase. Over the past ten years, efforts towards defining 
and characterizing the molecular composition of the cen- 
tromere-kinetochore complex is slowly shedding new light 
on the molecular mechanism of chromosome segregation, 
Genetic analysis of the centromere DNA (CEN DNA) 1 in 
Saccharomyces cerevisiae has revealed a relatively simple 
cis-acting element of ,~125 bp that is composed of the sub- 
domains CDE I, II, and III (Clarke and Carbon, 1985). 
Biochemical analysis of the trans-acting factors that associ- 
ate with CEN DNA has led to the purification of a het- 
erotrimeric complex, CBF3 (Lechner and Carbon, 1991). 
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1. Abbreviat ions used in this paper: cdk, cyclin-dependent kinases; CEN- 
DNA, centromere DNA; CENP, centromere protein; IPTG, isopropyl- 
thiogalactoside; MBP, maltose binding protein; SMC, stability of mini 
chromosomes. 

In vitro, the CBF3:CEN DNA complex displays some ki- 
netochore function as it exhibits motor activity that is di- 
rected towards the minus ends of microtubules (Hyman et 
al., 1992). The absence of any sequence similarity between 
the three CBF3 subunits to known microtubule-based mo- 
tor proteins (Doheny et al., 1993; Goh and Kilmartin, 
1993; Jiang et al., 1993) suggests that additional factors 
may be required for in vitro motility of the CBF3:CEN- 
DNA complexes. The discovery that the minus end- 
directed kinesin-like motor, KAR3p (Endow et al., 1994) 
is detected in substoichiometric levels in biochemically pu- 
rified preparations of CBF3 (Middleton and Carbon, 
1994) support the possibility that CBF3 functions as a scaf- 
fold upon which other components bind to form a func- 
tional yeast kinetochore. 

Unlike S. cerevisiae, the chromosomes of higher organ- 
isms undergo a cell cycle-specific condensation--deconden- 
sation cycle that in part involves a protein family of hinge- 
like ATPases, the stability of mini chromosomes (SMC) 
family (Peterson, 1994). In addition, the DNA sequence 
and protein composition of the centromere-kinetochore 
complex in higher organisms are highly complex and the 
kinetochore has an extensive three-dimensional architec- 
ture that develops during chromosome condensation. Vi- 
sually, the kinetochore can first be detected as a region of 
amorphous electron dense material at prophase (Brenner 
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et al., 1981). Subsequently, this material becomes orga- 
nized into a trilaminar disk that obtains its final form at 
the surface of the centromere coinciding with the break- 
down of the nuclear envelope. This tripartite structure 
persists until completion of cell division and the reforma- 
tion of the interphase nucleus. 

The discovery of a group of centromere proteins that as- 
sociate with the centromere-kinetochore complex in both 
a cell cycle-dependent and -independent manner has been 
instrumental in providing the first insights into the molec- 
ular basis of centromere-kinetochore structure and func- 
tion in higher organisms (Brinkley et al., 1992). Antibodies 
to the centromere proteins CENP A, B, and C (Earnshaw 
and Rothfield, 1985) have been used to visualize the posi- 
tion of the interphase prekinetochores (Brenner et al., 
1981; Moroi et al., 1981). Furthermore, microinjection ex- 
periments using these antibodies support the notion that 
centromere-kinetochore assembly is a cell cycle-depen- 
dent process that is based upon the temporal interaction of 
multiple components of the centromere-kinetochore com- 
plex (Bernat et al., 1990, 1991). This conclusion has been 
further supported by the discovery of a subset of kineto- 
chore proteins that transiently associate with the kineto- 
chore as it matures. These proteins, in order of appearance 
include CENP-F (Rattner et al., 1993), CENP-E (Yen et 
al., 1991), p34Cdc2 (Rattner et al., 1990), and dynein (Pfarr et 
al., 1990; Steuer et al., 1990). 

CENP-F, first identified using human autoantibodies, is 
uniformly distributed in nuclei of cells that are in the late 
stages of the cell cycle during the onset of chromatin con- 
densation. A subset of CENP-F abruptly localizes to the 
kinetochore during the period in which this structure first 
appears as a fuzzy ball of electron dense material. Subse- 
quently, CENP-F is detected at the surface of the outer 
plate of the fully differentiated kinetochore (Rattner et al., 
1993). After the onset of anaphase, CENP-F is found in 
the spindle midzone and subsequently within the intracel- 
lular bridge at either side of the midbody. In this report, 
we describe additional cell cycle studies and the molecular 
cloning of a CENP-F eDNA. The localization pattern of 
CENP-F together with its structural similarities to the 
emerging SMC family of chromosome compaction proteins 
suggest that it may play a role in organizing the interphase 
centromeric heterochromatin into highly differentiated tri- 
laminar kinetochore complex at the onset of mitosis. 

Materials and Methods 

Cell Culture and Synchronization 
HeLa cells were grown at 37°C in DMEM supplemented with 10% FCS 
and antibiotics. Synchronization of cells at the G1/S was performed by 
double thymidine block as described (Yen et al., 1992). Cells were re- 
leased from the blocks by washing in warm PBS and replacing with com- 
plete growth media. Cell synchrony at various cell cycle stages was moni- 
tored by flow cytometry or by BrdU staining. For pulse labeling, cells 
were starved in cys- and met-  serum-free medium for 20 min before addi- 
tion of Tran35S label (200 ~LCi/ml; ICN, Costa Mesa, CA) and 5% dialyzed 
FCS. Cells were labeled for 10 min before harvesting for immnnoprecipi- 
tations. For pulse-chase experiments, ceils that were synchronized at ei- 
ther G1/S or G2 were labeled for 15 rain, washed, and then chased for 1, 2, 
and 4 h in unlabeled medium. For some experiments, pulse-labeled G2 
cells were chased in medium that contained either 0.06 p.g/ml colcemid 
(Sigma, St. Louis, MO) to block mitosis or in the presence of 5 mg/ml cy- 

tochalasin D (Sigma) to block cytokinesis. To obtain populations of HeLa 
cells that were highly enriched in G2, cells released for ~8  h from a G1/S 
block were rinsed to remove nonadherent mitotic cells and the remaining 
adherent G2 ceils were used for pulse-labeling experiments or fixed and 
processed for antibody staining. 

cDNA Cloning and Sequencing 
5 x 105 phage from a hgt11 human breast carcinoma eDNA expression li- 
brary (Clontech, Palo Alto, CA) was screened with VD autoimmune se- 
rum (Rattner et al., 1993) by following published protocols (Sambrook et 
al., 1989). Briefly, protein expression was induced by laying isopropyl- 
thiogalactoside (IPTG)-soaked nitrocellulose filters (Millipore, Bedford, 
MA) onto the phage-infected top agar. After 4 h at 37°C, filters were re- 
moved, rinsed, blocked and incubated overnight at 4°C with VD serum (1: 
500). Filters were washed the next morning, and bound antibodies were 
detected with 125I-protein A (1:2,500; ICN). Positive plaques were eluted 
and rescreened with the autoimmune serum until single plaques were 
identified. For plaque hybridizations, 3 x 106 plaques from the same 
cDNA library were screened with a 300 bp EcoRI and HindIII fragment 
that was derived from the 5' end of clone D7. Probes were labeled to high 
specific activity with a32p dCTP (Amersham, Arlington Heights, IL) by 
random priming. Filters were hybridized at 6(FC in aqueous buffer (5 x 
SSPE, 5x  Denhardt's, 0.5%SDS, 100 p.g/ml of sonicated herring sperm 
DNA) containing 5 x 105 cpm/ml of probe. Filters were washed at high 
stringency (65°C in 0.2x SSC, 0.1% SDS for 20 min) before exposing to 
x-ray film. 

cDNAs were isolated from the recombinant phage DNA by either 
EcoRI or BsiWI digestion, subcloned into the EcoRI or Acc65I sites in ei- 
ther the vectors M13 rap18 or pBluescript SK. 5 'RACE was performed . 
with HeLa poly(A) ÷ mRNA using Amplifinder kit (Clontech, Palo Alto, 
CA.). To increase specificity, nested primers TJY42, 5 '-CTTTTGCTT- 
TCTCCAGTTGG-3 '  and TJY43, 5 ' -T]?GACGCCTGGTCGTATTG-3' ,  
were used for the RT-PCR. The complete eDNA was determined from 
both strands by sequencing overlapping restriction fragments. DNA se- 
quencing was performed with Sequenase v2.0 (USB, Cleveland, OH). 
Compilation and analysis of the DNA sequences were performed either 
with MacVector (Kodak) or GCG (University of Wisconsin, Madison, 
WI). Database searches were performed with BLAST (Altschul et al., 
1990) and predictions of coiled coil formation was performed with the 
COILCOIL program (Lupas et al., 1991). 

Northern Blots 
2 to 3 p.g of HeLa poly(A)* m R N A  that was isolated from cells enriched 
in the G2 stage of the cell cycle was separated by electrophoresis in a 
formaldehyde agarose gel, transferred onto Hybond N (Amersham) and 
the filter was processed according to manufacturer's instructions. EcoRI 
fragments derived from the different cDNA isolates were individually hy- 
bridized to the filters under the hybridization conditions described above. 

Bacterial Fusion Protein Expression and Generation of 
CENP-F Antibodies 

EcoRI fragments that spanned different portions of CENP-F eDNA 
(from nucleotide 3420 to 6408, 6992 to 7538, and 8445 to end) were sub- 
cloned into the expression vector pMAL (New England Biolabs, Beverly, 
MA) and transformed into E. coli strain CAG456. Protein expression was 
induced with 1 nun IPTG when cultures reached an OD600 of 0.6. After 4 h 
at 30°C, bacteria were harvested, washed and sonicated. The $30 fraction 
that contained the fusion protein was immediately frozen or boiled in SDS 
sample buffer, and the proteins separated by SDS PAGE. Fusion protein 
was sliced from the gel after staining in 0.1% Coomassie Brilliant Blue 
and 40% methanol. Macerated gel slices containing between 100 to 200 Ixg 
of fusion protein were injected into rabbits. Each rabbit was boosted twice 
(2-3 wk between boosts) before serum was tested by immunofluorescence 
staining and immunoblotting. Rabbit IgG was purified by ion exchange 
chromatography, concentrated with a Mierocon 30 (Amicon, Beverly, 
MA) to ~5-10 mg/ml in PBS. 

Immunodetection Methods 
For immunofluorescence staining, HeLa cells growing on 18 mm cover- 
slips were fixed at RT for 5 rain in 3.5% paraformaldehyde buffered in 
PBS at pH 6.8, extracted for 5 min in KB+0.2% Triton X-100 (KB: 50 mM 
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Tris-HCl, pH 7.4, 150 mM NaCI, 0.1% BSA), rinsed in KB for 10 min and 
then incubated with CENP-F IgG in a 37°C humidified chamber. After 
i h, coverslips were washed in KB for 10 min and incubated with 5 ~g/ml 
FITC coupled goat anti-rabbit (GIBCO BRL, Gaithersburg, MD) for 30 
min. For double immunofluorescence, bound human IgG was incubated 
with 1 i~g/ml biotinylated anti-human IgG followed by incubation in 1 p.g/ 
ml streptavidin-Texas Red. Nuclei and chromosomes were stained with 
4',6' diamino phenylindole (DAPI; Sigma) at 0.1 ixg/ml. No significant dif- 
ference was observed when samples were fixed directly in -20°C metha- 
nol. Coverslips were mounted in Vectashield (Vector, Burlingame, CA) 
and observed with a Nikon Microphot SA equipped with epifluorescence 
optics. Images were observed with a 100X Plan Neofluor objective and 
photographs were recorded on Tmax400 film (Kodak). 

For immunoprecipitation, HeLa cells were harvested, washed and ly- 
sed either in RIPA buffer (50 mM Tris-HC1, pH 7.5, 150 mM NaCI, 1% 
Triton X-100, 1% deoxycholate, 0.2% SDS) or EBC buffer (50 mM Tris- 
HCI, pH 7.5, 200 mM NaCI, 0.5% NP-40) in the presence of protease in- 
hibitors (1 mm PMSF, 1 mm benzamidine, 10 Ixg/ml leupeptin, 10 p~g/ml 
pepstatin). Immunoprecipitations were performed by incubating autoim- 
mune serum (1:200) or rabbit CENP-F IgG (1:200) with clarified lysates at 
4°C for several hours. Immunocomplexes were precipitated with 30 p~l of a 
1:1 slurry of protein A-Sepharose beads (Pharmacia, Piscataway, NJ), 
washed, boiled in SDS sample buffer and separated by SDS PAGE. For 
detection of 35S-labeled proteins, the gels were fixed and enhanced in 1 M 
salicylate before drying and exposing to x-ray film (Kodak XAR). For im- 
munoblot analysis, separated proteins were transferred onto Immobilon P 
(Millipore, Bedford, MA), blocked, incubated with autoimmune (1:500) 
or anti-CENP-F IgG (1:500) as described (Yen et al., 1991). Bound anti- 
bodies were detected with 125I-protein A (ICN) or by chemiluminescence 
(Bio-Rad Labs., Richmond, CA). 

Preparation of Nuclear Matrix 
Nuclear matrices were prepared essentially as described (Staufenbiel and 
Deppert, 1984) except that the final DNase and RNase digestions were 

omitted in order to preserve the nuclear core filaments (He et al., 1990). 
For biochemical fractionation, HeLa cells were harvested from dishes by 
cell dissociation solution (Sigma) and washed three times with KM buffer 
(10 mM N-morpholinoethanesulfonic acid, pH 6.2, 10 mM NaC1, 1.5 mM 
MgC12, 10% glycerol, 30 p,g/ml aprotinin). Cell pellets were first extracted 
with KM buffer containing 1% NP-40, 1 mM EGTA, and 5 mM DTT at 
4°C for 20 rain. The extracted cytoplasm was saved and the remaining nu- 
clei were washed three times with KM buffer and then digested with 
DNase I (100 p,g/ml) in KM buffer at 37°C for 30 min. The supernatant 
was saved and the pellet was washed once, and extracted further with KM 
buffer containing 2N NaCI, 1 mm EGTA, and 5 mM DT]? at 4°C for 30 
min. The nuclear matrix pellet was solubilized with RIPA buffer (50 mM 
Tris, pH 8,150 mM NaC1, 0.5% DOC, 0.1% SDS, 1% NP 40, 30 Ixg aproti- 
nin) and brief sonication. A RIPA lysate of unextracted cells was used to 
monitor efficiency of recovery of CENP-F in the extracted samples. 
CENP-F was immunoprecipitated from all fractions and detected by im- 
munoblots using CENP-F antibodies. For immunofluorescence staining, 
cells grown on coverslips were enriched for G2 population by releasing for 
6 h after a single thymidine block. Ceils were washed three times with KM 
buffer and sequentially incubated with KM containing 1% NP 40, DNase I 
and 2N NaC1 as described above. After the final extraction, coverslips 
were washed with KM buffer and fixed in -20°C methanol for 10 min fol- 
lowed by -20°C acetone for 5 min. Unextracted cells were directly fixed 
in methanol/acetone. Immunofluorescence was performed as described 
above. 

Results 

Autoimmune Serum Identifies Overlapping cDNAs 
That Express Cross-reactive Epitopes 

Eight immunopositive phage clones (D1, D2, and D5 
through D10) were isolated after screening a human 
cDNA expression library with VD autoimmune serum 
that contained CENP-F antibodies (Rattner et al., 1993). 
Restriction mapping and inspection of partial DNA se- 
quences of the various clones revealed that they were all 
related (Fig.1 A) with the exception of clone D5 that was 
not further characterized. Clones D7, D8, and D10 over- 
lapped one another and spanned 8.3 kb of contiguous 

Figure 1. Autoimmune serum identifies overlapping cDNAs that 
encode multiple epitopes. (A) Schematic diagram depicting over- 
all cloning strategy. The three regions of the cDNA that were 
used to generate antibodies are indicated by the three different 
cross-hatch patterns. (B) Representative Northern blot of HeLa 
m R N A  using the 2.8-kb D10 cDNA as probes. RNA size stan- 
dards are shown on the left. (C) (Left) Coomassie stained gel of 
bacterial lysates from: lane A, uninduced culture; lanes B-E, in- 
duced cultures that expressed MBP:7L, MBP:8L, and MBP'D10. 
(Right) Immunoblot of the identical samples (lanes a-e) using 
VD autoimmune serum (1:500). (*) Migration position of the full- 
length MBP fusion proteins. 

Figure 2. Rabbit polyclonal 
antibodies generated against 
proteins expressed from 
three different regions of 
CENP-F recognize CENP-F 
from HeLa cells. (A) Immu- 
noblot of mitotic HeLa cell 
lysates with rabbit polyclonal 
antibodies raised against 
CENP-F fusion proteins 7L, 
8L, D10, and their corre- 
sponding preimmune IgG 
(PRE). (B) Mitotic cell ly- 
sates were immunoprecipi- 
tated with autoimmune se- 
rum (lanes 1-3) and probed 
with rabbit polyclonal anti- 
body 7L, 8L, D10 in lanes 1, 
2, and 3, respectively. Con- 
versely, immunoprecipitates 
obtained with antibodies 7L, 
8L, or D10 in lanes 4, 5, and 
6, respectively, were probed 
with VD autoimmune serum. 
The molecular mass markers 
are shown on the left. 
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Figure 3. Primary and predicted sec- 
ondary structure of CENP-F. (A) 
DNA sequence of the CENP-F cDNA 
and its predicted amino acid sequence. 
Underline, consensus cdk and MAP ki- 
nase phosphorylation sites; dashed 
line, consensus P-loop NTP binding 
motif; box, bipartite and conventional 
nuclear localization sequence; white 
characters, the two pairs of direct re- 
peats; asterisk, termination codon. Ar- 
rows, nested primers TJY42 and 
TJY43 that were used for 5'RACE. 
Open triangle, 5' boundary of the 
phage clone 7-1. (B) Probability plot of 
coil formation of CENP-F as predicted 
by the COILCOIL program using the 

maximal window size of 24 (Lupas et al., 1991). Arrows above the plot depict the positions of the two direct repeats. These sequence 
data are available from EMBL/Genbank/DDBJ under accession number U19769. 

cDNA that included a long poly A tail at the 3' end. Since 
all three clones contained multiple EcoRI fragments, we 
tested whether they might be derived from the same 
m R N A  by using each fragment to probe filters that con- 
tained HeLa  poly(A) ÷ mRNA. Consistent with this possi- 
bility, all of the fragments hybridized to a single, 10-11-kb 
RNA (Fig. 1 B) that was of the appropriate size to encode 
the estimated 400-kD CENP-F protein. 

To verify whether the initial set of phage clones encoded 
CENP-F, three cDNA fragments derived from clones D7, 
D8, and D10 were subcloned into the expression vector 
pMAL for protein expression in E. coli. Each of the 
cDNA fragments expressed a fusion protein of the ex- 
pected size (172, 82, and 96 kD) as well as a cluster of 
smaller proteolytic fragments (Fig. 1 C, A-E) .  The sensi- 
tivity to proteolysis may be due to the general observation 
that proteins with extensive helical structure are highly un- 
stable in bacteria. Immunoblot  analysis using VD autoim- 
mune serum showed that it did not identify any proteins of 
comparable size to that of the three maltose binding pro- 
tein (MBP):CENP-F fusion proteins in uninduced bacte- 
rial extracts, or an extract containing MBP (Fig. 1 C, lanes 
a and b). However, the VD autoimmune serum recognized 
all three MBP:CENP-F fusions as well as a number of deg- 
radation products (Fig. 1 C, lanes c-e). Since the MBP did 
not express epitopes recognized by the autoimmune se- 
rum, reactivity must be directed against epitopes that are 
encoded by the three different cDNA fragments. The low 
molecular mass immunoreactive bands that appear in all 
the lanes is due to cross-reactivity between the autoim- 
mune serum and some endogenous bacterial proteins. Pre- 
absorption of autoimmune serum with uninduced bacte- 
rial extracts significantly reduced the intensity of these 
bands in subsequent immunoblots (data not shown). 

Authentication o f  CENP-F  cDNAs 

To directly verify the authenticity of these various cDNAs, 
antibodies were generated against the MBP:7L, MBP:8L, 
and MBP:D10 fusion proteins (Fig. 1 A). Rabbit sera that 
recognized the injected fusion proteins by immunoblot 
analysis were tested for their ability to recognize the 
CENP-F protein that was present in HeLa  cells. Immuno- 
blot analysis of HeLa mitotic cell lysates showed that while 

none of the pre-immune antibodies detected a protein of 
the size of CENP-F, all three antibodies identified a single 
protein whose size was very similar to CENP-F (Fig. 2 A). 
To directly test whether these antibodies recognized 
CENP-F, autoimmune serum was used to immunoprecipi- 
tate CENP-F from HeLa  cells and the immunocomplexes 
were probed with the three different antibodies by immu- 
noblot analysis (Fig. 2 B, lanes 1-3). Conversely, immuno- 
precipitates obtained with the three rabbit antibodies were 
probed with the autoimmune serum (Fig. 2 B, lanes 4--6). 
Both approaches demonstrated that antibodies raised against 
the various bacterial fusion proteins recognized CENP-F 
in HeLa  cells. Given that the cDNAs encode multiple epi- 
topes that are recognized by VD autoimmune serum, and 
that the proteins expressed from these cDNAs elicited an- 
tibodies that recognized CENP-F, these results confirmed 
that we had isolated portions of the authentic CENP-F 
cDNA. 

Isolation o f  a cD NA That Encodes for  a 
Full-length CENP-F  

Exhaustive screening of a cDNA library by plaque hybrid- 
ization yielded several clones, one of which extended the 
existing 8.3 kb of cDNA by ~0.75 kb towards the 5' end 
(Fig. 1 A, clone 7-1). Since the open reading frame that 
was derived from the 9 kb of contiguous of D N A  sequence 
was still insufficient to account for the estimated 400-kD 
size of CENP-F, the cDNA was extended further towards 
the 5' end by 5 'RACE. We isolated poly(A) + m R N A  
from cells synchronized at the G2 stage, when CENP-F 
RNA levels were highest (T. J. Yen, unpublished observa- 
tions), and used a pair of nested oligonucleotide primers 
that were near the 5' end of clone 7-1 to perform RT-PCR 
(Fig. 3 A). PCR products that extended the cDNA by an- 
other 1.1 kb were obtained. DNA sequence of several in- 
dependent PCR clones revealed a region of perfect over- 
lap that began at the nested primer and extended to the 5' 
end of clone 7-1. The presence of this extended region of 
overlap confirmed that the RACE products were amplified 
from CENP-F mRNA. Finally, Northern blots showed that 
the RACE products identified the same size RNA as was 
identified by the other cDNA fragments (data not shown). 

Two 5' RACE products that differed in length by 42 
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base pairs at their 5' ends were isolated and sequenced. 
The shorter RACE fragment was presumably derived 
from a prematurely terminated product from the first- 
strand cDNA synthesis reaction. The difference in length 
between these two RACE products did not alter the cod- 
ing capacity of the remainder of the cDNA as translation 
must initiate from the same ATG to express a protein of 
the appropriate size. Inspection of the 10,142-bp CENP-F 
cDNA sequence (Fig. 3 A) revealed that if translation ini- 
tiated at position 171, a polypeptide of 3210 amino acids 
with a calculated mass of 367 kD would be produced. 
Given that the sequence upstream of the putative transla- 
tion initiation codon cannot extend the open reading 
flame due to the presence of multiple termination codons 
and that the calculated mass is close to the estimated size 
of 400 kD, we conclude that the complete coding sequence 
of CENP-F was cloned. 

Analysis of the Primary and Predicted Secondary 
Structure of CENP-F 

The primary sequence of CENP-F (Fig. 3 A) did not ex- 
hibit any significant homologies with other known proteins 
in the database. However, CENP-F consistently exhibited 
a low level of homology (<20%) with the rod domains of 
many cytoskeletal proteins such as myosins, kinesins, 
lamins, and tropomyosins that probably reflected similari- 
ties in secondary structure. Analysis of the CENP-F amino 
acid sequence with the COILCOIL program (Lupas, 1991) 
showed that a significant portion of the protein had a high 
probability of forming an extended coil (Fig. 3 B, residues 
1-200, 280-1350, 1620-1750, 1850-2990). Upon further in- 
spection, CENP-F was found to contain two pairs of direct 
repeats. A 96-amino acid repeat was positioned in be- 
tween the two largest coil domains, and a 178-amino acid 
direct repeat was located within the last coil domain (Fig. 3 
A, bracketed). Neither set of repeats contained any recog- 
nizable motifs or exhibited homologies with other pro- 
teins. 

Examination of the charge distribution in CENP-F 
showed that the extended central rod domain has an overall 
calculated pI of N5.2. This contrasts with the predicted pI's 
of the amino and carboxyl 200-amino acid domains of 9.1 
and 10, respectively. Additional motifs that are found in 
common between the amino and carboxy termini include bi- 
partite as well as conventional consensus nuclear localization 
sequences (Fig. 3 A, boxes) and clusters of consensus phos- 
phorylation sites for either MAP kinases or cyclin-depen- 
dent kinases (cdk) (Fig. 3 A, overlines). The carboxyl termi- 
nus exhibited two additional distinguishing features that 
include a high proline content (10.6%), and the sequence, 
ADIPTGKT, that fits the type A motif of NTP binding sites 
(A/G)XXXXGK(S/T) (Walker et al., 1982; Fry et al., 1986; 
Linder et al., 1989; Saraste et al., 1990). 

CENP-F Is a Component of the Nuclear Matrix 
during Interphase 

CENP-F is distributed uniformly in the interphase nucleus 
at early stages of G2 (see below) but exhibits a granular 
staining pattern. To examine whether CENP-F might be 
associated with the nuclear matrix, HeLa nuclei were suc- 
cessively extracted with 1% NP-40, DNase I digestion, and 

2 M NaC1 to obtain a nuclear matrix. Since the presence of 
RNA has been shown to be essential for maintaining the 
core filament organization of the nuclear matrix (He et al., 
1990), the final step of DNase I/RNase A digestion was 
omitted from the original protocol to preserve the archi- 
tecture of the nuclear matrix. To ensure the complete re- 
moval of the chromatin, the time of DNase I digestion was 
prolonged. As shown in Fig. 4 E, DAPI  staining was com- 
pletely abolished in our nuclear matrix preparations. To 
quantitate the recovery of CENP-F at each extraction 
step, CENP-F was immunoprecipitated and analyzed by 
immunoblotting. Comparison with unextracted cells showed 
that the majority of CENP-F was enriched in the nuclear 
matrix preparation (Fig. 4 A, compare lane 1 with 5) while 
only a small portion was detected in the three soluble frac- 
tions (Fig. 4 A, lanes 2--4). In contrast to interphase cells, a 
large proportion of CENP-F was detected in the soluble 
fraction after gentle permeabilization of mitotic cells (Fig. 
4 A, lanes 6 and 7). The release of CENP-F into the mi- 
totic cytoplasm (see Fig. 7) is consistent with the break- 
down of the nuclear matrix at mitosis. In support of the 
biochemical data obtained on interphase cells, the ira- 

Figure 4. CENP-F is a component of the nuclear matrix that be- 
comes partially solubilized at mitosis. (A) Interphase HeLa cells 
were successively fractionated into cytoplasm (lane 2), nuclear 
extract after DNase I digestion (lane 3), 2 M NaC1 extract (lane 
4), and nuclear matrices (lane 5). The total cell lysate (lane 1) 
from an equal number of cells as was used in nuclear matrix prep- 
aration served as control for efficiency of recovery of CENP-F. 
Mitotic cells were extracted with EBC buffer to separate soluble 
proteins (lane 6) from insoluble complexes (lane 7) such as chro- 
mosomes. Each fraction was solubilized or diluted into with 
RIPA buffer after sonication, immunoprecipitated with antibody 
7L, and analyzed by immunoblot. (B-E) Immunofluorescence 
staining of a control unextracted cell (B and C) and in situ pre- 
pared nuclear matrices (D and E) stained with antibody 7L and 
counterstained with FITC-conjugated anti-rabbit IgG (B and D) 
and DAPI (C and E). 

The Journal of Cell Biology, Volume 130, 1995 512 



munofluorescence staining of the nuclear matrix with 
CENP-F antibodies showed nearly the same intensity as 
that which was detected in a control unextracted nucleus 
(Fig. 4, compare B with D). Furthermore, the distribution 
pattern of CENP-F was unaltered by nuclease digestion, 
and detergent and salt extractions as it remained uni- 
formly distributed throughout the non-nucleolar regions 
in a fine granular pattern (Fig. 4, compare B with D). The 
combined data suggest that CENP-F is a component of the 
nuclear matrix. 

CENP-F Localization Changes during the Interphase 
and Mitotic Cell Cycles 

Previous data obtained with autoimmune serum showed 
that CENP-F is a nuclear protein that is detected in only 
some interphase cells (Rattner et al., 1993). This observa- 
tion suggested that CENP-F expression and localization 
may be cell-cycle dependent. To obtain a more accurate 
estimate of when CENP-F is detectable during the cell cy- 
cle, we used the D10 CENP-F antibodies to stain synchro- 
nized HeLa cells. Neither preimmune IgG or immune IgG 
that was preincubated with the MBP:D10 fusion protein 
produced any significant staining above background (data 
not shown). CENP-F was not detectable in cells in early 
G1 (Fig. 5 B) or shortly after release from the G1/S bound- 
ary (data not shown). As cells progressed through S phase 
(as monitored independently by BrdU staining), weak nu- 
clear staining was detectable (data not shown). In G2 cells, 
very bright CENP-F staining was detected uniformly 
throughout the nucleus but was excluded from nucleoli 
(Fig. 5 E). In some cases, G2 nuclei also exhibited bright 
CENP-F staining around the nuclear boundary (Fig. 5 F). 
As shown below, the nuclear rim staining is observed in 
cells that were in the late stages of G2. 

We also estimated the earliest time when CENP-F could 
be detected at centromeres by increasing our sampling fre- 
quency of synchronized cells that were progressing through 
G2. In late G2 cells, the uniform nuclear distribution of 
CENP-F gave way to localization around the nuclear 
boundary and multiple bright paired loci within the nu- 
cleus (Fig. 6, B and E). These cells were estimated to be in 

Figure 5. CENP-F is a nuclear protein that accumulates to peak 
levels in G2 stage of the cell cycle. HeLa cells in early G1 (A and 
B) or in G2 (C through F) were fixed and stained with DAPI (A, 
C, and D) and CENP-F antibodies (B, E, and F). Primary anti- 
body was visualized with FITC-conjugated anti-rabbit IgG. Bar, 
10 ixm. 

late G2 by observing that a parallel culture of cells entered 
into mitosis within 60 min from the time that these cells 
were processed for staining. Double staining with ACA 
sera (Fig. 6, C and F) confirmed that the loci of CENP-F 
staining were coincident with centromeres. Closer inspec- 
tion showed that not all the centromeres of these ceils ex- 
hibited CENP-F staining, perhaps reflecting the asynchro- 
nous maturation of the centromere-kinetochore complex. 
By prophase (Fig. 6 G), CENP-F is clearly present at all 
the centromeres as discrete pairs of loci (Fig. 6 H). Since 
fully formed kinetochores are not detectable until the on- 
set of nuclear envelope breakdown, CENP-F should be 
considered to be localized at prekinetochores at this time. 
The assembly of CENP-F at prekinetochores correlated 
with a general reduction in nuclear staining (compare the 
intensity of nuclear staining of CENP-F in Fig. 6, B, E, and 
H). The reduction in nuclear staining was also accompa- 
nied by increased chromatin condensation (Fig. 6, A, D, 
and G). Finally, the intensity of the nuclear rim staining 
was noticeably diminished as cells progressed closer to mi- 
tosis and the continuous band of staining around the nu- 
cleus was highly perforated by prophase (Fig. 6 H). 

We next examined the distribution pattern of CENP-F 
at different stages of mitosis. As shown above, CENP-F is 
detectable at the pre-kinetochores of prophase chromo- 
somes (Fig. 7 B). CENP-F was associated with kineto- 
chores in prometaphase and metaphase cells (Fig. 7, D and 
F) and was still detectable at kinetochores after the onset 
of sister chromatid separation in early anaphase. By late in 
anaphase, staining was relatively diffuse throughout the 
cell with the exception of a distinct, narrow stripe of stain- 
ing at the spindle equator (Fig. 7 J). The narrow stripe of 
staining became concentrated into the intracellular bridge 
as a result of cleavage furrow formation during cytokinesis 
(Fig. 7 L). The majority of CENP-F is degraded (see be- 
low) after cells complete mitosis since only background 
staining is detectable in early G1 cells. Besides detecting 
the presence of CENP-F at different structures during the 
different stages of mitosis, CENP-F was also found through- 
out the cytoplasm of mitotic cells. This observation con- 
firms the biochemical data that showed a large fraction of 
CENP-F became soluble during mitosis. 

Quantitation of  the Expression Patterns of  CENP-F 
at Different Cell Cycle Stages 

The immunofluorescence staining pattern of CENP-F sug- 
gested that its expression pattern was cell cycle regulated. 
To quantitate the cell cycle expression pattern of CENP-F, 
we first compared the steady-state levels of CENP-F in 
cells that were synchronized at various parts of the cell cy- 
cle (Fig. 8 A). Consistent with the absence of CENP-F 
staining in G1 cells, immunoblot analysis showed low lev- 
els of CENP-F in cells that were synchronized at the G1/S 
boundary. CENP-F steady-state levels gradually increased 
as cells progressed through S phase and reached peak lev- 
els at G2 and M. CENP-F steady-state levels dropped dra- 
matically after cells completed mitosis and reentered G1. 
Considering that the early G1 fraction was contaminated 
with a small amount (8-12% by flow cytometry) of G2 
cells, the 15-fold loss in CENP-F between M phase and 
early G1 cells is an underestimate. Consistent with the rise 
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Figure 6. CENP-F is de- 
tected at prekinetochores at 
late G2 when chromatin con- 
densation is detected. 9.5 h 
after release from the G1/S 
boundary, mitotic cells were 
removed by shakeoff and the 
remaining adherent cells 
were fixed and stained with 
DAPI (A, D, and G), anti- 
CENP-F IgG (B, E, and H), 
and ACA serum (C, F, and 
/). DAPI was used at 0.05 ~g/ 
ml to reveal details of chro- 
matin condensation. The de- 
gree of chromatin condensa- 
tion was used to assign 
proximity of the three cells to 
mitosis. CENP-F antibodies 
were visualized with FITC- 
conjugated anti-rabbit IgG 
and ACA was detected with 
streptavidin-Texas Red that 
was bound to biotinylated 
anti-human IgG. Each row of 
images were obtained at the 
same focal plane. Equivalent 
exposure times were used for 
each channel to allow com- 
parison of relative staining 
intensities of CENP-F 
amongst the three cells. Ar- 
rows point to colocalization 
of CENP-F and ACA. Bar, 
10 txm. 

in the steady-state levels during S and G2, the synthetic 
rate of  CENP-F  increased threefold as cells progressed 
from S and peaked during G2 (Fig. 8 B). 

The 15-fold increase in the steady-state level of CENP-F 
in G2 cells with only a modest  threefold elevation in its 
synthetic rate could only be accounted if its turnover rate 
was slow. On the other hand, the dramatic loss of CENP-F 
at the end of mitosis would require that the degradation of 
CENP-F be accelerated. To test whether protein stability 
played a role in regulating the steady-state levels of 
CENP-F during the cell cycle, the turnover rate of CENP-F 
was determined at different cell cycle stages. We initially 
established the rate of CENP-F  turnover in interphase by 
examining cells that were progressing from the G1/S bound- 

ary through S phase. Cells synchronized at the G1/S bound- 
ary were pulse labeled and then chased for 4 h through S 
phase (Fig. 9 A). A plot of the amount  of radiolabeled 
CENP-F at various times during the chase showed the tl/2 
to be ~4.6 h (Fig. 9 D). Analysis of the turnover rate of 
CENP-F when cells were progressing from G2 through mi- 
tosis revealed a biphasic decay curve (Fig. 9, B and D). 
During the first hour of the chase, when most  cells were 
still in G2 and M, the tl/2 was similar to that observed ear- 
lier in the cell cycle. However,  over the next hour, when 
the vast majority of the cells had progressed through mito- 
sis and into G1, the tl/2 was reduced fivefold to 0.9 h. The 
slower rate of CENP-F decay after 4 h of chase was likely 
due to contamination of the predominantly G1 population 
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Figure 8. CENP-F expres- 
sion pattern at different 
stages of the HeLa cell cycle. 
(A) CENP-F steady-state 
levels were quantitated by 
immunoblot analysis of equal 
numbers of synchronized 
cells at various times after re- 
lease from a double thymi- 

dine block. (B) The synthetic rates of CENP-F at different stages 
of the cell cycle were measured by pulse-labeling synchronized 
cells for 10 min in the presence of Tran35SLabel at different times 
after release from G1/S boundary. 

Figure 7. CENP-F is localized to different regions of the mitotic 
spindle at different stages of mitosis. Prophase (A and B); 
prometaphase (C and D); metaphase (E and F); early anaphase 
(G and H); late anaphase (I and J); early telophase (K and L). 
Chromosomes are visualized by DAPI staining (A-F) and anti- 
CENP-F IgG followed by FITC-conjugated anti-rabbit IgG (G-L). 
Bar, 10 p~m. 

with a small population (15%) of straggling G2 and M 
phase cells that contained stable CENP-F. This possibility 
was confirmed when CENP-F was found to be hyperstabi- 
lized in cells that were prevented from completing mitosis 
by treatment with colcemid (Fig. 9, C and D). This finding 
also showed that the accelerated decay of CENP-F was de- 
pendent upon progression through mitosis. 

The Accelerated Decay of CENP-F Is Independent 
of Cytokinesis 

To obtain a more accurate determination of the timing of 
CENP-F degradation during mitosis, we tested whether its 
loss was dependent upon completion of cytokinesis. G2 
cells were pulse labeled and chased for four hours in con- 
trol medium or medium that contained cytochalasin D to 
prevent cytokinesis (Fig. 10, A and B). Inhibition of cyto- 
kinesis was visually monitored by the accumulation of bi- 
nucleate cells. As an internal control, we compared the 
rate of CENP-F decay with CENP-E (Fig. 10, C and D), a 
kinetochore protein whose degradation was previously 
shown to be insensitive to cytochalasin D (Brown et al., 
1994). Comparison of CENP-E and CENP-F showed that 
the degradation rate (Fig. 10, B and D) of neither proteins 
was altered when cytokinesis was blocked. Immunofluo- 
rescence staining shows that cytochalasin D did not dis- 
rupt the localization of CENP-F at the spindle midzone in 
anaphase cells (Fig. 10 E). However, cytochalasin D-treated 
cells that had completed mitosis but were binucleated as a 
result of inhibition of cleavage furrow formation did not 
exhibit detectable levels of CENP-F. Thus, the localization 
of CENP-F to the cleavage furrow is not a prerequisite for 
its degradation. 

Discussion 

We report here the molecular characterization of human 
CENP-F, a kinetochore associated protein that was origi- 
nally identified by a human autoimmune serum (Rattner 
et al., 1993). Analysis of the 10.1-kb CENP-F cDNA shows 
that it encodes a protein of 3211 amino acids with a calcu- 
lated molecular mass of 367 kD. Authenticity of the 
cDNA was confirmed based on several criteria. The size of 
the protein encoded by the cDNA is in close agreement 
with the 400-kD estimate of CENP-F (Rattner et al., 
1993). The autoimmune serum recognized multiple epitopes 
that were encoded by nonoverlapping regions of the 
cDNA. Antibodies generated against proteins expressed 
from three different regions of the cDNA identified bona 
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Figure 9. CENP-F decay is 
accelerated at the end of mi- 
tosis. (A) Cells synchronized 
at the G1/S boundary were 
pulse-labeled and chased in 
unlabeled medium for 4 h 
into S phase. (B) Pulse-chase 
experiment performed on 
cells synchronized at G2 and 
allowed to progress through 
mitosis. (C) Same as B ex- 
cept colcemid was included 
in the chase medium to block 
progression through mitosis. 
(D) The amount of radio- 
labeled CENP-F at various 
times of the chase were 
quantitated by a phosphor- 
imager and the mean values 
obtained from three indepen- 
dent experiments are plotted 
as a function of the cell cycle. 
( • represents cells pulsed 
in G1/S; [] represents 
cells pulsed in G2; + rep- 
resents cells pulsed in G2 in 
the presence of colcemid.) Er- 
ror bars represent 1.96 SD 
units. 

fide CENP-F by immunoprecipitation as well as by immu- 
noblot analysis. Finally, these antibodies produced an im- 
munofluorescence staining pattern that was qualitatively 
the same as that obtained with autoimmune sera. In an 
earlier report, Casiano et al. (1993) described an autoim- 
mune serum (from patient JG) that recognizes a doublet 
of 330-kD proteins in HeLa cells. These proteins are asso- 
ciated with the nuclear matrix and exhibited a distribution 
pattern similar to CENP-F. It should now be possible to 
determine if there are CENP-F antibodies in the JG serum 
by testing the serum for its ability to recognize determi- 
nants encoded by the CENP-F cDNA. 

Cytological and biochemical studies presented here and 
in our initial report (Rattner et al., 1993) highlight several 
unique features that distinguish CENP-F from other pro- 
teins that localize to the mammalian centromere/kineto- 
chore. First, CENP-F is at present the largest member of 
the mammalian centromere family of proteins and it ex- 
hibits no significant primary sequence homologies with 
other proteins in the data base. CENP-F possesses two ex- 
tended coil domains that flank a central core and an ATP 
binding motif that may be part of a mechanochemical do- 
main. This general organization is reminiscent of some as- 
pects of the recently described SMC family of proteins 
that have been implicated in chromatin compaction (Strun- 
nikov et al., 1993; Hirano and Mitchison, 1994; Peterson, 
1994; Saitoh et al., 1994). However, there are several nota- 
ble differences, that include the position of the putative 
ATP binding site (carboxyl versus amino termini), the dis- 
similarity in the P-loop consensus sequence (ADIPTGKT 
versus GXXGXGKS),  and the absence of a conserved DA 
box, that suggests that CENP-F is not closely related to the 
current SMC family. Like this family of proteins, CENP-F 
also appears to possess a flexible central region that may 

allow it to act as a hinge during certain condensation events 
such as the organization of the centromere-kinetochore 
complex during the late stages of the cell cycle. 

A second unique feature of CENP-F is that it is the first 
kinetochore protein that has been found to be part of the 
nuclear matrix, an association that is most prominent at 
G2. Since CENP-F is not readilydetected in cells at other 
stages of interphase, this temporary association with the 
matrix suggests that it is probably not essential for matrix 
integrity but maybe necessary for nuclear reorganization 
events that are associated with the onset of cell division. 
This cell cycle-specific function is consistent with the ob- 
servation that CENP-F is rapidly degraded when cells 
have completed mitosis. Interestingly, we observed that at 
the time of nuclear matrix breakdown and the onset of 
chromosome condensation, CENP-F is detected at the na- 
scent kinetochore and inner surface of the nuclear enve- 
lope. The pronounced membrane pattern may simply be 
due to the persistence of the nuclear matrix at the mem- 
brane during this period or it may reflect a redistribution 
of CENP-F to the inner surface of the membrane before 
nuclear envelope breakdown. It is perhaps noteworthy 
that CENP-F contains several clusters of consensus phos- 
phorylation sites for cell cycle-dependent kinases. In HeLa 
ceils, the cyclinB1/cdc2 kinase complex enters the nucleus 
during late G2 (Pines and Hunter ,  1991) and is primar- 
ily responsible for initiating mitosis. Phosphorylation of 
CENP-F by the cyclinB1/cdc2 complex may be part of the 
mechanism that temporally regulates the distribution of 
CENP-F between the nuclear matrix and the kineto- 
chores. 

A third unique feature of CENP-F is that it associates 
with the kinetochore earlier than any other of the known 
transient kinetochore proteins (Brinkley et al., 1992). Its 
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Figure 10. CENP-F degradation is independent of cytokinesis. 
(A) Cells were pulsed in late G2 and chased in the absence (A-D) 
or presence of cytochalasin D (E-H). (B) The mean values of 
CENP-F at each time point from three independent experiments 
along with their standard deviations (error bars) were plotted. 

[] , no drug control; ~ ,  cytochalasin D. (C) CENP-E de- 
cay rates were examined in the same control (A-D) and cytocha- 
lasin D-treated (E-H) cell extracts used to determine CENP-F 
decay. (D) The mean values of CENP-E at different times from 
three independent experiments were plotted as in B. [] , no 
drug control; ------tt~, cytochalasin D. Effect of cytochalasin D on 
the distribution of CENP-F in anaphase and telophase cells. Mi- 
totic cells were harvested by shake-off, replated in the presence 
of cytochalasin and then processed for immunofluorescence 
staining with CENP-F during late anaphase (E and F) and after 
completion of mitosis (G and H). CENP-F staining (E and G) 
and the corresponding DAPI staining (F and H). Bar, 7.5 txm. 

appearance at the G2 kinetochore corresponds to the pe- 
riod when the centromere begins its transformation from a 
undistinguished region of the interphase chromatin to first 
an amorphous electron-dense mass and then to a highly 
organized trilaminar kinetochore structure. The structural 
features of CENP-F deduced from our sequence studies 
(see above) and its timing of appearance at the kineto- 
chores suggests that it may function during these early 
steps in kinetochore maturation. The specific spatial distri- 
bution pattern of CENP-F may explain why it does not 
share a higher degree of similarity with the conventional 
SMC family members. This prediction is partly supported 
by the observation that the carboxy terminus of CENP-F 
specifically binds to kinetochores with the same temporal 
pattern as the endogenous protein (Jablonski, S., and T. J. 
Yen, unpublished observations). Along this line, it is also 
noteworthy that the putative cdk phosphorylation sites 
that may specify when CENP-F binds to the kinetochore 
reside within the amino- and carboxy-terminal domains. 
The detection of CENP-F at kinetochores of separated 
chromatids in anaphase raise the added possibility that it 
could be important for maintaining the integrity of the ki- 
netochore during mitosis. Thus, its degradation at the end 
of mitosis may be required for disassembly of the kineto- 
chore. Although our pulse-chase data cannot precisely 
pinpoint when CENP-F degradation occurs during mitosis 
or whether certain subpopulations are degraded at differ- 
ent times, it remains possible that the kinetochore-bound 
fraction is degraded near the end of mitosis, when chromo- 
somes begin to decondense. 

A fourth feature of CENP-F is that it shows a cell cycle 
distribution that is both temporally regulated and diverse 
in terms of the structural components it localizes to. Its 
distribution during the latter stages of the cell cycle sug- 
gests that it could be involved in mitotic events as diverse 
as nuclear reorganization at G2, kinetochore maturation 
and function from G2 to anaphase, and intracellular 
bridge structure and function during anaphase-telophase. 
It is intriguing that under certain electrophoretic condi- 
tions, CENP-F can be resolved into two closely migrating 
species (Jablonski, S., and T. J. Yen, unpublished observa- 
tions) that may represent different isoforms of CENP-F. 
We do not know whether the distribution of the two 
CENP-F isoforms differs since our antibodies recognize 
both forms and may produce the complex distribution pat- 
tern observed for CENP-F. It is possible that specific iso- 
forms are found in association with the nuclear matrix, ki- 
netochore and intercellular bridge. 

Finally, CENP-F joins an increasing number of proteins 
that localize to the spindle midzone and the intracellular 
bridge at anaphase and telophase, respectively (Fishkind 
and Wang, 1995). Whether CENP-F interacts with some of 
these proteins to participate or coordinate cleavage furrow 
formation remains to be addressed. Since the inhibition of 
cleavage furrow formation does not affect the decay of 
CENP-F, the localization of this protein to this structure is 
not part of the pathway towards its degradation. 
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