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H 
EAT and other forms of stress that cause proteins to 
denature induce the synthesis of several classes of 
proteins known as heat shock proteins ( h s p s )  1 

many of which act as molecular chaperones (see Table I). 
A major role of these molecular chaperones after stress is 
to catalyze the refolding of denatured proteins (3, 4, 16). 
However, certain molecular chaperones are produced con- 
stitutively indicating that they have important functions 
even under normal conditions. Such functions are being 
intensively investigated and include: (a) promotion of 
proper protein folding after synthesis; (b) stimulation of 
assembly and disassembly of multimeric proteins; and (c) 
facilitation of protein translocation across a variety of in- 
tracellular membranes including those of the endoplasmic 
reticulum, mitochondrion, nucleus, and peroxisome (3, 4, 16). 

Molecular chaperones also stimulate the breakdown of 
proteins, and the idea has emerged that when molecular 
chaperones fail in their functions of protein folding, as- 
sembly, or translocation, they then facilitate the degrada- 
tion of the mishandled protein (4, 17). Although this "re- 
fold or degrade" model remains to be critically tested, it 
now appears that molecular chaperones facilitate protein 
degradation in many different ways. We will cite examples 
where molecular chaperones increase the susceptibility of 
certain substrate proteins to proteolytic attack. In some 
cases the molecular chaperones simply prevent substrate 
proteins from forming massive aggregates that are par- 
tially shielded from proteolytic attack, but in other cases 
they function in more specific targeting of substrate pro- 
teins to particular proteolytic pathways. In addition to 
these effects on protein substrates, molecular chaperones 
can increase the overall activities of certain proteolytic 
pathways. In some cases the molecular chaperones are 
physically associated with proteases while in other cases 
they appear to be required for the interactions between 
different macromolecules needed for the proteolytic path- 
way to operate efficiently. 

Molecular Chaperones and Protein Degradation 
in Prokaryotes 

Proteolysis Is Induced by Stress. Under stress conditions, 
such as elevated temperature or exposure to amino acid 
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1. Abbreviat ions used in this paper, hsp, heat shock protein; mt-hsp, mito- 
chondrial heat shock protein; TF, trigger factor. 

analogs, rates of protein degradation increase in bacteria 
(16). The increased proteolysis is not simply due to effects 
of stress on the structure of substrate proteins; instead, 
molecular chaperones and proteases produced during 
stress are required (1, 7, 13). 

Bacterial proteases known to be induced by stress in- 
clude two ATP-dependent proteases, La and Clp (also 
called protease Ti; Table I). Protease La, the product of 
the Ion gene, acts as a tetramer, and Clp protease acts as a 
tetradecamer of the protease subunit, Clp P (14) assem- 
bled with a hexamer of regulatory ATPase subunits, ClpA 
or ClpX (8, 14). 

Molecular Chaperones and Proteolysis by Proteases La 
and Clp. Degradation of bulk abnormal proteins such as 
puromycyl peptides and proteins containing amino acid 
analogs is carried out largely by proteases La and Clp and 
requires DnaK, DnaJ, GrpE, GroEL, and GroES, all of 
which are heat shock proteins and molecular chaperones 
(13, 16, 18; Table I). ClpA, ClpB, and CIpX have substan- 
tial sequence homology to heat shock proteins of the 100- 
kD family, and ClpB and CIpX are heat inducible (8). 

Interestingly, both ClpA and ClpX can act alone as mo- 
lecular chaperones. Wickner et al. (23) have shown that 
ClpA acts as a molecular chaperone in the in vitro activa- 
tion of the plasmid P1 RepA initiator protein. CIpA func- 
tions, as do DnaK and DnaJ, by monomerizing RepA 
thereby allowing it to bind the DNA replication origin of 
plasmid P1. Additionally, ClpA functions to target RepA 
for degradation by ClpP. This stimulation of degradation 
does not occur when RepA is monomerized by DnaJ and 
DnaK, so ClpA seems to play a direct role in targeting 
RepA for degradation by CIpP (Fig. 1). ClpX has similarly 
been shown to target the bacteriophage lambda O replica- 
tion protein for degradation by ClpP and to act as a molec- 
ular chaperone (22). ClpX can also catalyze the disassembly 
of the Mu virus transposase tetramer and target it for deg- 
radation by ClpP (Baker, T. A., personal communication). 

The role of CIpA and ClpX in targeting proteins for 
degradation by ClpP is due, in part, to physical association 
between the molecular chaperone subunit and the pro- 
tease subunit. Additional roles for ClpA and ClpX in 
modifying the protein substrate structure so that it is more 
susceptible to attack by ClpP are possible but have not 
been proven. 

Other molecular chaperones appear to be involved in 
the degradation of specific abnormal proteins in Escheri- 
chia coli, but in these cases the roles of the molecular 
chaperones are not well understood. PhoA61, a short- 
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Table L Molecular Chaperones and Proteases 

Protein Source Description 

Molecular Chaperones 
DnaK bacteria 
DnaJ 
GrpE 
GroEL 
GroES 
Trigger Factor 

Ssal,2 yeast 
Sscl 
Mdjl 
Sis 
Ydj 
Hsc73 mammals 

Proteases 
La 
CIpP 
CIpA 

CIpB 
CIpX 

Piml 

proteasome 

hsp70 
stimulates DnaK 
works with DnaJ 
hsp60 
hspl0; works with GroEL 
stimulates protein insertion 

into plasma membrane 
cytosolic hsp70s 
mitochondrial hsp70 
mitochondrial DnaJ homolog 
cytosolic DnaJ homolog 
cytosolic DnaJ homolog 
major constitutively 

expressed hsp70 

bacteria ATP-dependent protease 
proteolytic subunit of Clp 
ATPase subunit of Clp; 

molecular chaperone 
molecular chaperone 
ATPase subunit of Clp; 

molecular chaperone 
yeast mitochondrial protease 

La homolog 
yeast, mammals multisubunit ATP-dependent 

protease 

lived, nonsecreted form of alkaline phosphatase, is de- 
graded more rapidly in response to heat shock, and dele- 
tion of the dnaK gene or the Ion gene stabilizes phoA61 
(17). This result alone does not prove that DnaK and pro- 
tease La are involved with degradation of phoA61. In the 
absence of the molecular chaperone or protease many ab- 
normal proteins can accumulate and potentially saturate a 
proteolytic pathway responsible for the degradation of 
phoA61. However, phoA61 can also be found associated 
with DnaK, GrpE (Table I), and protease La, and under a 
variety of conditions the rate of degradation of phoA61 

ClpA/P 

RepA dimer~ 
°o°O 
°. 

ClpA/P 

ClpA 
® ®  
RepA monomers 

Figure 1. CIpA functions in the monomerizat ion and degradation 
of RepA. ClpA alone (hexamer) acts as a molecular chaperone in 
the monomerization and activation of RepA (shaded ovals). 
ClpA also works together with CIpP (shaded square) in the deg- 
radation of RepA. Whether ClpA/P degrades RepA monomers, 
dimers, or both is not clear. All of the steps shown require ATP. 

correlates with the amount of DnaK associated with the 
protein. For example, mutations in the dnaJ gene stabilize 
phoA61 and reduce the amount of DnaK associated with 
the protein. 

Other molecular chaperones appear to be involved in 
the degradation of other specific abnormal proteins in E. 
coli. CRAG is a chimeric protein consisting of 12 amino 
acids from the cro repressor, a truncated form of protein 
A, and 14 amino acids from [3-galactosidase (11). It is effi- 
ciently degraded by the Clp protease, but only if GroEL 
and GroES are also present. Kandror et al. (12) also show 
that another protein previously not recognized to be a 
general molecular chaperone, trigger factor (TF; Table I), 
also associates with CRAG and may be involved in the 
degradation of this abnormal protein. 

From the examples of phoA61 and CRAG, it might 
seem that DnaK and GrpE stimulate proteolysis by pro- 
tease La while GroEL, GroES, and TF stimulate proteoly- 
sis by protease Clp. However, there is no evidence for the 
specific interaction between these molecular chaperones 
and proteases. Another possibility is that the molecular 
chaperones in each case may be preventing the massive 
aggregation of substrate proteins, and, for unknown rea- 
sons, phoA61 may be a good substrate for La and CRAG 
may be a good substrate for Clp. 

The mechanism by which CtpA, or any other chaperone, 
refolds some protein substrates but stimulates degradation 
of others is unknown, but will be an important issue to re- 
solve. If the "refold or degrade" idea mentioned earlier 
proves to be correct, perhaps the stimulation of degrada- 
tion is based simply on the duration of binding of the chap- 
erone to the substrate protein. If the protein can be readily 
refolded and the chaperone released, there may be insuffi- 
cient time for the protease to encounter the protein sub- 
strate. 

Molecular Chaperones and Protein Degradation 
in Eukaryotes 

Proteolytic Pathways Induced by Stress. Multiple pathways of 
protein degradation exist in yeast and mammalian cells. 
Components of the ATP- and ubiquitin-dependent pro- 
teolytic pathway (2) are induced by heat shock (16). Such 
components include ubiquitin, two ubiquitin carrier pro- 
teins, and certain subunits of the 26S proteasome. Addi- 
tionally, in mammalian cells a lysosomal pathway of pro- 
teolysis, macroautophagy (15), is induced by heat shock 
(9). Finally, a selective pathway of lysosomal proteolysis 
requires the constitutive form of an hsp70, hsc73 (6). 

Molecular Chaperones and Mitochondrial Proteolysis. 
Mitochondria can be taken up and degraded by lysosomes, 
but substantial protein degradation also takes place within 
the organelle (10). The intramitochondrial proteases are 
homologous to the prokaryotic proteases, La and Clp, and 
also require intramitochondrial chaperones for optimal 
proteolysis (8, 19). The mitochondrial homolog of protease 
La in yeast, the Piml protease, is required for the degrada- 
tion of the 13 subunits of ATP synthase and the general 
matrix peptidase within mitochondria (20). The mitochon- 
drial hsp70 (mt-hsp70; the sscl gene product) and the mi- 
tochondrial DnaJ homolog, Mdjl (Table I), are both re- 
quired for efficient degradation of two abnormal, mistargeted 
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proteins by Piml. In the absence of mt-hsp70 and Mdjl the 
abnormal proteins form large aggregates (21). A question 
that remains is whether or not molecular chaperones are 
also required for the degradation of normal mitochondrial 
proteins. 

Molecular Chaperones and the Ubiquitin-Proteasome Pro- 
teolytic Pathway. Chaperones are required for the degra- 
dation of certain abnormal proteins by the ubiquitin-protea- 
some pathway of yeast and mammalian cells. Mutations in 
hsp70 genes (ssal and ssa2) and temperature-sensitive mu- 
tants of the DnaJ homologs, Ydj and Sis (Table I), reduce 
the degradation of proteins containing amino acid analogs 
and most short-lived, normal proteins (Lee, D. H., M. Y. 
Sherman, and A. L. Goldberg. 1995. Cold Spring Harbor 
Symp. Quant. Biol. VX:ll la .) .  Degradation of the major- 
ity of long-lived proteins is not affected by such mutations. 
Interestingly, Ydj appears to facilitate ubiquitination of 
proteins while Sis appears to promote the breakdown of 
ubiquitinated proteins by the proteasome (Fig. 2). 

The ubiquitin-dependent degradation of a yeast cyclin, 
the cln3 gene product, is stimulated by the DnaJ homolog, 
Ydj. In this case, the cyclin is phosphorylated before it can 
be efficiently ubiquitinated (24), and this phosphorylation 
step is stimulated by Ydj (Sherman, M., personal commu- 
nication; Fig. 2). The requirement for Ydjl appears to be 
for modifying the structure of the cyclin substrate making 
it more susceptible to phosphorylation since Ydj binds to 
cyclin near its phosphorylation site (Sherman, M., per- 
sonal communication). Most DnaJ homologs work in con- 
junction with hsp70s, but a role for hsp70s in the degrada- 
tion of this cyclin remains to be established. 

Other studies indicate that hsc73 promotes ubiquitin 
conjugation to certain denatured proteins in reticulocyte 
extracts. This conclusion was reached by immunodepleting 

hsc73 and showing that levels of ubiquitination of certain 
substrate proteins were greatly diminished. In addition, 
hsc73 is also required for efficient degradation of certain 
ubiquitinated proteins in reticulocyte extracts (Ciecha- 
nover, A., personal communication; Fig. 2). 

Molecular Chaperones and Lysosomal Proteolysis. Our own 
work has focused on the participation of hsc73 in the selec- 
tive targeting of certain cytosolic proteins to the lysosome 
where they are degraded (Fig. 3). The role of hsc73 in this 
degradation pathway appears to be very similar to roles of 
hsc73 in the import of proteins for residence or transit 
through other organelles (6). An intralysosomal hsp73 is 
also required for the import of substrate proteins (6; Fig. 3). 
Kinetic intermediates in the import of substrate proteins 
have been identified, and such intermediates are charac- 
teristic of protein import through polypeptide channels 
(5). As for the import of proteins into other organelles, 
there is likely a complex of receptors and a polypeptide 
transporter in the lysosomal membrane that recognizes 
the substrate protein. 

Conclusions 

Molecular chaperones are required for the degradation of 
abnormal and certain normal, short-lived proteins in both 
prokaryotes and eukaryotes. Distinct molecular chaper- 
ones appear to be required for the degradation of different 
proteins. In some cases the role of the molecular chaper- 
ones seems to be simply to prevent the formation of large 
aggregates of protein substrates which is thought to be a 
primary function in their roles in protein folding and trans- 
location. However, the evidence presented here suggests 
that molecular chaperones can also play a more specific 
role in the breakdown of proteins either by being physi- 
cally associated with proteases, like Clp, by facilitating a 
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Figure 2. Involvement of molecular chaperones in the ubiquitin- 
proteasome pathway of proteolysis. Ydj is required for efficient 
phosphorylation of a cyclin (the cln3 gene product) and is also re- 
quired for the efficient ubiquitination of certain abnormal pro- 
teins. Hsc73 is also required for the efficient ubiquitination of 
some abnormal proteins, Sis is required for degradation of cer- 
tain ubiquitinated proteins by the proteasome. Many of the steps 
shown require ATP. Ubiquitin (ub), and the multiple Ub struc- 
ture represents a covalent chain of ubiquitins known to be the 
signal for degradation of certain short-lived proteins. 

2. 

,N 

Iysosome 

Figure 3. Role of hsc73 in a selective pathway of lysosomal pro- 
teolysis. The substrate protein shown is RNase A, and the dark 
box represents the KFERQ sequence near the amino terminus. 
(Step 1) Hsc73 interacts with the KFERQ region and surround- 
ing amino acids of RNase A. (Step 2) RNase A (perhaps with 
hsc73 still bound) interacts with receptors and/or polypeptide 
transporters on the lysosomal surface (open rectangle). (Step 3) 
Cytosolic hsc73 dissociates from the RNase A, and an hsp73 
within the lysosome pulls RNase A from its amino terminus into 
the lysosomal lumen. (Step 4) RNase A is degraded by lysosomal 
proteases. 
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rate-limiting step in degradation, such as phosphorylation 
of Cln3, or by facilitating selective transport of proteins 
into lysosomes. 
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