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Abstract. Dihydrofolate reductase fusion proteins 
have been widely used to study conformational proper- 
ties of polypeptides translocated across membranes. 
We have studied the import of dihydrofolate reductase 
fusion proteins into glycosomes and mitochondria of 
Trypanosorna brucei. As signal sequences we used the 
last 22 carboxy-terminal amino acids of glycosomal 
phosphoglycerate kinase for glycosomes, and the cleav- 
able presequences of yeast cytochrome b2 or cyto- 
chrome oxidase subunit IV for mitochondria. Upon ad- 
dition of aminopterin, a folate analogue that stabilizes 
the dihydrofolate reductase moiety, import of the fu- 
sion protein targeted to glycosomes was not inhibited, 

although the results of protease protection assays 
showed that the fusion protein could bind the drug. 
Under the same conditions, import of a DHFR fusion 
protein targeted to mitochondria was inhibited by 
aminopterin. When DHFR fusion proteins targeted si- 
multaneously to both glycosomes and mitochondria 
were expressed, import into mitochondria was inhibited 
by aminopterin, whereas uptake of the same proteins 
into glycosomes was either unaffected or slightly in- 
creased. These findings suggest that the glycosomes 
possess either a strong unfolding activity or an unusu- 
ally large or flexible translocation channel. 

T RYPANOSOMES compartmentalize most of their glyc- 
olytic enzymes in a microbody, the glycosome (Op- 
perdoes, 1987). Although the various types of mi- 

crobodies--glycosomes, peroxisomes, glyoxysomes--differ 
substantially in enzyme content, they show many similari- 
ties and are clearly evolutionarily related (Borst, 1989; 
Hannaert and Michels, 1994). All their resident proteins 
are encoded in the nucleus, synthesized on free ribosomes 
in the cytoplasm and imported posttranslationally across 
the single boundary membrane of the organelle (Lazarow 
and Fujiki, 1985; Subramani, 1993). Signals for targeting 
proteins to peroxisomes have been extensively character- 
ized (reviewed in de Hoop and Ab, 1992). Presently, 
known peroxisomal targeting signals (PTS) t can be sepa- 
rated into two groups. PTS1 consists of the tripeptide SKL 
or related sequences located at the carboxy terminus of 
imported proteins (Gould et al., 1989), and PTS2 of an 
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amino-terminal presequence which in some cases is cleaved 
after import (Osumi et al., 1991; Swinkels et al., 1991). 
PTS1 is also found in trypanosomes (Blattner et al., 1992; 
Sommer et al., 1992) and there is evidence for the exist- 
ence of PTS2 as well (Blattner et al., 1995). In contrast 
with peroxisomes, where many components of the import 
machinery have been identified by genetic approaches 
(Elgersma et al., 1993; Kunau et al., 1993; Spong and Su- 
bramani, 1993; Zhang et al., 1993) or examination of natu- 
rally occurring mutants such as human Zellweger syn- 
drome (Gartner et al., 1992; Shimozawa et al., 1992), no 
components of the glycosomal protein import machinery 
have been identified. Likewise, not much is known about 
the characteristics of the glycosomal import process. In 
peroxisomes, import can be separated into a binding and a 
translocation step and requires ATP (Wendland and Su- 
bramani, 1993) but not a membrane potential (Imanaka et 
al., 1987). 

To study the import machinery of glycosomes, we de- 
cided to employ methodology already applied to yeast mi- 
tochondria. During transit of a polypeptide into mitochon- 
dria it must be in an unfolded state. Methotrexate, a folate 
analogue, binds with high affinity to dihydrofolate reduc- 
tase (DHFR), stabilizing its folded conformation and 
thereby inhibiting unfolding. DHFR coupled to a mito- 
chondrial targeting signal can be imported into mitochon- 
dria, but upon addition of methotrexate or aminopterin, a 
membrane-permeable analogue, the stably folded com- 
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plex gets stuck in the import channel (Eilers and Schatz, 
1986; Rassow et al., 1989; Wienhues et al., 1991). Such 
stuck import intermediates could be photo-cross-linked to 
components of the import machinery (Vestweber et al., 
1989). 

In this paper we describe the effect of aminopterin on 
the import of a DHFR fusion protein targeted to glyco- 
somes. We found no aminopterin-induced import inhibi- 
tion although extensive controls showed that the drug 
bound to the hybrid protein in vitro and in vivo. Further- 
more we report for the first time the application of the in- 
ducible gene expression system for trypanosomes (Wirtz 
and Clayton, 1995). 

Materials and Methods 

Plasmid Construction and Generation of Permanent 
Cell Lines 
The DHFR-phosphoglycerate kinase C (PGK-C) fusion protein (DHFR- 
PGK-C) was constructed the following way: the DHFR coding region with 
a SacII site at the 3'-end was obtained by PCR (Saiki et al., 1988) using 
plasmid p9/2 (van Loon et aL, 1986) as a template and primer oligonucle- 
otides CZ262 (GTACAAGCT]?ATGGqTCGACCATTGAACTG)  and 
CZ264 (GATCCCGCGGAGTCTTTCTTCTCGTAGACTT)  (The cor- 
responding restriction sites are underlined). The product was digested 
with HindIII and SacII and cloned upstream of the nucleotides encoding 
the last 22 amino acids of PGK-C by insertion into HindIII-SacII-digested 
pJ'P 62 (Fung and Clayton, 1991), replacing a chloramphenicol acetyl- 
transferase-cassette, yielding pJP 101. DHFR-APGK-C (pJP101s) was 
made similarly using a pJP 62-variant in which the last five amino acids 
RWSSL are missing from the PGK-C extension (Blattner et al., 1992). 
From both vectors, pJP 101 and pJP 101s, SmaI-StuI fragments containing 
parp- 5'- and 3'-untranslated regions and the DHFR-(A)PGK-C fusion 
were cut out and ligated into pHD 102 that was previously cut with Sinai. 
The resulting vectors were named p102/101 and p102/101s, respectively. 
pHD 102 is a variant of the previously described pHD 30 (Janz and Clay- 
ton, 1994), in which the luciferase cassette is replaced by a [3-tubulin-neo- 
mycin-phosphotransferase-cassette (13-tub-npt) (ten Asbroek et al., 1990) 
and the single PstI-site is converted into a StuI site (C. Hartmann and C. 
Clayton, unpublished observation). It has a PARP promoter that is sepa- 
rated by a SmaI site from the 13-tub-npt-cassette. The fusion between the 
presequence of yeast cytochrome oxidase subunit IV (pcoxIV) and 
DHFR was cut out as an EcoRI-HindIII fragment from pDS5/2-1- 
PCoxlV-DHFR (Hurt et al., 1984), blunted and ligated into blunted HindlII- 
BamHI-cut (5,493 bp) p102/101, yielding p102/200, p102/250 containing 
the pcoxIV-DHFR-PGK-C fusion was obtained by ligating an EcoRI- 
BstXI fragment excised from p102/200 to an EcoRI-BstXI (5,462 bp) frag- 
ment from the vector p102/101. By replacing the pcoxlV-cassette of p102/ 
250 by a fragment coding for the first 167 amino acids of yeast cytochrome 
b~ made by PCR from Plasmid SR1 (Glick et al., 1993) p102/210 was ob- 
tained, p102/210 was cut with BstBI, SpeI, and blunted with mung bean 
nuclease to remove the sequence coding for the amino acids of position 43 
to 67 and generate p102/220 containing Ab2-DHFR. All open reading 
frames obtained by PCR and subcloning (also the ones described later in 
this section) were checked by sequencing. 

To generate permanent cell lines, 10 to 100 ~g of EcoRI- and StuI- 
digested plasmid was used to transfect 3 x 107 AnTat  1.1 trypanosomes by 
electroporation (Beverley and Clayton, 1993). Selection at 5 jxg/ml G418 
was applied 24 h after transfection and increased in intervals to 10 Ixg/ml 
G418 in the following days. Clonal cell lines were obtained by limited dilu- 
tion of drug-resistant populations. 

To obtain cell lines expressing the different DHFR fusions in a tetracy- 
cline-inducible fashion, DHFR-cassettes bearing HindlII and BamHI or 
BgllI sites were obtained by excising the fragments from p102/101 or by 
PCR, using p101/200 and p102/250 as templates and primer oligonucle- 
otide CZ368 (GATCAAGC T T AT GC IT IC AC T AC GT C AATC)  with ei- 
ther CZ374 (GAAGATC-i 'TFAGTCTITCTI 'CTCGTAGACT) or CZ370 
(GATCGGATCCTrAAAGAGAGCTCCACCGGT).  These cassettes were 
subcloned into pHD 430 and transfected into AnTat 1.1 trypanosomes ex- 

pressing the tetracycline repressor as described in Wirtz and Clayton 
(1995). 

SDS-PA GE, Western Blotting, Antibodies, and 
Quantification of lmmunoblots 
Samples were electrophoresed on SDS-PAGE (Laemmli, 1970) and elec- 
troblotted onto nitrocellulose according to published methods (Harlow 
and Lane, 1988). The nitrocellulose filters were blocked for 1 h or over- 
night in TBS-T (20 mM Tris-HC1 [pH 7.6], 137 mM NaC1, 0.1% Tween 20) 
containing 5% nonfat milk powder. Then they were incubated in TBS-T 
in the presence of the primary antibody for 1 h at room temperature. Af- 
ter washing in TBS-T the filters were incubated with alkaline phos- 
phatase-coupled anti-rabbit IgG as secondary antibody. Detection was 
performed using chemiluminescence developing reagents (ECL system; 
Amersham Corp., Arlington Heights, IL). Films were scanned with a 
scanner equipped with a transparency module (Model Arcus II; AGFA 
Corp., Orangeburg, NY) and bands were quantified using the NIH-Image 
software (release 1.56b9). Amounts  of antigen and exposure time of films 
were adjusted to be in a linear range to ensure accurate quantification of 
protein bands (Zhang et al., 1993). Antibodies used were anti-DHFR (di- 
lution 1:2,000), anti-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
(1:10,000), anti-hsp60 antibodies (1:2,000) or anti-PGK-C antibodies (1: 
4,000). The anti-routine DHFR antiserum does not cross-react with the 
trypanosomal homologue, presumably because the homology of the two 
proteins is below 20%. The anti-PGK-C antiserum cross-reacts strongly 
with the highly homologous, cytosolic PGK-B (It is therefore called anti- 
PGK antiserum for brevity). Glycosomal PGK-C is absent from the procy- 
clic form and therefore not detected in these experiments. 

Cell Fractionation of Transformed Cells 
Approximately 7 x 108 cells were harvested by centrifugation (700 g for 
10 rain), washed once in HEDS+ buffer (25 mM Hepes-KOH [pH 7.8], 1 
mM EDTA, 250 mM sucrose, 1 mM DTT, 1 mM o-phenantrolin and 2 Ixg/ 
ml leupeptin) and resuspended in 200 ILl HEDS + (this corresponds to a 1:1 
ratio of pelleted cells and buffer). Silicon carbide was added and the sus- 
pension was ground with the aid of a mortar and pestle until more than 
90% of the cells were broken. The degree of breakage was checked micro- 
scopically. After adding 2.5 ml of HEDS+ the suspension was centrifuged 
once for 5 min (300 g) at 4°C to remove the silicon carbide and twice for 10 
rain (1,800 g) at 4°C to remove the unbroken cells. An organellar pellet 
was obtained by centrifugation for 30 min at 33,000 g (4°C). This pellet 
was resuspended in 200 ILl HEDS+ and layered on top of a linear 1-2 M 
sucrose gradient that was spun for 90 min at 42,000 rpm in a Beckman 
SW60 Ti rotor (Beckman lnstrs., Inc., Fullerton, CA). 10-12 fractions 
were collected manually and diluted twofold with HEDS+ before TCA 
precipitation (Glick, 1991). Fractions were analyzed by SDS-PAGE, 
Western blot and quantification of the respective bands. 

For fractionation of cells with digitonin, 2.5 x 106 cells (10 Ixg protein) 
per aliquot were harvested by centrifugation, washed once in trypano- 
some homogenization buffer (THB), containing 25 mM Tris-HCl (pH 
7.8), 1 mM EDTA, 0.3 M sucrose, 1 mM DTT and 2 p~g/ml leupeptin, and 
resuspended in 112.5 ill THB (to yield a final concentration of 2 x 10 7 

cells/ml after addition of the detergent). 12.5 ~xl of digitonin dissolved at 
different concentrations in distilled water was added. THB with 0.6 M su- 
crose was used for fractionation if mitochondria were included in the anal- 
ysis. At 0.3 M sucrose, mitochondria were stable during and after digito- 
nin fractionation, but collapsed upon protease treatment. The mixture was 
incubated for 2 min at 37°C, vortexed for 10 s and centrifuged (~12,000 g) 
at 4°C for 10 min. The supernatant was TCA precipitated and proteins 
were analyzed as indicated above. In titration experiments the optimal 
digitonin concentration was determined for fractionation of glycosomes 
and mitochondria (0.2 mg digitonin/mg total cellular protein). 

Thermolysin Assay 
106 cells expressing DHFR-PGK-C were harvested, washed, resuspended 
in 330 p.l thermolysin incubation buffer (0.1 M Hepes-HCl [pH 7.5], 2 mM 
CaCI2, 0.2% Triton X-100 and 2 p.g/ml leupeptin) and separated into 30-1xl 
samples. To five of them 1 ~1 of a 250 ~M stock of aminopterin to a final 
concentration of 8.3 ixM was added. All samples but one received 3 p.l of 
serially diluted thermolysin solution to obtain the desired amount of pro- 
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tease. Samples were incubated for 30 min at 43°C. The protease was 
stopped by adding 5 txl of 0.2 M EGTA. Proteins were TCA precipitated, 
and subsequently analyzed by SDS-PAGE and Western blot. 

Killing Curves of Trypanosomes Incubated in Medium 
Containing Aminopterin 
Several aliquots of wild-type cells were diluted to the same density and re- 
ceived aminopterin (dissolved in 0.1 mM NH4÷OH -)  in varying concen- 
trations or the same amount of 0.1 mM NH4+OH - without the drug. Cell 
densities were determined every 24 h by counting. The minimal concen- 
tration which impaired growth was 5 ~LM. To test whether the toxic effect 
of aminopterin on trypanosomes could be reversed, 100 ~LM thymidine 
was added to the medium (Beck and Ullman, 1990). 

In Vivo Import Assays 
Cells containing the genes encoding the different fusion proteins under 
tetracycline control were preincubated for 2-14 h in the presence or ab- 
sence of 500 txM aminopterin and 30 mM sulfanilamide. The expression of 
the fusion protein was then induced by adding 2 Ixg/ml tetracycline. After 
120-300 min incubation at 27°C the viability of cells was checked by mi- 
croscopic examination, cycloheximide was added to 300 I~g/ml and 1 × 107 
cells per aliquot were harvested or incubated for another hour (chase) be- 
fore harvesting, washed and resuspended in 450 ~1 THB (with 0.6 M su- 
crose for mitochondrial analysis and supplemented with 100 p,M aminop- 
terin for cells grown in the presence of the drug) and subjected to 
digitonin fractionation (final concentration of 2 x 107 cells/ml). Pellets 
were resuspended in 500 ~1THB (0.6 M sucrose and + / -  20 IxM aminop- 
terin, but without leupeptin). One aliquot (pellet and supernatant) of each 
assay received proteinase K or trypsin at 20 i~g/ml (in experiments with 
only glycosomes) or 10 p,g/ml (in experiments with glycosomes and mito- 
chondria) and was incubated for 30 min at 4°C. Control aliquots received 
0.2% Triton X-100 and 0.2% deoxycholate. The protease was stopped by 
adding PMSF to 1 mM and incubating for 10 min on ice. Trypsin-contain- 
ing samples received in addition 100 p,g/ml soybean trypsin inhibitor. 
Then the organelles were isolated by centrifugation (4°C) at 12,000 g for 
10 min. The supernatants and detergent-containing samples were TCA 
precipitated and proteins were analyzed by SDS-PAGE, Western blot and 
quantification of the respective bands. 

Pulse Experiments 
Cells constitutively expressing the DHFR-PGK-C fusion protein were 
grown in the presence or absence of aminopterin and sulfanilamide for up 
to 16 h, harvested, washed and resuspended at 107 cells/ml in MEM-medium 
without methionine. [35S]methionine (1,000 Ci/mmol) was added to a final 
concentration of 0.25 ixCi/ml and cells were incubated for 30 min at 27°C. 
At the end of the incubation the viability of the cells was checked by mi- 
croscopic examination, then a 50,000-fold excess of cold methionine (to 
0.5 mg/ml) and cycloheximide to 300 ixg/ml were added. Cells were har- 
vested and treated as described above. After stopping the protease diges- 
tion all samples were TCA precipitated, washed in cold 95% acetone and 
resuspended in 100 Ixl 25 mM Tris-HCl (pH 7.4)/1% SDS as described by 
Fujiki and Verner (1993). The processed samples were then diluted to 1 
ml with TNET (50 mM Tris-HCl [pH 7.4], 150 mM NaC1, 5 mM EDTA, 
1% Triton X-100) supplemented with 2% nonfat dried milk. Samples 
were precleared by adding 100 Ixl of Protein A-coupled beads (Protein A 
Sepharose 6MB; Pharmacia) and incubating for 30 rain at 4°C on a rotary 
shaker. The beads were removed by centrifugation and the supernatant 
was incubated with 5 ILl of specific anti-serum for 1 h and then for another 
hour with 100 ixl Protein A-coupled beads. After a short centrifugation, 
the pellet was washed four times in TNET, resuspended in 30 Ixl SDS- 
PAGE loading buffer, heated for 5 miu to 95°C and centrifuged. The su- 
pernatant was then analyzed by SDS-PAGE and exposing the salicylate- 
soaked (in 1 M salicylate, 15 min), dried gels to phosphorimager plates. 
Bands were quantified using a Fuji BAS 1000 phosphorimager. 

Immunoelectron Microscopy 
Trypanosomes were fixed with 2% formaldehyde and 0.05% glutaralde- 
hyde. After 1 h on ice, cells were washed, embedded in agarose, dehy- 
drated with ethanol at progressively lowered temperatures and embedded 
in Lowicryl HM20 at -35°C (Carlemalm et al., 1982). UItrathin sections 
were treated with 1% milk powder, 0.5% bovine serum albumin in phos- 

phate-buffered saline (pH 7.4) to block non-specific binding sites and la- 
beled by incubation with primary antibodies (anti-DHFR rabbit serum 1: 
20, anti-aldolase rabbit serum 1:20 or anti-hsp60 rabbit serum 1:20) and 
protein A-13-nm gold or 6-nm gold complexes. Double labeling experi- 
ments were performed by first labeling one side of sections floating freely 
on drops of anti-aldolase or anti-hsp60 serum and protein A-6-nm gold 
complexes. After mounting these sections on Pioloform and carbon- 
coated grids with the labeled site directed to the grid surface, the upper side 
of the sections was incubated with anti-DHFR serum and protein A-13-nm 
gold complexes. After staining with uranyl acetate and lead citrate, sec- 
tions were examined in a Philips 201 electron microscope at 60 kV. 

Controls (not shown): omitting the first antibodies or labeling of wild- 
type trypanosomes with anti-DHFR serum did not result in any glycoso- 
mal or mitochondrial labeling. The specificity of the two side labeling was 
confirmed by shadowing mounted sections with platinum/carbon. All the 
large, but not the small gold particles showed a typical shadow, demon- 
strating that the differently sized gold particles were located on opposite 
faces of the section (Steverding et al., 1994). 

Results 

Construction of Stable Cell Lines Expressing Different 
Versions of Dihydrofolate Reductase Fusion Proteins 
and Determination of Their Subcellular Localization 

We chose to study the import of a hybrid protein consist- 
ing of the last 22 amino acids of phosphoglycerate kinase 
(PGK-C), which has been shown to target chlorampheni- 
col acetyltransferase to glycosomes (Fung and Clayton, 
1991), fused to the carboxy terminus of mouse DHFR 
(DHFR-PGK-C). Stable cell lines were constructed that 
expressed DHFR-PGK-C or an import-deficient version 
(DHFR-APGK-C) lacking the last five amino acids 
(RWSSL, the signal that was shown to be both sufficient 
and necessary for glycosomal targeting [Blattner et al., 
1992]). The subcellular location of the fusion protein was 
determined by subjecting cells expressing DHFR-PGK-C 
or DHFR-APGK-C to fractionation with digitonin. Digito- 
nin differentially solubilizes membranes according to their 
cholesterol content. At low concentrations only the plasma 
membrane is permeabilized, whereas internal membranes 
stay intact. With increasing concentrations of detergent, 
the internal organelles start to release their content 
(Schulz, 1990; Sommer et al., 1992; Zhang et al., 1993). 
Thus the truncated DHFR fusion protein, expected to be 
in the cytoplasm, was released into the supernatant at the 
same digitonin levels as PGK-B, an endogenous cytosolic 
marker (Fig. 1 a). DHFR-PGK-C, targeted to the glyco- 
some, was released only at higher detergent concentra- 
tions. GAPDH, a glycosomal marker, was released at yet 
higher digitonin concentrations than DHFR-PGK-C. The 
difference in the solubility of DHFR-PGK-C and GAPDH 
is probably due to the fact that the artificial fusion protein 
is not assembled into the glycosomal core, a complex con- 
sisting of the endogenous glycosomal proteins (Misset et 
al., 1986). Similarly, different peroxisomal matrix proteins 
were released at varying digitonin concentrations in yeast 
mutants defective in peroxisome biogenesis (Zhang et al., 
1993). Fig. 1 b shows a Western blot of pellet and superna- 
tant fractions of trypanosomes expressing either DHFR- 
PGK-C or the truncated version. The digitonin concentration 
used (0.2 rag/rag) was employed in all later experiments. 
At this concentration, glycosomal DHFR-PGK-C is lo- 
cated in the pellet and protease protected, whereas DHFR- 
APGK-C is located in the supernatant and digested by pro- 
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Figure 1. (a) Digitonin fractionation of cells expressing DHFR- 
APGK-C or DHFR-PGK-C, respectively. Cells expressing either 
of the two constructs were treated with increasing amounts of 
digitonin and separated into an organellar pellet and a cytoplas- 
mic supernatant. Fractions were analyzed by measuring the in- 
tensities of the respective bands on Western blots. The percent- 
age of protein contained in the supernatant relative to the total 
amount was plotted against the concentration of digitonin. The 
data shown for GAPDH and PGK-B are derived from the frac- 
tionation of the cell line expressing DHFR-APGK-C; correspond- 
ing data from the DHFR-PGK-C cell line were similar. --O---, 
DHFR-APGK-C; --C]--, DHFR-PGK-C; - - I - -  , GAPDH; --0--- ,  
PGK-B. The dashed line indicates the digitonin concentration 
that was used for all subsequent fractionation experiments. (b) 
Western blot of cells expressing either DHFR-PGK-C or DHFR- 
APGK-C fractionated with 0.2 mg Digitonin per mg cellular pro- 
tein. The glycosomal DHFR-PGK-C is located in the pellet frac- 
tions (p) and the cytosolic DHFR-APGK-C in the supernatant 
fractions (s). DHFR-PGK-C is inside the organelle and therefore 
protected against protease, unless Triton X-100 is added. DHFR- 
APGK-C is accessible to protease and the PGK-C extension is 
cleaved off to yield the partially protease-resistant DHFR moiety 
(see also Fig. 3). 

tease to its partially protease-resistant DHFR moiety (see 
below). 

The glycosomal location of the DHFR-PGK-C was con- 
firmed by immunoelectron microscopy. On sections of 
cells expressing the fusion protein almost all DHFR-PGK-  
C as well as the glycosomal marker aldolase were found 
inside the glycosomes (Fig. 2 b). Some weak background 
staining of the nucleus was due to cross-reactivity of the 
anti-DHFR serum, since it was detectable with wild type 
cells as well (not shown). To exclude any localization of 
DHFR-PGK-C in mitochondria, sections of the same cells 
were stained for DHFR-PGK-C and hsp60, a mitochon- 
drial marker (Fig. 2 a). None of the organelles that showed 
staining for hsp60 showed any reactivity with the anti- 

D H F R  serum, confirming the unique glycosomal location 
of DHFR-PGK-C.  On sections of cells expressing the 
truncated fusion protein all of it was found in the cyto- 
plasm (not shown). 

Binding of Aminopterin to DHFR-PGK-C in Whole 
Cell Lysates 

A necessary prerequisite for subsequent experiments was 
to show that the DHFR-PGK-C hybrid protein expressed 
by the trypanosomes was still able to bind aminopterin. 
For that purpose we performed a protease protection as- 
say as described by Eilers and Schatz (1986). Lysates of 
cells expressing DHFR-PGK-C were preincubated with or 
without aminopterin (8.3 ~M) before thermolysin, a bac- 
terial protease, was added in increasing concentrations. 
After terminating the reactions they were analyzed by 
Western blot (Fig. 3). In lane 1 the undigested form is 
shown (addition of aminopterin did not change the migra- 
tion behavior of the construct [not shown]). In the absence 
of aminopterin (lanes 7-11) the fusion protein is com- 
pletely degraded. In the presence of the drug (lanes 2-6) a 
partially degraded product is observed. The size of the 
products suggests that the protease cleaves off the unpro- 
tected PGK-C extension, leaving the DHFR moiety intact 
because it is protected by the bound aminopterin. A simi- 
lar phenomenon was observed by Eilers and Schatz 
(1986). Cleavage of the extension shows that thermolysin 
is active in the presence of aminopterin, an observation 
further confirmed by complete digestion of albumin by 
thermolysin in the presence of 8.3 IxM aminopterin. 

Permeability of Trypanosomes to Aminopterin 

To bind to DHFR-PGK-C in vivo, the aminopterin must 
be able to penetrate the trypanosomes. To test this, we 
made use of the fact that aminopterin, as a folate ana- 
logue, is toxic for trypanosomatids, since it binds to the en- 
dogenous D H F R  (Kaur et al., 1988) and thereby inhibits 
pyrimidine synthesis (and other metabolic pathways). 
Wild-type cells cultivated in medium containing 5 ~M 
aminopterin ceased multiplying immediately and died af- 
ter one to two days, confirming that the drug was entering 
the cells (Fig. 4). 5 IxM of aminopterin was also lethal for 
cells expressing the DHFR-PGK-C fusion protein (not 
shown). By adding thymidine to the growth medium, the 
toxic effect of aminopterin can be partially reversed (Beck 
and Ullman, 1990). Trypanosomes cultured in both ami- 
nopterin and thymidine exhibited a near-normal growth 
rate in the first few days. In all subsequent experiments we 
used 500 I~M aminopterin, a 100-fold excess. 

Analysis of the Effect of Aminopterin on Import of 
DHFR-PGK-C into Glycosomes In Vivo 

To determine the effect of aminopterin on the import of 
DHFR-PGK-C into glycosomes in vivo, we used trypano- 
somes expressing the protein under control of a tetracy- 
cline-inducible promoter. Cell lines containing the fusion 
protein constructs were preincubated for 2 h with or with- 
out 500 IxM aminopterin. (In most experiments 30 mM sul- 
fanilamide was also added to reduce the intracellular lev- 
els of dihydrofolate that might compete with aminopterin 
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Figure 2. Cellular localization of DHFR-PGK-C by on-section labeling of T. brucei procyclic forms embedded in Lowicryl HM20. Sec- 
tions were probed on one side with anti-hsp60 (a) or anti-aldolase (b) rabbit serum and protein A-6-nm gold and on the other side with 
anti-DHFR rabbit serum and protein A-13-nm gold. The 13-nm gold particles colocalize only with the aldolase label (b, 6 nm gold, ar- 
row heads) in the more electron dense and spherical glycosomes (g), but not with the hsp60 label (a, 6 nm gold) in the brighter and elon- 
gated mitochondrion (m). n, nucleus. Bar, 0.5 p.m. 

[Wienhues et al., 1991].) The expression of D H F R - P G K - C  
was induced by adding 2 I~g/ml tetracycline. After  2-5 h 
protein expression was s topped by adding 300 ixg/ml 
cycloheximide and the cells were harvested. An organellar 
pellet and a cytoplasmic supernatant  were obtained by 
fractionation with 0.2 mg digitonin/mg total cellular pro- 
tein, and the location of the newly synthesized protein as- 
sessed by Western blot (Fig. 5). No processing of any gly- 
cosomal protein upon import  has been detected so that  
inaccessibility to externally added protease  is the only 
available biochemical criterion for completed import  
(Sommer  et al., 1990). The  D H F R - P G K - C  hybrid protein 
was expressed (lane 1) and fully resistant to proteinase K 
(lane 2) or trypsin (not shown), indicating its complete  im- 

Figure 3. Aminopterin protects DHFR-PGK-C from digestion 
by thermolysin. Lysates of cells expressing DHFR-PGK-C were 
incubated in the presence or absence of aminopterin with increas- 
ing amounts of thermolysin. After stopping the protease reaction 
samples were analyzed by SDS-PAGE and Western blot. As a 
size standard, bacterially expressed and affinity-purified histi- 
dine-tagged DHFR (DHFR-HIS) was run in lane S. 

port  into glycosomes; no D H F R - P G K - C  was detected in 
the cytoplasmic fractions (lanes 1' and 2') .  Addit ion of de- 
tergent to the organellar pellet rendered the fusion protein 
protease-sensitive and its P G K - C  extension was cleaved 
off (lane 3, compare  with Fig. 3), confirming that the cho- 
sen conditions were suitable to assess for import. Under  
these conditions, G A P D H  is not digested, because most  
glycosomal proteins are very protease-resistant  (Clayton, 

10 

~ S 

o 
1 2 3 

days 

Figure 4. Effect of aminopterin on the growth of wild-type try- 
panosomes. Cells were cultivated in the absence ( ~ )  or 
presence (-----C3---) of 5 IxM aminopterin. This amount of drug ef- 
fectively kills the trypanosomes within 1-2 d. If 100 ~M thymi- 
dine is supplemented to the medium (------!1~), cell growth is re- 
stored to near-normal rates for the first few days. 

H~iusler et al. Glycosomal Protein Import 315 



Figure 5. Effect of aminopterin on the import of DHFR-PGK-C 
into glycosomes. Cells were incubated for 2 h in the presence or 
absence of aminopterin and sulfanilamide, before the fusion pro- 
tein was induced for 3 h with tetracycline. Then the cells were 
separated into pellet- (lanes 1-6) and supernatant fractions (lanes 
1'-5'). Two aliquots each were treated with protease, one of 
which received 0.2% Triton X-100 and 0.2% deoxycholate 
(DOC) as a control. Lanes 2" and 5" are the supernatants of the 
protease-treated fractions after reisolation of the organelles. All 
fractions were immunoblotted with antibodies against mouse 
DHFR, GAPDH as a control for the integrity of the organelles 
and, as a control for efficient fractionation, PGK (PGK-B). S, 
bacterially expressed DHFR-HIS as standard; Tet, tetracycline; 
- /+ ,  lysates of uninduced and constantly induced cells, respec- 
tively. 

1987; Sommer et al., 1990). The cytosolic marker PGK-B 
was only partially digested under these conditions. To our 
surprise, the presence of aminopterin throughout the pe- 
riod of fusion protein synthesis had no major effect on im- 
port. All the DHFR-PGK-C was located in the organellar 
fraction and protease-protected (lanes 4-6). Only upon re- 
isolation of glycosomes after the protease treatment could 
a very faint signal be detected in the supernatant (lane 
5"), but this appeared to be due to contamination with 
glycosomes as is indicated by the presence of GAPDH in 
the same fraction. The same slight contamination was de- 
tected in samples without aminopterin treatment (lane 
2"). In contrast to yeast (Wienhues et al., 1991), aminop- 
terin and sulfanilamide lowered the expression of proteins 
in trypanosomes by ~50% (compare strength of bands in 
lanes ! and 4), but control experiments revealed no inhibi- 
tion of glycosomal import of endogenous proteins (not 
shown). Other experiments that were performed with a 
variety of different incubation times and aminopterin con- 
centrations gave similar results. 

Since the induction kinetics of genes expressed under 
the control of tetracycline operators is slow by comparison 
with the kinetics of import of glycosomal proteins (Wirtz 
and Clayton, 1995; Borst, 1989), pulse experiments with 
[35S]methionine were performed. The design of the experi- 
ments was basically the same as above; cells were preincu- 
bated with aminopterin (and in some experiments sulfanil- 
amide) then pulse labeled with [35S]methionine for up to 
30 min. After cell fractionation and protease digestion 
DHFR-PGK-C, and aldolase as an internal control, were 
immunoprecipitated and analyzed by SDS-PAGE and fluor- 
ography. If a genuine import intermediate were to be gen- 
erated and stuck across the glycosomal membrane, import 
sites should become jammed, thereby inhibiting subse- 
quent import of more polypeptides. As a consequence, the 
amount of imported, protease-protected product should de- 

crease and a backup of precursor proteins in the cytoplasm 
should be observed. This situation was indeed found in the 
case of mitochondria (Vestweber and Schatz, 1988a; Ras- 
sow et al., 1989; Wienhues et al., 1991). In Fig. 6 the quan- 
tification from four experiments is shown. Although upon 
incubation of cells with aminopterin a slight decrease of 
protease-protected (left) and of pellet-associated (right) 
material occurred, statistical analysis of the data (Wil- 
coxon-Mann-Whitney test [c~ = 0.05]) indicated that the 
differences were not significant. In the same experiments 
no inhibitory effect of aminopterin on the import of en- 
dogenous aldolase (which probably has a PTS2) could be 
detected. Since there is evidence that peptides carrying a 
PTS1 can inhibit import of a protein with a different tar- 
geting signal into peroxisomes (Walton et al., 1992b), 
thereby suggesting a common downstream component of 
the import machinery, this is a further indication that no 
significant number of import sites was blocked by drug- 
induced import intermediates. 

The distribution of anti-DHFR label in trypanosomes in 
which expression of the fusion protein was induced in the 
presence or absence of aminopterin was also compared by 
immunoelectron microscopy. The distributions in the pres- 
ence and absence of drug were indistinguishable; and 
there was no evidence for accumulation of fusion protein 
near the glycosomal membrane (not shown). This further 
confirmed that the drug had no effect on import. 

Aminopterin-induced Inhibition of  Protein Import into 
Mitochondria but not into Glycosomes 

So far we had detected no inhibition of import of a 
DHFR-containing fusion protein into glycosomes by ami- 

Figure 6. Lack of an aminopterin-induced inhibition of DHFR- 
PGK-C import into glycosomes. Ceils were preincubated for 2-14 h 
with 500 ixM aminopterin and 30 mM sulfanilamide. After a 30-min 
pulse with [35S]methionine cells were harvested and fractionated 
with digitonin into a crude glycosomal pellet and a cytoplasmic 
supernatant. Half of each fraction was treated with proteinase K 
for 30 min. DHFR-PGK-C and aldolase (not shown) were immu- 
noprecipitated and analyzed by SDS-PAGE, fluorography and 
quantification on a phosphorimager. The percentage of fusion 
protein present in the protease-treated glycosomal fraction com- 
pared to the untreated glycosomal fraction was calculated (left). 
On the right the percentage of fusion protein present in the gly- 
cosomal pellet relative to the cytosolic supernatant is shown. • 
without and • with aminopterin, respectively. 
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nopterin, but although DHFR-PGK-C bound the drug in 
cell lysates, we could not rule out the possibility that in 
vivo binding of the drug to the fusion protein did not oc- 
cur. To prove that the aminopterin could indeed bind in 
vivo, we expressed two more types of chimeric proteins in 
trypanosomes. One consisted of a mitochondrial targeting 
signal fused to the amino-terminus of the DHFR: the accu- 
mulation of an aminopterin-induced mitochondrial import 
intermediate would demonstrate binding of the drug to 
the D H F R  moiety in vivo. The other consisted of a tripar- 
tite fusion protein consisting of the same mitochondrial 
signal sequence fused to the amino terminus of DHFR- 
PGK-C. The resulting polypeptide should have targeting 
capability for both glycosomes and mitochondria and 
therefore be imported into both organelles. Since aminop- 
terin inhibits import of D H F R  hybrid proteins into (yeast) 
mitochondria in vivo (Wienhues et al., 1991) but appar- 
ently not into glycosomes, a shift of the distribution of fu- 
sion protein between the two organelles towards the gly- 
cosome could be expected upon addition of the drug. Such 
a redistribution would additionally demonstrate binding of 
aminopterin to the D H F R  moiety in trypanosomes in vivo. 

As far as we knew, no mitochondrial targeting signal in 
trypanosomes had been functionally characterized, al- 
though the existence of matrix targeting signals could be 
predicted on the basis of sequence homologies (Effron et 
al., 1993; Peterson et al., 1993; Clayton et al., 1995). In 
analogy to the experiments of Wienhues and colleagues 
(1991) in yeast, we decided to test the extensively charac- 
terized presequences of yeast cytochrome b2 (b2) (van 
Loon et al., 1986) and yeast cytochrome oxidase subunit 
IV (Hurt et al., 1984) for function in trypanosomes. We 
constructed stable cell lines expressing D H F R  hybrid pro- 
teins bearing these NH2-terminal presequences. The cyto- 
chrome oxidase subunit IV presequence used consists of 
the first 22 amino acids and a linker of six amino acids 
(Hurt et al., 1984, 1985; Horwich et al., 1985). The signal 
for the Ab2-DHFR consists of the first 167 amino acids 
(Glick et al., 1993) of the precursor protein with an inter- 
nal deletion of 25 amino acids, which abolishes its inter- 
membrane space targeting ability (Beasley et al., 1993; 
Schwarz et al., 1993) so that the mutated presequence 
functions only as a matrix-targeting signal. Both fusion 
proteins were imported and processed. Ab2-DHFR was 
processed once from ~38 kD to ~34 kD, which coincides 
well with the predicted sizes of the mature (37.7 kD) and 
processed (34.0 kD) forms (Fig. 7 a, lane 1). All forms of 
the fusion protein were located in an organellar fraction, 
but only the processed form was protected from externally 
added protease (lane 2). Similar results were obtained for 
pcoxlV-DHFR. The mitochondrial locations of Ab2- 
D H F R  and pcoxlV-DHFR were confirmed by immuno- 
electron microscopy with identical results; those for pcoxlV- 
D H F R  are shown in Fig. 8 a. 

Import  and processing of the D H F R  bearing the heter- 
ologous Ab2 targeting sequence was characterized in more 
detail. Import  was rather slow: after 3-h induction only 
~50% of the fusion protein was imported (Fig. 7 b, black 
bar in lanes -chase); increasing to 80% after a 1-h chase 
(incubation with cycloheximide) (Fig. 7 a, lane 1 and Fig. 7 
b, black bar in lanes +chase). Aminopterin reduced the 
proportion of imported, processed protein and also caused 

Figure 7. Import of Ab2-DHFR into mitochondria and generation 
of an aminopterin-induced import intermediate in trypanosomes. 
Cells were incubated for 90 min in the absence (a, lanes 1-3; b, 
black bars) or presence (a, lanes 4-6; b, white bars) of aminop- 
terin (sulfanilamide was added to both aliquots of cells), before the 
fusion protein was induced for 3 h with tetracycline. One half of 
the cells received 300 txg/ml cycloheximide to inhibit protein syn- 
thesis (a, +chase; b, +chase) and was incubated for another hour; 
the other half was immediately processed (a, -chase; b, -chase): 
cells were separated into pellet (lanes 1-6) and supernatant frac- 
tions (lanes 1'-5'). Two aliquots each were treated with protease, 
one of which received 0.2% Triton X-100 and 0.2% deoxycholate 
(DOC) as a control. Lanes 2" and 5" are the supernatants of the 
protease-treated fractions after reisolation of the organdies. All 
fractions were immunoblotted with antibodies against mouse 
DHFR, GAPDH, hsp60 and PGK (PGK-B). The part of the blot 
showing the supernatants was exposed longer to show the par- 
tially protease-resistant DHFR moiety that is cleaved off from the 
stuck constructs (lane 5"). Tet, tetracycline; - ,  lysate of uninduced 
cells. Import and processing of a mutated, destabilized DHFR fu- 
sion protein was not affected by the addition of aminopterin (b, 
dark shaded bars, without aminopterin; light shaded bars, with 
aminopterin). 

accumulation of both unprocessed and processed forms in 
a protease-susceptible location. Without chase, ~30% of 
the construct was imported and processed (Fig. 7 b, white 
bar in lane -chase); after 1-h chase this increased only to 
45% (Fig. 7 a, lane 4 and b, white bar in lane +chase). This 
import inhibition is similar to that found in yeast in vivo 
(Wienhues et al., 1991). The susceptibility of unprocessed 
protein to protease (compare Fig. 7 a with Figs. 4 and 5), 
indicated that it was stuck across or on the membranes. 
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Figure 8. (a) Cellular localization of pcox IV-DHFR in the elongated mitochondrion (m). Lowicryl HM20 sections were labeled with 
anti-DHFR serum and protein A-13-nm gold, (b) Cellular localization of pcox IV-DHFR-PGK-C in glycosomes (g) and mitochondrion 
(m). Lowicryl HM20 sections were labeled with anti-DHFR serum and protein A-13-nm gold. fp, flagellar pocket; k, kinetoplast. Bar, 
0.5 txm. 

About 50 amino acids are sufficient to span both mito- 
chondrial membranes (Rassow et al., 1990). Thus the pre- 
cursor protein should be capable of being processed by the 
mitochondrial processing protease even while part of the 
Ab2-polypeptide and the D H F R  moiety is still outside 
(and protease-accessible). Confirming this prediction, in 
the presence of aminopterin, some of the processed form 
was indeed accessible to protease (Fig. 7, lanes 4 and 5). 
The cleaved-off D H F R  moiety, which is partially pro- 
tease-resistant, could be detected in the supernatant of the 
reisolated, protease-treated organellar fraction (lane 5",  
longer exposure). Since mitochondria proved to be more 
fragile in the presence of protease than glycosomes, we re- 
duced the protease concentration to 10 ~g/ml proteinase 
K or trypsin. Under these conditions, the cytosolic marker 
PGK-B is largely protease resistant (compare lanes 1 ' -5 ' ) .  

To rule out that the build-up of unprocessed Ab2-DHFR 

in the presence of aminopterin was due to the inhibition of 
the mitochondrial processing protease by aminopterin, we 
checked import in the absence or presence of aminopterin 
of a mutated form of the fusion protein, in which a serine 
replaces cysteine 7 of the D H F R  moiety. This mutant is 
destabilized and is unable to bind aminopterin (Vestweber 
and Schatz, 1988b), Addition of aminopterin should there- 
fore not affect the import of this mutant hybrid protein 
into mitochondria. As expected, neither import nor pro- 
cessing of the mutant protein were affected by aminop- 
terin (Fig. 7 b, +/-chase, shaded bars). 

We also checked the generation of an aminopterin- 
induced import intermediate by immunoelectron micros- 
copy. Cells which were induced and grown for 12 h in the 
presence of aminopterin accumulated Ab2-DHFR at the 
mitochondrial membrane: ~62% of the label was present 
at the mitochondrial membrane and ~38% in the mito- 
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chondrial lumen, whereas in the absence of the drug 
~75% of the label was concentrated in the lumen (not 
shown). These figures are in good agreement with the ones 
obtained biochemically after 3 h of induction. 

Taken together, these experiments show that, as in 
yeast, an aminopterin-induced mitochondrial import inter- 
mediate of a D H F R  fusion protein can be generated in 
trypanosomes in vivo. This in turn proves that the murine 
D H F R  moiety can bind aminopterin in trypanosomes in 
vivo. 

In the next step we constructed cell lines expressing (un- 
der control of a tetracycline-inducible promoter) hybrid 
proteins consisting of Ab~-DHFR or pcoxlV-DHFR fused 
to the last 22 amino acids of PGK-C (Aba-DHFR-PGK-C 
or pcoxlV-DHFR-PGK-C).  Both fusion proteins had the 
desired dual targeting capabilities. Fig. 8 b is an electron 
micrograph of a cell expressing pcoxlV-DHFR-PGK-C: 
the hybrid protein is present in both organelles. (Unfortu- 
nately the levels of Ab2-DHFR-PGK-C expression in sev- 
eral cell lines were insufficient to allow clear immunoelec- 
tronmicroscopical localization.) Analysis of both cell lines 
by Western blot showed that in the steady-state two forms 
of the protein were present; the results shown (Figs. 9 and 
10) are for Ab2-DHFR-PGK-C, where the two bands have 
sizes of ~40 and 36 kD (Fig. 10, lane +). The larger 
polypeptide is probably identical with the unprocessed hy- 
brid proteins (predicted molecular mass 39.8 kD), and the 
smaller one (~36 kD) with the form that has been pro- 
cessed by the mitochondrial processing protease. In Fig. 9 
a sucrose-gradient fractionation of the same cell line is 
shown. The smaller, processed form of the hybrid protein 
is mostly present in the supernatant fraction of the bro- 
ken-cell suspension as is the mitochondrial marker hsp60 
(Fig. 9 a, right). Apparently, the mitochondrion, which 
forms an elaborate tubular network in procyclic trypano- 
somes, is disrupted by the relatively harsh homogenization 
and thereby releases its contents. The larger form of Ab 2- 

DHFR-PGK-C cofractionates with the glycosomal marker 

G A P D H  indicating its location in the glycosomes (left). 
The small, spherical glycosomes are more resistant to the 
silicon carbide treatment than mitochondria and mostly 
migrate to the expected density of around 1.23 g/cm 3. Only 
a small portion is disrupted, and therefore some glycoso- 
mal content is present in the supernatant. In addition to 
the two bands observed in Fig. 10 (lane +), a slightly 
slower migrating protein-species than the processed 
polypeptide was apparent. It cofractionated clearly with 
the glycosomal marker, but accurate quantification was 
impossible, because the doublet-bands were not suffi- 
ciently resolved (see also below and Fig. 11). These results 
are consistent with our conclusion that in the steady-state 
most of the slower-migrating D H F R  species is glycosomal 
and most of the processed form is mitochondrial. 

We now induced expression of the two different hybrid 
proteins for 3 h in the presence or absence of aminopterin. 
When the pcoxlV-DHFR-PGK fusion protein was ex- 
pressed in the absence of aminopterin, 56 ___ 2.4% was in 
the processed form. With aminopterin, this proportion was 
reduced to 38 __- 2.4%, with a corresponding increase in 
the amount of full-length protein. (Results are mean __- 
standard deviation for five experiments.) This result im- 
plies inhibition of mitochondrial import by the drug. The 
distribution of D H F R  fusion protein 24 h after induction 
in the presence or absence of aminopterin was confirmed 
by immuno-electronmicroscopy (not shown). As before 
(Fig. 8 b), pcoxlV-DHFR-PGK-C was directed to both mi- 
tochondria and glycosomes; in the aminopterin-treated 
samples (not shown) the distribution was similar but there 
was some evidence for redistribution of some of the mito- 
chondrial label towards the mitochondrial membranes. 

The effects of aminopterin on Ab2-DHFR-PGK-C were 
more dramatic and were therefore studied in more detail. 
Results for one experiment are shown in Fig. 10; results 
for a further five experiments are stated in parentheses as 
mean and standard deviation. In the absence of drug, 
~55% (62 -+ 6.5%) of the Ab2-DHFR-PGK-C was in the 
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Figure 9. Fractionation of 
cells expressing Ab2-DHFR- 
PGK-C. Cells were broken by 
grinding with silicon carbide. 
A granular fraction derived 
by centrifugation of the bro- 
ken-cell suspension was sep- 
arated on a linear 1-2 M su- 
crose gradient. 10 fractions 
were collected and analyzed 
by measuring the intensities 
of the bands representing the 
unprocessed and the pro- 
cessed fusion protein on 
Western blots. The depicted 
values are normalized using 
the peak fraction as the stan- 
dard. s, supernatant of bro- 
ken-cell suspension; 1 (top)-lO 
(bottom), collected fractions; 
---O---, Ab2-DHFR-PGK-C 
(processed); -'C}--, Ab2- 
DHFR-PGK-C (unpro- 
cessed); ------11~, hsp60; 
- - l - - ,  GAPDH. 
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Figure 10. Effect of aminopterin on the import of •b2-DHFR- 
PGK-C into glycosomes and mitochondria. Cells were incubated 
for 90 rain in the presence or absence of aminopterin, before the 
fusion protein was induced for 3 h with tetracycline. After that, 
one half of the cells received 300 ixg/ml cycloheximide and was 
incubated for another hour (+chase), the other half was pro- 
cessed immediately (-chase). Cells were separated into pellet 
(lanes 1--6) and supernatant fractions (lanes 1'-5'). Two aliquots 
each were treated with protease, one of which received 0.2% Tri- 
ton X-100 and 0.2% deoxycholate (DOC) as a control. Lanes 2" 
and 5" are the supernatants of the protease-treated fractions af- 
ter reisolation of the organelles. All fractions were immunoblot- 
ted with antibodies against mouse DHFR, GAPDH, hsp60 and 
PGK (PGK-B). Tet, tetracycline; - / + ,  lysates of uninduced and 
constantly induced cells, respectively. 

processed form (Fig. 10, -chase, lane 1, bottom) and 
~ 4 5 %  (38 _+ 6.5%) in the unprocessed form (top). In the 
presence of aminopterin the same two products were ob- 
served (lane 4). This time, however, ~ 7 5 %  (74 +_ 6.3%) of  
the fusion protein was in the full-length form and only 
~ 2 5 %  (26 -- 6.3%) in the processed form (Fig. 10, -chase, 
lane 4). If after 3-h induction the cells were chased for an- 
other hour, ~ 6 1 %  of the protein was in the processed 

form in the absence of drug and ~ 5 0 %  in the presence of 
drug (Fig. 10, +chase, lanes 1 and 4). (In the experiment 
shown the supernatant had some mitochondrial contami- 
nation, as shown by a faint trace of the mitochondrial 
marker  hsp60 as well as a small leakage of fusion protein 
to the supernatants [+chase, lanes 1'-5'].) 

We already knew that in trypanosomes expressing Ab2- 
DHFR,  aminopterin was causing accumulation of both 
processed and unprocessed intermediates at the mitochon- 
drial membrane. This was also likely to be true for Ab2- 
DHFR-PGK-C,  which meant that some of the unpro- 
cessed material would be in the glycosomes, and some 
stuck on the mitochondria. To distinguish these two 
classes of protein, cells expressing Ab2-DHFR-PGK-C 
were induced for 3 h in the absence or presence of drug, 
fractionated with digitonin and the organellar pellet was run 
on a 0.6-2 M sucrose gradient. Virtually all the cytosolic 
content was in the post-digitonin supernatant (Fig. 11, + / -  
aminopterin, lane s), as indicated by the exclusive presence 
of PGK-B in this fraction (crosses and dashed line). The 
mitochondrial marker hsp60 (circles, dotted line) stayed 
mainly on top of the gradient, with the exception of a small 
second peak in fractions 7 (-aminopterin) and 6 and 7 
(+aminopterin). The glycosomal marker G A P D H  
(squares, continuous line) peaks in fractions 7 (-aminopterin) 
and 6 and 7 (+aminopterin). In the absence of aminop- 
terin, most of  the D H F R  fusion protein (bars) stayed on 
top of the gradient (lanes 1-3), indicating its mitochondrial 
location. As expected, the proportions of the two bands 
resemble those seen in Fig. 10 (-chase, lane 1), there be- 
ing more processed form (p, light shaded bars) than un- 
processed form (black bars). The glycosomal fractions 
contain a second peak of Ab2-DHFR-PGK-C. This con- 
sists mainly of  unprocessed protein (black bars) and a 
cleavage product  (p*) that migrates slightly slower than 
the true mitochondrial form. Given the relatively low level 

Figure 11. Sucrose gradient 
analysis of cells expressing 
Ab2-DHFR-PGK-C grown in 
the presence (+aminopterin, 
right) or absence (-ami- 
nopterin, left). After 3 h of 
induction cells were har- 
vested, fractionated as de- 
scribed and loaded onto an 
0.6-2 M sucrose gradient. 10 
fractions (fraction 1 top, frac- 
tion 10 bottom) were collected 
and analyzed by probing 
Western blots with anti- 
DHFR (bars), anti-GAPDH 
([~), anti-hsp60 (O), and anti- 
PGK (×) antibodies. For each 
antigen, values were normal- 
ized using the strongest band 
as a standard. The blot probed 
with anti-DHFR antibodies 
is shown below the graph. 
Processed (p, light shaded 
bars) and unprocessed (u, 

black bars) are indicated. Additionally an abnormally processed form (p*) was detected in fractions 4-10. Darker shaded bars indicate 
the intensity of p and p* together, because accurate quantification of the closely apposed bands was not possible. 
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of mitochondrial marker in these fractions, most of this 
material is probably located in glycosomes. The abnormal 
cleaved product is present only in the glycosomal fraction; 
it could conceivably be generated by intra-glycosomal pro- 
teolysis. When aminopterin was included in the incuba- 
tion, the relative distributions of the different forms 
changed. As seen before (Fig. 10, -chase, lane 4) the un- 
processed form became the predominant species, even in 
the mitochondrial fractions (Fig. 11, lanes 1-3). In addi- 
tion, there was a clear shift in the distribution of protein 
towards the glycosomal fractions. (Values are expressed 
relative to the strongest band, set arbitrarily at 100%.) The 
most conservative interpretation of all these data is that in 
the presence of aminopterin, the import of Ab2-DHFR- 
PGK-C into mitochondria is inhibited, with build-up of 
precursor on the membrane, whereas import into glyco- 
somes is either unaffected or even somewhat elevated. 

As controls, we constructed cell lines expressing mutant 
Ab2-DHFR-PGK-C or pcoxlV-DHFR-PGK-C unable to 
bind aminopterin (Vestweber and Schatz, 1988b and see 
above). As expected, addition of aminopterin had no ef- 
fect whatsoever on the distribution between the processed 
and unprocessed forms (not shown). This corroborates the 
specificity of the aminopterin-induced effect on the wild- 
type fusion protein, and also confirms that the trypano- 
some processing protease is not affected by the drug. 

These experiments demonstrated unequivocally that 
aminopterin could bind to Ab2DHFR-PGK-C and pcoxlV- 
DHFR-PGK-C fusion proteins in vivo. As a consequence, 
the DHFR structure was stabilized sufficiently to reduce 
mitochondrial import, but import of the folded fusion pro- 
tein into glycosomes was not inhibited. 

Discussion 

Aminopterin Does Not Inhibit Import of  DHFR Fusion 
Proteins into Glycosomes 

The transport of DHFR fusion proteins into yeast mito- 
chondria in vitro is strongly inhibited by the addition of 
methotrexate (Eilers and Schatz, 1986; Rassow et al., 
1989). The binding of the drug stabilizes the tertiary struc- 
ture of DHFR, so that the protein can no longer unfold 
sufficiently to pass through the import channel. In vivo, 
import of such precursors into mitochondria is inhibited 
by aminopterin, a membrane-permeable version of meth- 
otrexate (Wienhues et al., 1991). The import channels are 
blocked with stuck intermediates, so that DHFR precur- 
sors (and other polypeptides destined for the same import 
pathway) accumulate outside the isolated organelle in 
vitro (Vestweber and Schatz, 1988a; Rassow et al., 1989) 
or in the cytoplasm and bound to the organelle in vivo 
(Wienhues et al., 1991). 

When trypanosomes expressing a DHFR fusion protein 
targeted to glycosomes were incubated with aminopterin, 
we were unable to detect any significant inhibition of im- 
port by any criterion. The transport of newly synthesized 
protein was studied either by pulse labeling or by express- 
ing the protein from an inducible promoter, and compart- 
mentation was assessed by the only criteria available for 
glycosomes: cosedimentation with the organellar fraction, 
differential detergent permeabilization, protease-resistance, 

and immunoelectron microscopy. Although the conditions 
of the assay--aminopterin concentration, incubation and 
preincubation time, inclusion of sulfanilamide to deplete 
internal dihydrofolate pools (Wienhues et al., 1991)--were 
varied extensively, the only effect we observed was a delay 
in import that was too small to be statistically significant. 

Aminopterin Can Enter Cells and Bind to the Targeted 
Fusion Protein 

Given the unexpected nature of our results, it was very im- 
portant to be sure that the DHFR fusion protein was actu- 
ally binding the aminopterin in vivo. Control experiments 
confirmed that the levels of aminopterin used were in vast 
excess (100-fold) of those needed to kill both the original 
cells, and cells expressing the various hybrid proteins, un- 
less thymidine was included to compensate for the inhibi- 
tion of DHFR. Thus plenty of drug was entering the cells. 
Protease digestions also confirmed that the glycosomally 
targeted DHFR was able to bind drug in vitro, and that 
this binding stabilized the structure of the fusion protein 
sufficiently to inhibit protease digestion of the DHFR 
moiety. To prove unambiguously that the DHFR-PGK-C 
was actually binding the drug inside the cells, we devised 
control experiments employing fusion proteins targeted 
either to mitochondria or to both glycosomes and mito- 
chondria. 

Function of  a Yeast Mitochondrial Targeting 
Signal in Trypanosomes 

Since, to our knowledge, no mitochondrial targeting se- 
quences had been functionally characterized in trypano- 
somes, we decided to test the well-characterized prese- 
quences of yeast cytochrome b2 (van Loon et al., 1986; 
Beasley et al. 1993; Schwarz et al., 1993) and cytochrome 
oxidase subunit IV (Hurt et al., 1984, 1985). Analysis of 
import of both fusion proteins by biochemical and immu- 
nocytochemical methods convincingly showed that the 
heterologous targeting signals were functional in trypano- 
somes. This indicates that fundamental parts of the mito- 
chondrial import machinery, including both the import re- 
ceptor that recognizes the targeting signal and the 
mitochondrial processing protease, are conserved between 
the Kinetoplastidae and yeast. 

Generation of  a Mitochondrial Import Intermediate 

Having established that the Abe presequence was func- 
tional in targeting a protein to the trypanosome mitochon- 
drion, we tested whether aminopterin induced formation 
of a mitochondrial import intermediate. Biochemical as 
well as immunoelectron microscopical evidence proved 
the existence of such intermediates. As was found in yeast, 
inhibition of import amounted to ~50%. In our experi- 
mental system, which required relatively long induction 
periods to allow detection and showed relative slow im- 
port and processing of the heterologous fusion protein, we 
detected both processed stuck intermediates and unpro- 
cessed fusion protein. Again, in yeast, after 3 h of induc- 
tion ~70% of the protein accumulated as unprocessed 
forms (Wienhues et al., 1991). 

In all experiments we found the stuck intermediates as- 
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sociated with the organellar fraction. This is in agreement 
with reports that similar fusion proteins with analogous in- 
ternally deleted cytochrome b 2 presequences were re- 
tained by yeast mitochondria in vitro (Voos et al., 1993). 
In yeast, the retention was mediated by bound mt-hsp70; 
the dependency of this interaction on ATP was shown 
with other fusion proteins (Ungermann et al., 1994): only 
under ATP-depletion conditions could stuck fusion pro- 
tein diffuse back out of the mitochondria. Since in vivo the 
mitochondria are presumably in an energized state, one 
would expect that stuck precursors would be retained, as 
we indeed found. 

Behavior of Double-targeted DHFR Fusion Proteins 

Having shown that the DHFR moiety binds its inhibitor in 
vivo, we tested the behavior of doubly targeted DHFR fu- 
sion proteins. The results of immunoelectron microscopy 
and cell fractionation showed that when doubly targeted 
proteins were expressed in trypanosomes, they were local- 
ized to both organelles. Western blots of steady-state cells 
revealed two principal DHFR species that could be as- 
signed to the different organelles by sucrose density cen- 
trifugation: an unprocessed form in the glycosome and a 
shorter, processed form in the mitochondrion, besides a 
minor form that was cleaved by some proteolytic activity 
residing in gtycosomes. 

It is important to note that because of their location in 
the polypeptide, the mitochondrial presequence is synthe- 
sized first and the glycosomal targeting signal last, so that 
entry into mitochondria might be kinetically favored. If 
the protein were made on ribosomes that were actually 
bound to the mitochondrial outer membrane, the glycoso- 
real targeting signal would be completely preempted by 
the mitochondrial one. Fujiki and Verner (1993) have indeed 
found that pcoxIV-DHFR is imported cotranslationally 
into yeast mitochondria in vivo. Thus it is not surprising 
that, under steady-state conditions, ~80% of the Ab2-DHFR 
hybrid protein and 60% of the pcoxIV hybrid protein were 
found in trypanosome mitochondria. The relative numbers 
of the corresponding import receptors in the trypano- 
somes are also likely to play a role in the distribution. 
When production of the dual-targeting proteins was in- 
duced in the presence of saturating levels of aminopterin, 
much less of the protein was processed to the mature mito- 
chondrial form. Sucrose gradient analysis showed the ac- 
cumulation of stuck fusion protein associated with the mi- 
tochondria. As discussed above, this is probably due to the 
fact that the mitochondria actively retain the stuck con- 
structs via bound mt-hsp70. The glycosomal import of the 
fusion protein was unaltered or slightly elevated by ami- 
nopterin under these conditions, but because the stuck 
precursor was retained by the mitochondria, no large re- 
distribution towards glycosomes was observed. The behav- 
ior of a mutated, destabilized DHFR fusion protein was 
completely unaffected by aminopterin, supporting the 
specificity of the drug-induced effect on the wild type fu- 
sion protein. 

We think that it is very important that all our experi- 
ments were conducted entirely in vivo, as the question of 
an in vitro artifact due to perrneabilization or other or- 
ganellar damage during isolation does not arise: the entire 

cell ultrastructure including all membranes is intact, and 
any cytoplasmic factors required (see below) are present 
at their normal concentration and location. 

Is Unfolding Necessary for Glycosomal Import? 

In comparison with mitochondrial studies, very little is 
known about the mechanism of peroxisomal or glycoso- 
mal import. However, what we do know is enough to tell 
us that the two import machineries are probably very dif- 
ferent, and that what is true for glycosomes is probably 
true for other members of the microbody family. Whereas 
mitochondrial precursors are recognized by membrane re- 
ceptors, there is evidence suggesting that initial recogni- 
tion of some peroxisomal targeting signals occurs in the 
cytoplasm. Thus, Wendland et al. (1993) found that cyto- 
sotic factors were essential for import into peroxisomes in 
a permeabilized cell system, and presented evidence for 
the existence of SKL-binding sites in the cytoplasm; and 
PAS7, a protein involved in targeting of PTS2-containing 
proteins in Saccharomyces cerevisiae and a strong candi- 
date for the PTS2 receptor, appears to shuttle between the 
cytoplasm and the peroxisomal membrane (Marzioch et 
al., 1994). In contrast to the import of mitochondrial pre- 
cursors, import of peroxisomal proteins does not depend 
on the presence of a membrane potential (Imanaka et al., 
1987). It is clear that import of at least some mitochondrial 
proteins depends upon their being kept in an "import- 
competent" state in the cytoplasm by cytoplasmic factors 
(Murakami and Mori, 1990; Sheffield et al., 1990), and that 
unfolding is necessary for import to occur, whereas for 
peroxisomal proteins that seems less likely to be the case. 
Import of prefolded proteins (including albumin deco- 
rated by multiple targeting peptides) into peroxisomes has 
been reported, either after microinjection into the cyto- 
plasm or incubation with permeabilized cells (Walton et 
al., 1992a, b, 1994; Soto et al., 1993; Wendland and Subra- 
mani, 1993). Although the involvement of 70-kD heat shock 
proteins in peroxisomal import of prefolded polypeptides 
has been suggested, there is no evidence that these chaper- 
ones mediate unfolding of the imported polypeptides 
(Walton et al., 1994). Moreover, in vitro studies with the 
peroxisomal protein luciferase revealed that its folding is 
initiated cotranslationally (Frydman et al., 1994) and that 
the protein attains full enzymatic activity immediately af- 
ter release from the ribosome (Kolb et al., 1994). These 
considerations by no means rule out the possibility that 
protein unfolding is necessary for import itself, but they 
also are clearly consistent with import in a (partly) folded 
state. 

There are essentially two possible mechanisms whereby 
a folded DHFR fusion protein, stabilized by bound inhibi- 
tor, could be imported into glycosomes. One possibility is 
the presence of a strong unfolding activity present some- 
where in the glycosomal import pathway. Such an activity 
would be able to remove aminopterin from the DHFR 
moiety, facilitating its uptake into the organelle. Such an 
unfolding activity has indeed been described for import of 
DHFR fusion proteins into chloroplasts (Gu6ra et al., 
1993; America et al., 1994), but there is so far no evidence 
for an equivalent activity associated with glycosomes or per- 
oxisomes. Although in vitro import of glycosomal phos- 
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phoglycerate kinase seemed to be stimulated upon urea 
denaturation of the precursor (Sommer et al., 1990), bind- 
ing of precursors to glycosomes in the absence of import 
makes them less sensitive to protease, not more--the re- 
verse of what would be expected if they were unfolded 
(Swinkels, 1989 and C. Clayton, unpublished data). The 
second possibility is that the proteins indeed enter in the 
folded state. This would imply either that the translocation 
channel is so large (or flexible) that it can accommodate 
large, folded complexes, or that some form of membrane 
internalization is involved (McNew and Goodman, 1994). 
There is convincing evidence for this option. Yeast peroxi- 
somal thiolase can be imported as a dimer (Glover et al., 
1994) and CAT-SKL even as trimer (McNew and Good- 
man, 1994); and most dramatically, Walton and colleagues 
(1995) could show that peroxisomes can import gold parti- 
cles of a diameter up to 9 nm coupled to albumin-PTS1- 
conjugates. The existence of a flexible peroxisomal import 
channel is not inconceivable. Mitochondria have to sustain 
an electrochemical gradient across the inner membrane, so 
could not afford a large, "leaky" channel; indeed, accumu- 
lation of import intermediates in mitochondria does not 
lead to uncoupling (Wienhues et al., 1991). In contrast, al- 
though the glycosomal membrane seems to be rather im- 
permeable to small compounds such as glycolytic interme- 
diates (Hannaert and Michels, 1994), there is no evidence 
that it is impermeable to protons. This difference might al- 
low glycosomes to employ an import machinery that is 
flexible enough to accommodate large and/or folded struc- 
tures. 
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