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Abstract. During intestinal disease induced by Salmo- 
nella typhimurium transepithelial migration of neutro- 
phils (PMN) rapidly follows attachment of the bacteria 
to the epithelial apical membrane. Among the events 
stimulated by these interactions is the release of 
chemotaxins that guide PMN through the subepithelial 
matrix and subsequently through the epithelium itself 
(McCormick, B. A., S. P. Colgan, C. Delp-Archer, S. I. 
Miller, and J. L. Madara. 1993. J. Cell Biol. 123:895- 
907). Given the substantial volume flow that normally 
characterizes matrix compartments underlying trans- 
porting epithelia, it is unclear how such transmatrix sig- 
naling is sustained. Here we show that when underlying 
matrices are isolated from biophysically confluent po- 
larized monolayers of the human intestinal epithelial 
cell line T84, they fail to support substantial transmatrix 
migration of PMN unless an exogenous chemotactic 
gradient is imposed. In contrast, such matrices isolated 
from confluent monolayers apically colonized with 
S. typhimurium support spontaneous transmatrix mi- 
gration of PMN. Such chemotactic imprinting of under- 
lying matrices is resistant to volume wash and is paral- 

leled by secretion of the known matrix-binding 
chemokine IL-8. Chemotactic imprinting of the matrix 
underlying S. typhimurium-colonized monolayers is de- 
pendent on epithelial protein synthesis, is directional 
implying the existence of a gradient, and is neutralized 
by antibodies either to IL-8 or to the IL-8 receptor on 
PMN. An avirulent S. typhimurium strain, PhoW, which 
attaches to epithelial cells as efficiently as wild-type 
S. typhimurium, fails to induce basolateral secretion of 
IL-8 and likewise fails to imprint matrices. Together, 
these observations show that the epithelial surface can 
respond to the presence of a luminal pathogen and sub- 
sequently imprint the subepithelial matrix with re- 
tained IL-8 gradients sufficient to resist washout effects 
of the volume flow that normally traverses this com- 
partment. Such data further support the notion that the 
primary role for basolateral secretion of IL-8 by the in- 
testinal and likely other epithelia is recruitment of 
PMN through the matrix to the subepithelial space, 
rather than directing the final movement of PMN 
across the epithelium. 

C 
OLONIZATION of mucosal surfaces by pathogenic 

bacteria often results in transepithelial migration 
of neutrophils. For example, in the intestine, trans- 

epithelial migration of neutrophils rapidly follows attach- 
ment of the Salmonella typhimurium to the epithelial apical 
membrane (Takeuchi, 1967), and this neutrophil response 
occurs before loss of epithelial structural integrity (Day et 
al., 1978). While such relationships have been observed for 
over three decades, the details of how Salmonella-intesti- 
nal epithelial contacts evoke this classic histological response 
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are not well-characterized (Takeuchi, 1967; Rout et al., 
1974; McGovern and Slovutin, 1979). However, it is clear 
that mucosal surfaces have evolved the ability to mount a 
cellular response to pathogens even while such challenges 
are restricted to the lumen. How might such transepithe- 
lial signaling of underlying inflammatory responses occur? 
The transepithelial migration of neutrophils in response to 
luminal pathogens necessarily involves movement through 
several anatomic compartments, each with their own com- 
plexities. Initially neutrophils must emigrate from the mi- 
crovasculature (Pober et al., 1986; Osborn, 1990; Springer, 
1990) to the subepithelial lamina propria. This process is 
perhaps one of the best understood in terms of the molec- 
ular interactions that correspond to the initial tethering 
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(selectin mediated) and subsequent firm attachment (132 
integrin mediated) of neutrophils to the endothelial sur- 
face (Dana et al., 1984; Smith et al., 1988; Luscinskas et al., 
1989; Arnout, 1990; Butcher, 1991). Ultimately, neutro- 
phils must cross the epithelial lining of the intestine to en- 
counter the surface-attached pathogen and initiate mucosal 
defense. This process, too, is beginning to be understood at a 
more mechanistic level (McCormick et al., 1993, 1995). How- 
ever, while the biology of neutrophil emigration from the 
vasculature is reasonably understood and that of neutrophil 
transepithelial migration is beginning to be understood, how 
neutrophils migrate across the intervening matrix remains 
a mystery. One of the confounding features of such matri- 
ces in organs as diverse as the kidney and intestine is the 
exceedingly high volume of flow through the subepithelial 
spaces resulting from an array of active absorptive and secre- 
tory processes. Such fluid flow exerts substantial sweeping 
away affects on solute gradients within subepithelial ma- 
trices. For example, in the intestine, due to the unique ar- 
rangement of its vasculature, countercurrent exchange re- 
suits in rapid distortion of solute gradients in the subepithelial 
space (Jodal and Lundgren, 1986). Consistent with this fact, 
we have observed that infusion of a small water-soluble 
neutrophil chemoattractant in the intestinal lumen of ani- 
mals induces neutrophil recruitment at the level of the mi- 
crovasculature, but these recruited neutrophils fail to mi- 
grate across the matrix to the subepithelial space (Madara, 
J. L., unpublished observations), likely due to the distort- 
ing influences of countercurrent forces on gradients of wa- 
ter soluble solutes in this subepithelial compartment (Jodal 
and Lundgren, 1986). One potential explanation for the 
successful movement of neutrophils across such matrices 
in natural inflammatory states is that transmatrix migra- 
tion might be directed by gradients that are matrix fixed. 

We have recently used the human intestinal epithelial 
cell line T84 to model neutrophil-intestinal epithelial in- 
teractions (Dharmsathaphorn and Madara, 1990; Madara, 
1990; McCormick et al., 1993) and to investigate the influ- 
ence of S. typhimurium contact with the intestinal epithe- 
lial surface on the subsequent inflammatory response (Mc- 
Cormick et al., 1993, 1995). As occurs in intact tissue, we 
find surface attachment of S. typhimurium to T84 mono- 
layer apical membranes stimulates transepithelial migra- 
tion of neutrophils while the epithelium is still intact, as as- 
sessed by structural and biophysical criteria (McCormick 
et al., 1993). We (McCormick et al., 1993) and others 
(Eckmann et al., 1993) have shown that basolateral secre- 
tion of IL-8 occurs as a result of these interactions, but it is 
unclear how such IL-8 secretion contributes to the events 
of transepithelial migration. Another chemokine with 
novel physical characteristics is also secreted apically as a 
result of S. typhimurium-epithelial contact and appears to 
be sufficient for the movement of subepithelial neutro- 
phils across the epithelium and into the luminal compart- 
ment (McCormick, B. A., and J. L. Madara, manuscript in 
preparation). It is unclear if such pathogen-stimulated re- 
lease of chemotactic bioactivities from epithelial cells 
might also provide for retained gradients in the subepithe- 
lial matrix--an event that might be required to link trans- 
endo--with transepithelial migration. If such events occur, 
then one should be able to imprint matrices underlying ep- 
ithelial cells with chemotactic memories resistive of sweep- 

ing away effects of solvent flow. Here we demonstrate that 
apical association of pathogenic S. typhirnurium with model 
intestinal epithelial monolayers results in imprinting of a 
neutrophil chemotactic signal on the underlying matrix. 
The imprinted signal resists wash out and is largely due to 
polarized basolateral secretion of C-X-C family member 
IL-8. These findings suggest the role of basolateral IL-8 se- 
cretion may be to guide transmatrix migration, and are 
consistent with the ability of C-X-C family members to 
tightly bind to matrix components such as glycosaminogly- 
cans (Baggiolini et al., 1994). 

Materials and Methods 
Approximately 750 monolayers were used for these studies. 

Cell Culture 

T84 intestinal epithelial cells (passages 70-95) were grown and maintained 
as confluent monolayers on collagen-coated permeable supports (Dharm- 
sathaphorn and Madara, 1990) with recently detailed modifications (Ma- 
dara et al., 1992). T84 cells are grown as monolayers in a 1:1 mixture of 
Dulbecco-Vogt modified Eagle's medium and Ham's F-12 medium sup- 
plemented with 15 mM Hepes buffer (pH 7.5), 14 mM NaHCO3, 40 mg/ml 
penicillin, 8 mg/ml ampicillin, 90 mg/ml streptomycin, and 5% newborn 
calf serum. Monolayers were grown on 0.33-cm 2 suspended polycarbonate 
filters (Costar Corp., Cambridge, MA) and used 6-14 d after plating, as 
described previously (Madara et al., 1992). A steady-state resistance 
(~1,500 ohm cm 2) is reached in 4-6 d with variability largely related to 
cell passage number. Monolayers received one weekly feeding after initial 
plating. Inverted monolayers, used to study transmigration of neutrophils 
in the physiological matrix-to-lumen direction were constructed as de- 
scribed before (Nash et al., 1991; Madara et al., 1992; Parkos et al., 1992). 

Bacterial Strains and Growth Conditions 
Bacterial Strains. S. typhimurium ×3306 is a naladixic acid-resistant 
(gyrA1816) strain derived from S. typhimurium strain SR-11 (Gulig and 
Curtiss, 1987). S. typhimurium PhoP ¢ (strain CS022) carries a constitutive 
mutation within the S. typhimurium PhoP regulatory locus (pho-24, and 
phenotype Phot x) that results in repression of PhoP repressed genes 
(Miller and Mekalanos, 1990; Miller, 1991; Behlau and Miller, 1993). 

Media. Luria broth was made as previously described by Revel (1966). 
L agar is Luria broth containing 12 g of bacto agar (Difco Laboratories, 
Detroit, MI) per liter. 

Bacterial growth conditions. Nonagitated microaerophilic bacterial cul- 
tures were prepared by inoculating 10 ml of Luria broth with 0.01 ml of a 
stationary phase culture followed by overnight incubation (~18 h) at 
37°C, as previously detailed (McCormick et al., 1993). Bacteria from such 
cultures were in late logarithmic phase of growth and correlated with 5-7 x 
108 (colony forming units/ml) routinely. 

S. typhimurium Interactions with Polarized T84 
Apical Surfaces 
Infection of polarized T84 monolayers by S. typhirnurium was performed 
by the method of McCormick et al. (1993), and is briefly described. In- 
verted T84 monolayers (Nash et al., 1991; Parkos et al., 1992) were rinsed 
extensively in HBSS(+) (containing Ca 2+ and Mg 2+, with 10 mM Hepes, 
pH 7.4 (Sigma Chemical Co., St. Louis, MO), to remove residual serum 
components. Overnight cultures of S. typhimurium (grown as described 
above) were prepared by washing in HBSS(+) physiologic buffer, and re- 
suspended to a final concentration of 5 x 109 bacteria/ml. Approximately 
5 X 10 s bacteria in 25 p.l were gently distributed onto the apical surface 
and incubated for 45 rain at 37°C. Nonadherent bacteria were subse- 
quently removed from the monolayers by washing and were then trans- 
ferred back into the 24-well tissue culture tray containing 1.0 ml HBSS(+) 
buffer in each lower reservoir (apical membrane now colonized with S. ty- 
phimurium), and 140/xl in the upper reservoir (basolateral interface). 
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Preparation of S. typhimurium-Epithelial-conditioned 
Matrix on Polycarbonate Filters 
T84 cells were plated onto polycarbonate filters which were coated with 
rat tail collagen (50 }xl of 1:100 dilution of viscous rat tail collagen in etha- 
nol) and allowed to dry before plating. Although low concentrations of rat 
tail collagen are required for efficient attachment to filters, in the 5-7 d 
until physiological confluence is achieved these cells lay down a matrix 
~1-2 Ixm in thickness on which electrically confluent polarized monolay- 
ers reside (Madara et al., 1987). S. typhimurium-T84 epithelial cell-condi- 
tioned matrix was prepared by a slight modification of the method previ- 
ously described by Schubert and LaCorbiere (1980). As illustrated in Fig. 
1, T84 cell monolayers apically colonized with S, typhimurium (prepared 
as above), were transferred to fresh 24-well plates containing a solution of 
5 )< 10 -4 M ethylene glycol-bis(f3 aminoethyl ether) N,N,N',N'-tetraacetic 
acid (EGTA; Sigma Chemical Co.) in HBSS(- )  (without Ca 2+ and Mg 2+, 
with 10 mM Hepes, pH 7.4 (Sigma Chemical Co.), at 37°C. T84 cell mono- 
layers were next gently stripped from the collagen-coated polycarbonate 
filters via bathing in EGTA-HBSS(-)  for 2 h at 37°C with gentle agita- 
tion. After the first hour of EGTA treatment, the T84 cells were washed 
twice with ~6-10 ml of HBSS(-) ,  and returned to fresh wells containing 
EGTA-HBSS(-)  where they were incubated for the remaining (second) 
hour. The monolayers were then viewed under an inverted phase micro- 
scope (IM35; Carl Zeiss, Inc., Thornwood, NY) to verify the filters were 
void of epithelial cells. In addition, confocal microscopy using rhodamine- 
conjugated phalloidin to detect epithelial filamentous actin confirmed the 
uniform removal of monolayers using this approach. Lastly, the inverts 
were washed with 3 x 150-ml washes in HBSS(+) and transferred back 
into the original 24-well tissue culture trays containing 1.0 ml HBSS(+) 
buffer in the lower reservoir (apical interface), and 100 ixl in the upper 
reservoir (basolateral interface). Control matrices consisted of those laid 
down by T84 cell monolayers that had not been colonized with S. typhi- 
murium. Thus, matrices finally isolated had received several high volume 
washes, sufficient to remove soluble signals such as 3H mannitol (10 ixCi/ 
ml) from filter matrices. Specifically, 3 x 150-ml washes reduced counts of 
radioactivity to background levels, while unwashed control filter matrices 
were determined to be 250 times background. 

Neutrophil Transepithelial Migration across 
Conditioned Matrix 
Neutrophils obtained from normal human volunteers were isolated from 
anticoagulated (sodium citrate, 13.2 g, and dextrose, 11.2 g in 500 ml wa- 
ter, pH 6.5) whole blood using the gelatin sedimentation technique, as 
previously described (Henson and Oades, 1975; Parkos et al., 1992), 106 
isolated neutrophils suspended in a 20-~1 vol were added to the basolat- 
eral bath (upper reservoir since monolayers were grown in an inverted 
fashion). Incubations were for 90 min at 37°C unless specifically indicated 
otherwise. Positive control transmigration assays were performed by im- 
posing chemoattractant gradients (10 -7 M n-formyl methionylleucylphenyl- 
alanine) 1. At the end of each experiment, monolayers were cooled to 4°C, 
and neutrophil transmigration was quantitated by assaying for the neutro- 
phil-specific azurophilic granule marker myeloperoxidase as described 
previously (Parkos et al., 1991). Neutrophil cell equivalents (CE), esti- 
mated from a standard curve, were assessed as the number of neutrophils 
that had completely traversed the matrix/polycarbonate filter (i.e., into 
the lower reservoir). Numbers of neutrophils associated with the matrix 
are not presented since they are a minor fraction of the transmigrated 
population. The standard curve was linear in the range used (0.30-50 × 
104 cells/ml). 

Chloramphenicol Treatment of S. typhimurium and 
Cycloheximide Treatment of T84 Monolayers 
In the indicated subsets of experiments, chloramphenicol (100 ixg/ml), a 
bacteriostatic protein synthesis inhibitor (which does not similarly affect 
eucaryotic cells) was added to S. typhimurium (McBeth and Lee, 1993) 
before the 45-min colonization step, and remained in both the apical and 
basolateral reservoirs throughout the course of neutrophil transmigration 
(McCormick et al., 1993). Where used, cycloheximide (Sigma Chemical 
Co.), an inhibitor of eucaryotic but not prokaryotic protein synthesis was 

1. Abbreviations used in this paper: CE, cell equivalent; fMLP, (n-formyl) 
formylmethionylleucylphenylalanine. 

prepared as a 2-mg/ml stock in 95% ethanol and diluted to a final concen- 
tration of 2 p.g/ml in tissue culture media. This concentration inhibits 75 % 
of radiolabeled leucine incorporation into T84 cell-precipitable protein 
(McRoberts et al., 1990). 

4°C Treatment of T84 Cell Monolayers 
S. typhimurium were washed in HBSS(+) buffer as described above and 
equilibrated to 4°C. Inverted monolayers were washed in HBSS(+) at 
37°C, as indicated above, and like S. typhimurium, were equilibrated to 
4°C. The cold bacterial suspension was then gently distributed onto the 
cold apical surface of the T84 cell monolayer, and incubated at 4°C for 45 
min. The nonadherent bacteria were removed by washing thrice in 
HBSS(+), and the inverted monolayers were transferred into a fresh 24- 
well tray containing EGTA-HBSS(-) ,  as described above, at 4°C. T84 cell 
monolayers were effectively removed from the collagen-coated polycar- 
bonate filters at either 37 or 4°C. After the 2-h treatment, the inverts were 
then washed in HBSS(+) and transferred back into 24-well tissue culture 
trays containing HBSS(+), and the plates transferred to 37°C. After the 
conditioned filters warmed to 37°C, neutrophil transmigration across the 
conditioned matrix was assessed as previously detailed above. 

Anti-IL-8 Antibody Studies 

For neutralizing polyclonal antibodies against human IL-8 (Endogen, Inc., 
Boston, MA) 30 ixg/ml were exposed to the filter matrix after EGTA 
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Figure 1. Prepara t ion  of  S. typhimurium-epithelial-conditioned 
matrix on polycarbonate  filters. (A) T84 monolayers ,  which lay 
down  their  own complex  matr ix  (Madara  et  al., 1987) af ter  be ing 
p la ted  on rat tail co l l agen-coa ted  pe rmeab le  suppor ts ,  were 
grown to conf luency and subsequent ly  the  apical m e m b r a n e s  
were  colonized by S. typhirnurium. This p rocedure  was done  un- 
der  condi t ions  in which the  mono laye r  mainta ins  biophysical  po-  
larity and thus  basolateral ly secre ted  prote ins  are t rans fe r red  to 
the  matrix.  (B) Monolayers  were  t hen  s t r ipped  and the  isolated 
matr ices  washed.  (C)  The  s t r ipped  impr in ted  matr ices  were  
inver ted  so that  baso la te ra l - to-ap ica l -d i rec ted  t ransmigra t ion  
could be assessed.  Detai ls  of  this pro tocol  are descr ibed  in Mate-  
rials and Methods .  
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treatment, as described previously (McCormick, 1993), for 30 rain before 
the addition of 106 neutrophils/well. This concentration of antibody was 
chosen since secretion of IL-8 induced by apical colonization by S. typhi- 
murium yields small (<1 ng/ml) transepithelial gradients of IL-8 that are 
generated opposite to the direction of neutrophil migration (McCormick 
et al., 1993). The neutralizing activity of the rlL-8 antibody used was suffi- 
cient to inhibit completely the effect of 1 ng/ml rlL-8 gradients and neu- 
tralized 50% of the effect of 10 ng/ml rlL-8 (McCormick et al., 1993). 
Neutralizing mAbs against the IL-8 receptor (IL-8 receptor A) on neutro- 
phils were used via a slight modification by Chuntharapai et al. (1994). 
Specifically, 50 ~g/ml antibody was added to 5 × 107 neutrophils, pre- 
pared as described above, but containing 0.5% BSA in HBSS(-). The ad- 
dition of BSA to the neutrophils had no effect on the transmigrating abil- 
ity of the neutrophils. The neutrophil-mAb mixture was then gently 
rotated on a shaker at 4°C for 90 min to prevent settling of the neutro- 
phils. 106 neutrophils were added to upper reservoir of conditioned ma- 
trix/polycarbonate filters. After a 90-min incubation period at 37°C, neu- 
trophils were assessed for their ability to migrate across the underlying 
matrix via an enzymatic assay for the specific marker myeloperoxidase 
(Parkos et al., 1991, 1992). 

Conditioning Control Matrices with rIL-8 

Control matrices, prepared as described above, consisted of those laid 
down by T84 monolayers that had not been colonized with S. typhimu- 
rium. To condition a subset of these matrices with exogenous IL-8, these 
matrices were exposed to gradients of either 0, 2, 20, or 200 I~g/ml of hu- 
man rIL-8 (R and D Systems, Minneapolis, MN) applied apically for ei- 
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ther 45 or 90 min at 37°C (apical > basolateral). After each time point, the 
conditioned matrices were washed three times in 150-ml vol of HBSS(+) 
buffer for both the top and bottom reservoirs. Transmatrix migration of 
neutrophils was subsequently assessed in both the presence and absence 
of neutralizing polyclonal anti-IL-8 antibodies, as described above. 

Data Presentation 

Neutrophil isolation was restricted to 10 different donors (repetitive dona- 
tions) over the course of these studies. Myeloperoxidase assay (i.e., neu- 
trophil transmigration) data were compared by Student's t test. Neutro- 
phil transmigration results are represented as neutrophil CE derived from 
a daily standard neutrophil dilution curve. Neutrophils that completely 
traversed the filter are represented as the number of neutrophils CE/ml 
(total vol I ml). Values are expressed as the mean and SD of an individual 
experiment done in triplicate repeated n times. 

Results 

BasolateraUy Secreted IL-8 in Response to Apical 
Salmonella Attachment Does Not Drive the Final 
(i.e., Postmatrix) Event of Transepithelial 
Migration of Neutrophils 

As previously shown (Eckmann et al., 1993; McCormick et 
al., 1993) apical membrane colonization with S. typhimu- 
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Figure 2. The effects of S. typhimurium interactions with polarized T84 monolayers on transepithelial migration. In the subset of exper- 
iments described, the T84 epithelial cell monolayers remained intact on the filter matrix. (A) T84 intestinal monolayers were colonized 
with 50 cell-associated S. typhimurium/epithelial cells and assessed for polarized secretion of IL-8 in control T84 monolayers or mono- 
layers colonized by S. typhirnurium (50 bacteria/cell). IL-8 secretion was assayed by ELISA as previously described (McCormick et al., 
1993). A, secretion into the apical reservoir; B, secretion into the basolateral reservoir. (B) Ant i - IL-8  antibodies (30 jxg/ml) effectively 
ablate transepithelial migration of neutrophils across T84 monolayers in response to imposed maximal gradients of rlL-8 (100 ng/ml) 
but not fMLP (10 -7 M) (*P < 0.025 for IL-8 plus anti-IL-8). (C) Ant i - IL-8  antibodies used as in B do not  affect neutrophil  transepithe- 
lial migration that  occurs spontaneously after surface colonization with S. typhimurium. (D) Neutralizing m A b  (open bars) against the 
neutrophil  IL-8 receptor (IL-8 receptor A)  were only effective at inhibiting transepithelial migration of neutrophils to gradients of IL-8 
(500 ng/ml; *P < 0.01). In contrast, the same mAb  did not prevent  transepithelial migration to ei ther transepithelial gradients of fMLP 
(10-7 M) or S. typhimurium stimulation. Data  are expressed as mean and SD of triplicate samples for each condition tested and repre- 
sent one out of two experiments performed with similar results. The y-axis of this figure represents transepithelial migration as defined 
by PMN migration across an intact epithelial monolayer. 
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rium induces basolateral secretion of IL-8 (Fig. 2 A). We 
extended previous suggestions (McCormick et al., 1993) 
that basolateral IL-8 secretion does not account for the fi- 
nal event of transepithelial migration of neutrophils in re- 
sponse to surface-attached pathogens. As shown in Fig. 2 
B, IL-8-dependent transepithelial migration of neutro- 
phils elicited by imposing transepithelial gradients of re- 
combinant human IL-8 is effectively inhibited by neutral- 
izing antibodies to IL-8. In contrast, transepithelial migration 
across S. typhimurium--colonized monolayers is not influ- 
enced by the presence of neutralizing IL-8 antibody (Fig. 2 
C). Similarly, neutrophil transepithelial migration induced 
by imposed gradients of IL-8 is also effectively inhibited 
by blocking antibodies to the IL-8 receptor (IL-8 receptor 
A), while such antibodies are ineffective at inhibiting trans- 
epithelial migration of neutrophils induced by apically at- 
tached S. typhimurium (Fig. 2 D). Such data indicate that 
if basolateral IL-8 secretion has a biological role in inflam- 
mation it is unlikely to be mediation of the final event by 
which neutrophils arriving in the immediate subepithelial 
space are guided across the epithelial monolayer. 

Colonization of  the Apical Membrane with 
S. typhimurium Imprints a Directional Chemotactic 
Signal on the Underlying Matrix 

We next sought to determine whether apical membrane 
colonization by S. typhimurium could result in the imprint- 
ing of a chemotactic signal within the underlying matrix. 
As shown in Fig. 3, thoroughly washed, epithelial-stripped 
matrices synthesized by T84 monolayers not colonized by 
S. typhimurium poorly supported spontaneous transmatrix 
neutrophil migration. However, neutrophil migration across 
such control matrices was readily driven by imposing max- °201 ~ 15 

~ t u  

5 

Control IL-8 fMLP S. typhimurium 
i 

Spontaneous Induced Spontaneous 

Figure 3. S. typhimurium colonization of T84 monolayers im- 
prints underlying matrices with chemotactic signals that drive 
transmatrix neutrophil migration as effectively as imposed maxi- 
mal effective gradients of IL-8 (100 ng/ml) or fMLP (10 -7 M) 
Spontaneous (control), migration across matrices isolated from 
uncolonized T84 monolayers; Induced, migration across such 
control matrices in response to imposed (maximally effective) 
chemotactic gradients; Spontaneous (S. typhirnurium)-spontane- 
ous migration supported by matrices imprinted by S. typhimu- 
rium-colonized monolayers (*P < 0.05). In these experiments, as 
in all subsequent figures, the T84 epithelial cell monolayers have 
been removed to expose matrix components (see Materials and 
Methods). The y-axis, consistent with all subsequent figures, rep- 
resents transmatrix migration defined as PMN migration across 
the matrix filter after the epithelial monolayer has been removed. 

imaUy effective transmatrix gradients of neutrophil chemoat- 
tractants, fMLP (10-7M) or rIL-8 (100 ng/ml). In contrast 
to control matrices, matrices isolated from T84 monolay- 
ers apically colonized with S. typhimurium were imprinted 
by signals which supported spontaneous neutrophil migra- 
tion responses quantitatively similar to those achievable 
by imposing maximally effective transmatrix gradients of 
either fMLP, or rIL-8 on control matrices (Fig. 3). Such 
matrices had undergone large volume washes sufficient to 
remove unbound soluble molecules (see Materials and 
Methods). Analyses of numbers of neutrophils adherent to 
the matrix also provided evidence of an imprinted signal- 
driving migration through the matrix. While substantial 
numbers of neutrophils adhered to but did not migrate 
across matrices obtained from uncolonized T84 monolay- 
ers, the spontaneously driven migration of neutrophils 
across matrix-imprinted S. typhimurium-colonized T84 
monolayers resulted in depletion of matrix-adherent neu- 
trophils (17.23 ± 2.11 vs 3.21 _+ 0.86 CE x 10 4, respec- 
tively). The effect of matrix imprinting by S. typhimurium- 
epithelial interactions was seen throughout the time 
course of the chemotactic assay (Fig. 4). By 90 min ~50% 
of neutrophils interfacing with imprinted matrices had suc- 
cessfully transmigrated (50.12 ___ 10.00 vs. 7.31 +_ 1.10 CE 
104 for transmatrix migration of neutrophils across S. typhi- 
murium-imprinted matrices vs. control, respectively; 106 
neutrophils were added to the basolateral surface of each 
well) across the matrix filter. Thus, matrix imprinted by 
monolayers that were surface colonized by S. typhimurium 
support spontaneous transmatrix migration and do so at 
exceedingly high levels. 

We next determined whether apical epithelial contact, 
or simply exposure of S. typhimurium to T84 cell matrix 
components (which might occur during the procedure 
used to strip colonized epithelial monolayers from under- 
lying matrices), was essential for induction of neutrophil 
transmatrix migration. Preexposure of matrices derived 
from control monolayers to S. typhimurium did not elicit 
spontaneous transmatrix neutrophil migration (Fig. 4). 
Thus, the observed imprinting could not be explained by 
incidental contamination of the matrix during the strip- 
ping procedure. 

The relationship between density of surface-colonized 
S. typhimurium and the efficacy of matrix imprinting was 
also documented (7.25 +_ 1.50, 40.93 + 6.8, 78.31 _ 7.20 
CE 104 for 3, 15, and 50 bacteria/epithelial cell, respec- 
tively). Thus, increasing the S. typhimurium cell-associated 
populations from 3:15:50 bacteria/epithelial cell before 
isolating T84-conditioned cell matrix led to progressive 
efficiency of matrix imprinting. In paired experiments im- 
printing matrices with S. typhimurium--colonized monolay- 
ers led to greater transmigration responses than occurred 
by imposing maximal fMLP gradients across matrices ob- 
tained from uncolonized epithelial monolayers (78.31 --- 
7.20 vs. 39.76 --- 8.00 CE 104 for S. typhimurium-imprinted 
matrices vs. fMLP-induced gradients across control matri- 
ces, respectively). Additionally, the kinetics of Salmo- 
nella-T84 exposure were characterized to determine the 
duration of Salmonella-epithelial interactions that ac- 
count for maximal transmatrix signals to neutrophils. An 
inoculum of S. typhimurium producing colonization by 50 
bacteria/epithelial cell was placed on the apical membrane 
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Figure 4. The effect of direct exposure of control, unimprinted 
monolayer-derived matrices to S. typhimurium. In contrast to im- 
printed matrices that support spontaneous transmatrix migration 
of neutrophils (Apical contact), direct exposure of unimprinted 
matrices to bacteria (applied at same density and length of time 
as in colonized monolayers) does not support spontaneous neu- 
trophil migration. Thus the imprinting observed specifically re- 
quires a bacterial-epithelial interface (*P < 0.025). 

of T84 monolayers grown on permeable supports for peri- 
ods ranging from 0 to 90 min, before preparing T84-condi- 
tioned matrices. Increasing the duration of S. typhimurium- 
epithelial interactions led to a corresponding increase in 
imprinted transmatrix migration of neutrophils; peaking at 
45 min and maintaining a plateau thereafter (data not 
shown). Further, filter/matrix-associated neutrophil den- 
sity remained constant throughout the time course of S. ty- 
phimurium exposure (~8.00 CE 104). 

Matrix Imprinting by S. typhimurium-colonized 
Monolayers Is Directional 

To efficiently drive migration of neutrophils exiting the 
vascular bed to an immediate subepithelial position, ma- 
trix imprinting should provide a directional chemotactic 
gradient. To test whether the imprinted signal was chemo- 
tactic or simply chemokinetic, we examined neutrophil mi- 
gration across imprinted matrices in apical-to-basal and 
basal-to-apical directions. As shown in Fig. 5, the chemokine 
signal imprinted on matrices conditioned by S. typhimu- 
rium-colonized monolayers supported basolateral-to-api- 
cal, but not apical-to-basolateral migration. However, im- 
posed gradients of fMLP (10-7 M) were shown to effectively 
drive neutrophil migration in either direction across the 
isolated matrix. 

Effect of  Bacterial and Epithelial Protein Synthesis 
on Matrix Imprinting 

To address whether metabolic events after bacterial-epi- 
thelial contact are, in part, responsible for imprinting the 
matrix with a chemotactic signal after surface colonization 
by S. typhimurium, imprinting was performed at 4°C, a 
temperature at which bacterial-epithelial adhesive associ- 
ations can still occur (Behlau and Miller, 1993). As shown 
in Fig. 6 and in contrast to matrices imprinted at 37°C, ma- 
trices imprinted at 4°C did not support subsequent neutro- 
phil migration (neutrophil migration assayed after shifting 
isolated matrix to 37°C). 

T 

20" 

Control BI-Ap Ap-BI 
Physiological Non-physiological 

Figure 5. Matrix imprinting by S. typhimurium-colonized mono- 
layers supports chemotactic (directional) neutrophil migration. 
To assess whether the imprinted signal was chemotactic or 
chemokinetic, neutrophil migration across imprinted matrices 
was performed in both physiologic (tissue-to-lumen) and non- 
physiologic (lumen-to-tissue) directions. As shown, neutrophil 
transmigration was supported only in the physiologic (tissue-to- 
lumen) orientation (*P < 0.01). In the nonphysiological orienta- 
tion, T84 epithelial monolayers were plated in the conventional 
manner such that the apical surface interfaced with the upper res- 
ervoir (Parkos et al., 1991, 1992). Under such conditions, matrices 
were isolated from S. typhimurium-infected cell monolayers as 
described in detail (see Materials and Methods). However, in 
such an orientation neutrophils were added to the nonphysiologi- 
cal surface (apical) which interfaced with the upper reservoir. 
These conditions are comparable to the physiological conditions 
since comparison of basal transmatrix migration in response to 
imposed external fMLP gradients shows no difference as a func- 
tion of polarity, unlike IL-8--imprinted gradients. II, Salmonella- 
imprinted matrices; D, fMLP-induced gradients. 

We next determined whether bacterial and/or epithelial 
protein synthesis were required after bacterial-epithelial 
contact in order to successfully imprint underlying matri- 
ces. S. typhimurium were exposed to chloramphenicol 
(100 ixg/ml), a bacteriostatic bacterial-specific protein syn- 
thesis inhibitor (see Materials and Methods), just before 
and during the incubation period in which matrices are im- 
printed. As shown in Fig. 6, the neutrophil transmatrix mi- 
gration response elicited by chloramphenicol-treated S. ty- 
phimurium--conditioned matrix was 85% inhibited compared 
with that occurring across matrix imprinted in the absence 
of chloramphenicol. In previous experiments, quantitation 
of colonized epithelial lysates revealed that such chloram- 
phenicol exposure did not substantially affect the ability 
of S. typhimuriurn to adhere to T84 monolayers, nor did 
chloramphenicol exposure measured over 3 h substantially 
affect the T84 transepithelial resistance (McCormick et al., 
1993). Such data suggest that bacterial-epithelial apical 
membrane contacts and subsequent bacterial protein syn- 
thesis once contacts are established are crucial to subse- 
quent generation of a transmatrix signaling response to 
neutrophils. 

Matrix imprinting was likewise assessed in the presence 
of the eucaryotic protein synthesis inhibitor, cyclohexi- 
mide at a concentration that inhibits >80% of protein syn- 
thesis, a condition previously shown not to impair epithe- 
lial barrier function nor restrict S. typhimurium attachment 
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cooperative metabolic Figure 6. Matrix imprinting requires 
events between bacteria and epithelial cells. Surface colonization 
by S. typhimurium at 37°C (normal colonization conditions) is re- 
quired for imprinting to occur, since a shift in temperature to 4°C 
inhibits matrix imprinting by S. typhimurium. Additionally, selec- 
tive inhibition of either procaryote protein synthesis by chloram- 
phenicol (CAM, 100 txg/ml) or eucaryotic protein synthesis by cy- 
cloheximide (CHX, 2 ixg/ml) effectively blocks matrix imprinting 
(*P < 0.05; *P < 0.025). 

to the epithelium (McCormick et al., 1993). As shown in 
Fig. 6, eucaryotic protein synthesis after S. typhimurium 
binding was also required to successfully imprint matrices. 

11_,-8 Is a Major Component of  SalmoneUa-Epithelial 
Imprinting of  Cell Matrix 

We next examined whether the polarized IL-8 secretion 
observed which follows S. typhimurium attachment to epi- 
thelial cells was, in part, responsible for the observed im- 
printing of underlying matrices. As shown in Fig. 7 A, neu- 
tralizing polyclonal antibodies to IL-8 (30 ixg/ml) have no 
effect on migration of neutrophils across matrices ob- 
tained from uncolonized T84 monolayers in response to 
formyl peptide gradients, but effectively inhibit neutrophil 
migration across such matrices driven by imposed gradi- 
ents of rIL-8 (100 ng/ml). Moreover, neutralizing antibod- 
ies to IL-8 effectively reduced neutrophil transmatrix mi- 
gration across Salmonella-conditioned matrices by ~50% 
(12.30 _ 2.40 vs. 7.231 _+ 1.60 CE 10 4 for Salmonella-con- 
ditioned T84 cell matrix in the presence and the absence of 
30 ~Lg/ml neutralizing polyclonal IL-8 antibodies). 

Spontaneous Chemotaxis of  Neutrophils 
across Imprinted Matrices is Directed by the 
IL-8 Receptor 

The involvement of IL-8 in matrix imprinting was further 
characterized by examining the effects of inhibiting anti- 
bodies to the IL-8A receptor on chemotaxis through im- 
printed matrices. As shown in Fig. 7 B, mAbs to the IL-8 
receptor (IL-8 receptor A) present on neutrophils do not 
inhibit transmatrix migration of neutrophils in response to 
fMLP gradients (10 -7 M), but ablate neutrophil transma- 
trix migration to imposed transmatrix gradients of IL-8 
(100 ng/ml) (95 % inhibited in the presence of 50 ixg/ml IL-8 
receptor mAb). Spontaneous neutrophil migration across 
imprinted matrices was inhibited by N70% by this IL-8 re- 
ceptor antibody. Together, these data indicate that the 
chemotactic signal imprinted on the matrix after S. typhi- 
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Figure 7. The effect of neutralizing anti-IL-8 on matrix imprint- 
ing, as well as the effect of anti-IL-8 high-affinity receptor anti- 
body on neutrophil migration across T84--derived matrices. (A) 
In contrast to control unimprinted matrices, matrices either im- 
printed by S. typhimuriurn (S.t.) or matrix across which fMLP or 
IL-8 gradients are imposed support substantial neutrophil migra- 
tion (solid bars; absence of IL-8 antibody). IL-8-neutralizing an- 
tibody (50 ixg/ml) (open bars), inhibits ,'~50% (*P < 0.10) of 
spontaneous migration across imprinted matrices. As a negative 
control, IL-8 antibody has no effect on migration across control 
matrices driven by exogenous fMLP (10 -7 M). As a positive con- 
trol, IL-8 antibody ablates migration across control matrices 
driven by exogenous IL-8 (100 ng/ml) gradients (*P < 0.01). (B) 
Control, rlL-8 (100 ng/ml), and fMLP (10 -7 M) correspond to un- 
imprinted matrices across which specific gradients were imposed. 
S.t., matrices imprinted by S. typhimurium interactions. Neutro- 
phil migration in the absence of (solid bars) or presence of (open 
bars) blocking antibody to the IL-8 receptor (IL-8 receptor A) 
(50 txg/ml) is shown. The majority of the imprinted signal for 
transmatrix migration appears neutralized by the antibody, 
whereas this antibody has no effect on migration which occurs via 
another neutrophil chemotactic receptor (fMLP) (*P < 0.01; 
*P < 0.025). 

murium-epithelial colonization is largely due to IL-8 and 
can also be detected by the IL-8 receptor. 

Induction o f  lL-8 Imprinting in Control Matrices 

The ability of IL-8 to imprint chemotactic memory on ma- 
trices generated by T84 monolayers was demonstrated by 
direct conditioning of control matrices with IL-8. Control 
matrices were exposed to rlL-8 gradients (apical > baso- 
lateral) of 0, 2, 20, and 200 ng/ml for 45-90 min. As shown 
in Table I, exogenous IL-8 gradients produced time-depen- 
dent matrix imprinting. The largest signal was seen at 90 
min after imprinting in a 200 ng/ml gradient and the im- 
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Table I. Exogenous Conditioning of Control Matrices with IL-8 
and the Ability to Imprint Chemotactic Signals 

Time [IL-8] Minus IL-8 Ab* Plus IL-8 Ab* 

(min) (ng/mL) 

45 0 2.651 -- 0 .984 1.721 --+ 0.365 

200 3 .714 ----- 1.231 1.956 -- 0.841~ 

0 2 .560 -- 0 .958 1.512 -- 0 .365 
90 200 11.325 -- 2.65 1.856 -- 0.951 ~ 

Data represent mean of triplicate samples _+ SD. One representative experiment of 
two performed (all showing the same result). 
*Values represent the number of neutrophils (CE × 104) that have migrated com- 
pletely across filter matrices in response to exogenous conditioning with 200 ng/ml 
IL-8 for either 45 or 90 min (see Materials and Methods). Neutrophils are quantitated 
based on known PMN standard using the myeloperoxidase assay (see Materials and 
Methods). IL-8 at 2 and 20 ng/ml did not significantly imprint matrices such that 
transmatrix migration was enhanced (not shown). 
*(P < 0.100) 
~(P < 0.025) 

printed gradient (i.e., retained after multiple high volume 
washes) was effectively inhibited by IL-8 antibodies 
(~90%). 

S. typhimurium Mutant  PhoP c Fails to Induce IL-8 
Secretion and Matrix Imprinting 

S. typhimurium PhoW (strain CS022) carries a constitutive 
mutation within the S. typhimurium PhoP regulatory locus 
(phenotype PhoP ~) that results in attenuated host viru- 
lence in mice (Miller and Mekalanos, 1990; Miller, 1991; 
Behlau and Miller, 1993). Unlike wild-type S. typhimu- 
rium, the mutant PhoP c did not induce T84 cell-polarized 
monolayers to secrete IL-8 (2.63 _+ 1.00 vs. 0.200 _+ 0.151 
ng/ml secreted into the basolateral compartment for wild- 
type S. typhimurium 14028s and PhoP c, respectively; P < 
0.05). As shown in Fig. 8, the mutant Phol x also was un- 

20  ¸ 

16  ¸ 

4 ¸ 

N.S. 

Control S. typhlmurlum PhoPc 

Figure 8. S. typhimurium mutant PhoPc is attenuated in its ability 
to drive spontaneous PMN transmatrix migration. Matrices de- 
rived from uncolonized monolayers or from monolayers with the 
same surface-attached densities of either wild-type S. typhimu- 
rium or the invasion defective mutant S. typhimurium PhoW were 
studied. The PhoP ~ mutant display limited virulence in mice 
(Miller and Mekalanos, 1990) and do not result in basolateral IL-8 
secretion (see text). As shown, S. typhimurium mutant PhoI x 
poorly imprints T84 cell matrices compared with wild-type S. ty- 
phimurium (*P < 0.01). 

able to induce matrix imprinting of chemotactic signals 
even though PhoI x adhered to T84 apical epithelial sur- 
faces (McCormick et al., 1995). 

Discuss ion  

Attachment of S. typhimurium to the apical membrane of 
intestinal epithelial cells elicits directed neutrophil migra- 
tion from the vasculature, across the subepithelial matrix 
and ultimately across the epithelium itself (Takeuchi, 
1967; Day et al., 1978). Remarkably these events occur 
while the epithelium is still intact (Takeuchi, 1967; Day et 
al., 1978). While the mechanisms driving these responses 
have only recently attracted attention, there is now sub- 
stantial evidence that the epithelial cells themselves may 
play a proactive role in organizing/initiating such inflam- 
matory responses (Agace et al., 1993; Eckmann et al., 
1993; McCormick et al., 1993; Jung et al., 1995). It is clear 
that bacterial binding to epithelial cells can influence pro- 
duction of important regulators of inflammation. For ex- 
ample, IL-6 production is elicited by the binding of adher- 
ent Escherichia coli to bladder or kidney epithelial cells 
(Hedges et al., 1991), and we (McCormick et al., 1993) and 
others (Eckmann et al., 1993) have shown that S. typhimu- 
rium interaction with the apical pole of intestinal epithelial 
cells elicits secretion of bioactive cytokines. Importantly, 
the pattern of secretion of chemokines shown by T84 cells 
in response to challenge accurately portrays the response 
pattern observed with freshly isolated .human colonocytes 
(Jung et al., 1995). 

Here we show that biophysically confluent T84 cell 
monolayers apically colonized by S. typhimurium secrete 
signals that imprint chemotactic memory on underlying 
matrices. Antibody neutralization experiments using ei- 
ther polyclonal antibody directed at IL-8 itself or mono- 
clonal antibody against the IL-8 receptor on neutrophils, 
indicate that a bulk of this imprinted bioactivity can be at- 
tributed to epithelial basolateral secretion of IL-8 stimu- 
lated by S. typhimurium contact with the apical mem- 
brane. Experiments using such neutralizing IL-8 and 
blocking IL-8A receptor antibodies in the presence of in- 
tact epithelial monolayers suggest that although basolat- 
eral IL-8 secretion is key to imprinting signals chemotactic 
for neutrophils on subepithelial matrices, IL-8 secretion is 
not needed to drive the final step of migration of subepi- 
thelial neutrophils to the luminal compartment. Given that 
basolateral secretion of IL-8 would not result in a favor- 
able transepithelial gradient to drive transepithelial migra- 
tion, this finding is not surprising. Furthermore, such ob- 
servations are consistent with recent findings that an 
apically secreted chemokine with physical characteristics 
unlike IL-8 appears responsible for driving this final step 
of transepithelial migration (McCormick, B. A., and J. L. 
Madara, manuscript in preparation). These data suggest 
that a primary role for basolateral secretion of IL-8 by epi- 
thelia is recruitment of neutrophils through the matrix to 
the subepithelial space. Such events may have substantial 
importance in assisting movement of neutrophils to the 
subepithelial space. For example, it has been noted in pa- 
tients with cystic fibrosis that neutrophil elastase can in- 
duce IL-8 gene expression in respiratory epithelia (Naka- 
mura et al., 1992). Additionally, inhibition of IL-8 gene 
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expression by aerosolized secretory leukoprotease inhibi- 
tor suppresses both IL-8 secretion and neutrophil infiltra- 
tion of this epithelium in this disorder (McElvaney et al., 
1992). Although our functional data strongly imply the ex- 
istence of an IL-8 gradient in the matrix after Salmonella 
colonization, we have not been able to document the exist- 
ence of this gradient by direct physical means. 

Known distorting effects of solvent flow in the microen- 
vironment of the lamina propria (Jodal and Lundgren, 
1986) would seem to require long range matrix binding of 
chemotactic signals. Epithelial-derived IL-8 exhibits many 
properties that would make this chemokine well-suited for 
this purpose. IL-8 is extremely resistant to inactivation 
(both in vitro and in vivo) (Colditz et al., 1989). Thus, once 
present in inflamed tissue IL-8 is likely to retain its biolog- 
ical activity for several hours, as shown by local intrader- 
mal administration in animals and humans (Colditz et al., 
1989; Leonard et al., 1991; Swensson et al., 1991). In con- 
trast to IL-8, chemokines such as fMLP or LTB4 are de- 
graded rapidly by oxidation or hydrolysis (Baggiolini et 
al., 1994). Most importantly for sites like the subepithelial 
matrix of intestinal mucosa where volume flow is ex- 
tremely high, IL-8, due to its highly cationic nature, binds 
avidly to glycosaminoglycans of the tissue matrix (Baggio- 
lini et al., 1992), thus making such bound IL-8 gradients 
particularly resistant to sweeping away effects of fluid 
flow. Such binding characteristics of IL-8 are further high- 
lighted by the ability of this cytokine to provide a surface- 
fixed gradient capable of sustaining haptotactic migration 
of A 2058 melanoma cells (Wang et al., 1990). The IL-8 re- 
ceptor antibody and the IL-8 neutralizing antibody were 
both highly effective at blocking migration induced by ex- 
ogenously added human recombinant (hr)IL-8. However 
only ,-~50-60% of the matrix imprinted signal was neutral- 
ized by the blocking antibody, while the IL-8 receptor an- 
tibody was more effective (--~70-80% inhibition). These 
observations leave open the possibility that other imprint- 
ing signals may contribute to this response, perhaps in- 
cluding other signals which are agonists for the IL-8 recep- 
tor. Alternatively, such observed minor differences in the 
efficiency of inhibition by these antibodies may have triv- 
ial explanations relating to the complex geometry of the 
interactions taking place in the matrix. In addition, when 
neutrophil migration across complex biological matrices is 
driven by imprinted IL-8 gradients, it is not clear which of 
the two recently characterized IL-8 receptors would be 
used. Our data obtained using a blocking antibody with 
specificity (Chuntharapai et al., 1994) for the IL-8 A re- 
ceptor on neutrophils suggest that this receptor is suffi- 
cient to drive such complex responses. We, however, 
cannot rule out the possibility that both the high- or the 
low-affinity receptor might have modulating influences on 
IL-8 responses in such complex biological situations. Not 
only is S. typhimurium attachment to the apical membrane 
required to initiate matrix imprinting, but reciprocal meta- 
bolic interactions are required as well. In particular, we 
found that inhibition of postbacteria-epithelial-binding 
metabolic events or inhibition of protein synthesis in ei- 
ther the bacteria or the epithelial cells (after binding) led 
to significantly attenuated matrix imprinting. Such obser- 
vations suggest that bacterial gene products newly ex- 
pressed as a result of epithelial binding lead to reciprocal 

alteration in protein expression by the epithelial cells. This 
idea is consistent with the requirement for inducibly ex- 
pressed virulence factors necessary for Salmonella patho- 
genesis (Lee and Falkow, 1990; Alpuche Aranda et al., 
1992; McBeth and Lee, 1993; Pegues et al., 1995). For ex- 
ample, recent studies indicate that specific bacterial genes 
can be transcriptionally activated within macrophages but 
not in epithelial cells (Alpuche Aranda et al., 1992). Fur- 
ther, the findings of Pegues (1995) suggest that the PhoP/ 
PhoQ regulon regulates extracellular transport of proteins 
by transcriptional repression of secretion determinants 
and that such secreted proteins may be involved in signal- 
ing epithelial cells to endocytose bacteria. The PhoPc mu- 
tant strain of S. typhimurium carries a mutation within the 
phoP regulatory locus that results in attenuated host viru- 
lence for mice (Miller and Mekalanos, 1990). Here we 
show that, while this strain is able to attach to epithelial 
cells, it does not lead to basolateral IL-8 secretion, and im- 
printing of the underlying matrix does not occur. Such ob- 
servations suggest that matrix imprinting, such as that de- 
scribed here, may be an important signaling event in 
response to eucaryotic-procaryotic interactions. 
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