
Differentially Expressed Fibroblast Growth Factors Regulate Skeletal 
Muscle Development through Autocdne and Paracdne Mechanisms 
Kevin Hannon,* Arthur J. Kudla, Michael J. McAvoy, Kari L. Clase, and Bradley B. Olwin* 
Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907; and *Walther Cancer Institute, Indianapolis, 
Indiana 46208 

Abstract. Several FGF family members are expressed 
in skeletal muscle; however, the roles of these factors in 
skeletal muscle development are unclear. We examined 
the RNA expression, protein levels, and biological ac- 
tivities of the FGF family in the MM14 mouse skeletal 
muscle cell line. Proliferating skeletal muscle cells ex- 
press FGF-1, FGF-2, FGF-6, and FGF-7 mRNA. Dif- 
ferentiated myofibers express FGF-5, FGF-7, and re- 
duced levels of FGF-6 mRNA. FGF-3, FGF-4, and 
FGF-8 were not detectable by RT-PCR in either prolif- 
erating or differentiated skeletal muscle cells. FGF-1 
and FGF-2 proteins were present in proliferating skele- 
tal muscle cells, but undetectable after terminal differ- 
entiation. We show that transfection of expression con- 
structs encoding FGF-1 or FGF-2 mimics the effects of 
exogenously applied FGFs, inhibiting skeletal muscle 
cell differentiation and stimulating DNA synthesis. 

These effects require activation of an FGF tyrosine ki- 
nase receptor as they are blocked by transfection of a 
dominant negative mutant FGF receptor. Transient 
transfection of cells with FGF-1 or FGF-2 expression 
constructs exerted a global effect on myoblast DNA 
synthesis, as greater than 50% of the nontransfected 
cells responded by initiating DNA synthesis. The global 
effect of cultures transfected with FGF-2 expression 
vectors was blocked by an anti-FGF-2 monoclonal an- 
tibody, suggesting that FGF-2 was exported from the 
transfected cells. Despite the fact that both FGF-1 and 
FGF-2 lack secretory signal sequences, when expressed 
intracellularly, they regulate skeletal muscle develop- 
ment. Thus, production of FGF-1 and FGF-2 by skele- 
tal muscle cells may act as a paracrine and autocrine 
regulator of skeletal muscle development in vivo. 

p RIMARY skeletal muscle cells and many skeletal mus- 
cle cell lines are repressed from terminal differenti- 
ation by FGFs. Nine members of the FGF family 

have been identified (FGF-1 through FGF-9). The hall- 
marks of this family include (a) high affinity for heparin or 
heparan sulfate; (b) two invariant conserved cysteine resi- 
dues; and (c) an overall homology of 30% (Baird and 
Klagsbrun, 1991). While exogenously added FGFs repress 
differentiation of cultured skeletal muscle cells (Gospo- 
darowicz et al., 1975; Linkhart et al., 1981; Olwin and 
Hauschka, 1986), the role of endogenously expressed 
FGFs, particularly those lacking signal peptide sequences, 
are not clear. FGF-2, FGF-4, FGF-5, FGF-6, and FGF-8 
mRNA appear to be expressed in skeletal muscle cells as 
they have been localized to the myotomal muscle region of 
the somites and in the developing limb muscle masses (for 
review see Olwin et al., 1994). As the majority of localiza- 
tion studies have not delineated whether FGFs are ex- 
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pressed in proliferating or in differentiated muscle cells, 
we examined FGF expression patterns in mouse myo- 
blasts. Moreover, localization of FGF mRNAs cannot 
identify functional roles for these proteins in the regula- 
tion of skeletal muscle development. 

Of the three members of the FGF family (FGF-1, FGF-2, 
and FGF-9) that lack a classical secretory signal sequence, 
FGF-1 and FGF-2 are implicated in regulating skeletal 
muscle development. Although both have been proposed 
to be released from cells only under conditions of cell lysis 
and cell death (McNiel et al., 1989; D'Amore, 1990; Muth- 
ukrishnan et al., 1991), we determined if intracellularly ex- 
pressed FGFs that lack classical signal sequences could 
regulate skeletal muscle growth and differentiation. We 
found that a skeletal muscle satellite cell line (MM14) ex- 
presses a number of FGF-family members that are devel- 
opmentally regulated. In addition, transfection of MM14 
cells with FGF-1 or FGF-2 expression vectors mimics ex- 
ogenously applied FGFs by repressing differentiation and 
stimulating DNA synthesis. To regulate MM14 cell differ- 
entiation, transfected FGFs require export from the cell 
and a functioning high affinity FGF-binding complex. These 
data suggest that FGF-mediated regulation of skeletal 
muscle development in vivo may be complex, involving 
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both paracrine and autocrine action of intracellularly pro- 
duced FGFs that lack classical signal sequences. 

Materials and Methods 

Table L Primers, TMs, and Positive Controls Used in PCR 
Amplifications 

FGF- 1 

Cell Culture FGF-2 

Proliferating adult mouse MM14 skeletal muscle cells (Linkhart et al., FGF-3 
1980) and differentiation-defective cells (DD) 1 (Lim and Hauschka, 1984) 
were cultured on gelatin-coated plates in growth medium consisting of FGF-4 
Ham's  F-10 (GIBCO BRL, Gaithersburg, MD) supplemented with hu- 
man FGF-2 (purified from a yeast strain expressing human FGF-2 IRa- FGF-5 
praeger et al., 1994]), 0.8 mM CaClz, 100 U of penicillin G per ml, 5 txg of 
streptomycin sulfate per ml, and 15% horse serum. The concentration of 
FGF-2 added to the cells was increased from 0.3 to 2.5 nM with increasing FGF-6 
cell density. Differentiation medium consisted of Ham's  F-10 supple- 
mented with 1 ixM insulin (Collaborative Biomedical Products, Waltham, FGF-7 
MA), 0.8 mM CaC12, 100 U of penicillin G per ml, 5 Ixg of streptomycin 
sulfate per ml, and 2% horse serum. As determined by immunostaining FGF-8 
for myosin, >95% of the nuclei in differentiated MM14 cell cultures were 
present in myosin-positive cells after 48 h of incubation (data not shown). 18 s 
DD cells were derived from MM14 cells and exhibit a mitogenic response 
to exogenously added FGF-2. However, in contrast to the parental MM14 
cells, these cells do not differentiate after FGF withdrawal. Less than 5 % 
of the nuclei in DD cells were myosin positive after growth in differentia- 
tion medium. 

RT-PCR 

RNA was isolated from MM14 and DD cells cultured in proliferation me- 
dium and for 48 h in differentiation medium (Chomczynski and Sacchi, 
1987). 10 ~g of total RNA was added to reverse transcriptase buffer 
(GIBCO BRL) containing 1 mM 2'-deoxynucleoside 5'-triphosphates, 
200 pmol of random hexamer primer (Pharmacia LKB Biotechnology, 
Inc., Piscataway, NJ), and 10 mM DTY in a total volume of 38 p.1. From 
this mixture, 19 i~l was removed and 200 U (1 IM) of Moloney murine leu- 
kemia virus reverse transcriptase (RT, GIBCO BRL) was added and incu- 
bated at 37°C for 1 h. The remaining 19 ~1 was used as a nonreverse-tran- 
scribed control (no-RT) in a PCR reaction. After the incubation, the 
cDNA and no-RT mixtures were diluted to 100 pJ. 

For PCR amplification, 2 I~l of cDNA or no-RT mixture was added to 
18 ixl of PCR buffer (50 mM KCI, 10 mM Tris-C1, pH 8.3, 1.5 mM MgCI2, 
and 0.001% gelatin) containing 250 p,M 2'-deoxynucleoside 5'-triphos- 
phates, 0.4 p.Ci [a32p]dCTP (Amersham Corp., St. Louis, MO, 3,000 Ci/ 
mmol), 0.25 ~M of forward primer (Table I), 0.25 ~M of reverse primer 
(Table I), and 0.03125 U/p.1 of T AQ DNA polymerase (Roche). Cycling 
parameters were denaturization at 95°C for 45 s, annealing at various 
melting temperatures (Table I) for 30 s, and elongation at 72°C for 1 min. 
After amplification for various cycle numbers, 10 txl of each PCR mixture 
was electrophoresed through 6% polyacrylamide gels. The gels were dried 
and an image was obtained using a phosphorimager (Bio-Rad Labs, Her- 
cules, CA). The amount of 32p-product amplified was examined to deter- 
mine if PCR amplification was exponential. If a particular product was 
amplified exponentially, then the amount of PCR product was quantitated 
(Hannon et al., 1992). All PCR products were visible after agarose gel 
electrophoresis when stained with ethidium bromide. Labeling PCR prod- 
ucts with 32p was performed solely for quantitation. In cases where both 
MM14 and DD cells did not express a detectable RT-PCR product, cDNAs 
made from various stage embryonic mouse RNAs were used as positive 
controls (Table I). RNA isolation and RT-PCR was replicated twice. Ap- 
proximately equal amount of product was amplified using 18 s ribosomal 
primers, ensuring that similar amounts of RNA were reverse transcribed 
and PCR-amplified to similar extents in all samples. No product was am- 
plified in any no-RT controls. 

Western Analysis 

Proliferating and differentiated MM14 cells were washed twice with cold 

1. Abbreviations used in this paper. CFR, cyteine-rich FGF receptor; 
CMV, cytomegalovirus; DD, differentiation-defective cells; dpc, days post 
coitum; FGFR, FGF receptor; RT, Moloney murine leukemia virus re- 
verse transcriptase; TM, annealing temperature. 

Forward/reverse primers TM Positive control 

atggctgaaggggagatc 65 MM14 myoblast 
ctagtcagaagacaccgg cDNA 
agcggcatcacctcgcttcc 65 MMI4 myoblast 
tggaagaaacagtatggccttctgtcc cDNA 
atgccctctggattcatt 60 11 dpc mouse embryo 
caaccttcgtgtcctaca head cDNA 
gaccgccgcacccaacgg 55 BC3HI myoblast 
tcatggtaggcgacactc cDNA 
ctgatccacagcgcttgg 55 Differentiated MM14 
agtcatccgtaaatttgg myofiber cDNA 
gaacacacgaggagaacc 60 MMl4 myoblast 
cagtgcaatgtaggtccc cDNA 
atgcgcaaatggatactg 55 MM14 myoblast 
ttaggttattgccatagg cDNA 
ggcaaggactgcgtattc 65 11 dpc mouse embryo 
ctatcggggctccggggc whole body cDNA 
tacctggttgatcctgcc 55 MM14 myoblast 
aggttatctagagtcacc cDNA 

Primer sequences, annealing temperatures (TMs), and cDNA used for positive con- 
trois in PCR amplifications as described in Materials and Methods. 

phosphate-buffered saline and solubilized in lysis buffer (1% [vol/vol] Tri- 
ton X-100, 25 mM Tris-HC1, pH 7.8, 50 mM NaCI, 2 mM EDTA, 2 mM 
PMSF, 1 Ixg/ml leupeptin) for 30 min at 4°C. Insoluble material was re- 
moved by centrifugation at 14,000 g for 15 min at 4°C, and the protein con- 
tent of each cell lysate was determined by the bicinchoninic acid protein 
assay (Pierce Chem. Co., Rockford, IL). Proteins (25 lxg) from cell lysates 
were separated in 12% polyacrylamide gels by SDS-PAGE and electro- 
phoretically transferred to Immobilon-P membranes (Millipore Corp., 
Bedford, MA) in 25 mM ethanolamine, 25 mM glycine, 20% methanol, 
pH 9.5. Nonspecific membrane-binding sites were blocked in Tris-buff- 
ered saline (50 mM Tris-HC1, pH 7.4, 100 mM NaCI) containing 3% non- 
fat dry milk and 0.05% (vol/vol) Tween-20. FGF-1 and FGF-2 were de- 
tected using a polyclonal antiserum and monoclonal antibody (Savage et 
al., 1993), respectively. Bound anti-FGF antibodies were detected with the 
appropriate horseradish peroxidase-conjugated secondary antibody (Pro- 
mega Corp., Madison, WI). Horseradish peroxidase was visualized by 
chemiluminescence using the Amersham ECL system. 

DNA Constructs 

a-Cardiac actin-luciferase is a luciferase reporter gene driven by a skeletal 
muscle specific a-cardiac actin promoter (gift of Steve Konieczny, Purdue 
University) described previously (Kudla et al., 1995). Cytomegalovirus 
(CMV)-lacZ is a lacZ gene controlled by a CMV promoter (Centre Com- 
merciel de Gros). pcFGF-1 is a mouse FGF-1 gene (H6bert et al., 1990) 
cloned into the EcoRV site of pcDNA3 (Invitrogen, San Diego, CA). 
pcbFGF-2 is a bovine FGF-2 gene encoding the 18-kD form of FGF-2 
(Rogelj et al., 1988), cloned into the EcoRV site of pcDNA3, pcDNFR1 is 
the extracellular and transmembrane domain of the mouse FGF receptor-1 
(FGFR1) (Yayon et al., 1991) containing an Xba linker stop codon in- 
serted at the Ball site of the intracellular domain, and cloned into the 
EcoRV site of pcDNA3. 

Transient Transfections 

Proliferating MM14 cultures (5 x 104 cells/100-mm plate) were passaged 
and plated 6-8 h before transfection. A calcium phosphate-DNA precipi- 
tate containing 1.5 p~g of u-cardiac actin-luciferase reporter gene, 1 I~g of 
an expression construct containing CMV-IacZ, and either 25 ~g of pcFGF-1, 
pcbFGF-2, or control (pcDNA3) was prepared in 0.55 ml of Hepes-buff- 
ered saline (25 mM Hepes [pH 7.05], 140 mM NaCl, 5 mM KC1, 0.75 mM 
Na2HPO4, 6 mM dextrose) containing 0.11 M CaC12. The cells were incu- 
bated with 0.5 ml of the precipitate for 20 min before the addition of 
growth medium and 0.5 nM FGF-2. After 4 b, the cells were osmotically 
shocked for 2.5 min with 15% glycerol in Hepes buffered saline. Growth 
medium with or without exogenous FGF-2 was then added back to the 
cells. A portion of the cells receiving the pcDNA3 control vector was sup- 
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plemented with either exogenous FGF-2 (0.3-2.5 nM with increasing cell 
density) or 0.3 nM human recombinant FGF-7 (Jeffery Rubin, National 
Cancer Institute, Bethesda, MD). Luciferase and 13-galactosidase activity 
were analyzed 36 h after the osmotic shock in a Berthold Lumat luminom- 
eter using the luciferase (Promega) and Galacto-Light Plus (TROPIX) as- 
say systems, respectively, with the exception that 2 mM PMSF and 1 Ixg of 
leupeptin per ml were added to the solubilization buffers. Normalization 
of transfection efficiency was performed by correcting the luciferase activ- 
ity for the levels of 13-galactosidase present in each assay. Each transient 
transfection was replicated twice with treatments run in triplicate. 

Single-Cell Fusion Studies 
Proliferating MM14 cells were transfected as described above with 1 txg 
CMV-13-gal and 25 Ixg pcDNA3, 25 Ixg pcFGF-1, or 25 Ixg pcbFGF-2. Af- 
ter the osmotic shock, growth medium with or without exogenous FGF-2 
was added back to the cells. 60 h postglycerol shock, cells were rinsed with 
PBS, fixed for 5 rain with 0.5% glutaraldehyde in PBS, rinsed twice more 
with PBS and stained for 13-galactosidase (1 mg per ml 5-bromo-4-chloro- 
3-indolyl-13-D-galacto pyranoside, 5 mM potassium ferricyanide, 5 mM 
potassium ferrocyanide and 2 mM MgC12 in PBS at 37°C for 16 h). The 
number of 13-galactosidase positive nuclei that fused into multinucleated 
(three or more nuclei) myotubes was then scored. A minimum of 300 
cells/plate was scored for each assay point. Each single cell fusion assay 
experiment was repeated twice. 

Analysis of DNA Synthesis 
Proliferating MM14 cells were transfected as described above with 1 ixg 
CMV-LacZ and 25 txg pcDNA3, 25 Ixg pcFGF-1, or 25 Ixg pcbFGF-2. Af- 
ter osmotic shock, growth medium with or without FGF-2 was added to 
the cells. One group of cells receiving pcDNA3 control vector was supple- 
mented with exogenous FGF-2, while others received complete growth 
medium (15% horse serum) but no exogenously applied FGF. 24 h after 
the osmotic shock, methyl-[3H]thymidine (New England Nuclear, Boston, 
MA; model NET027Z) was added to each plate to a final concentration of 
2 ixCi/ml. After 12 h of additional incubation, cells were fixed with 0.5% 
glutaraldehyde in PBS and stained for 13-galactosidase as described 
above. After 13-galactosidase staining, plates were coated with NTB-2 nu- 
clear emulsion (KODAK),  exposed for 1 wk, and developed according to 
instructions of the manufacturer. The number of f3-galactosidase and 
[3H]thymidine-positive cells was then scored using bright-field micros- 
copy. This assay was repeated twice. 

In a second study, 6-8 h before transfection, proliferating MM14 cells 
were plated at 5 × 104 cells/100-mm plate in 0.7 nM FGF-1 (Olwin and 
Hauschka, 1986). Cells were then transfected as described above with 1 i~g 
CMV-LacZ and 25 Ixg pcDNA3, or 25 ixg pcbFGF-2. After osmotic shock, 
growth medium with or without FGF-2 was added. In addition, 30 Ixl of as- 
cites fluid containing anti-FGF-2 antibodies (Savage et al., 1993) or anti- 
cysteine-rich fibroblast growth factor receptor (CFR) antibodies (Burrus 
et al., 1992) was added. Ascites fluid and/or exogenous FGF-2 were added 
to the cells every 12 h. Cells were supplemented with methyl-[3H]thymi - 
dine, stained for 13-galactosidase, coated with NTB-2 nuclear emulsion, 
and scored using bright-field microscopy as described above. 

entiate (Lim and Hauschka, 1984). FGF-1, FGF-2, FGF-6, 
and FGF-7 expression was detected both in proliferating 
and differentiated DD cells (Fig. 1). Moreover, FGF-5 ex- 
pression was not upregulated in DD cells cultured in dif- 
ferentiation medium (Fig. 1). Thus, regulation of FGF-1, 
FGF-2, FGF-5, and FGF-6 expression in MM14 cells is as- 
sociated with skeletal muscle differentiation. The PCR 
products for FGF-1, FGF-2, and FGF-7 were first detect- 
able at lower cycle numbers in DD cells than in MM14 cells, 
suggesting that more mRNA is present for these products 
in DD cells. FGF-1 was first detectable in DD cells after 

Results 

To better understand the role(s) that FGFs play in skeletal 
muscle development, we analyzed the RNA expression, 
protein levels, and biological activity of FGF family mem- 
bers in MM14 cells. In these cells, FGF mRNAs are unde- 
tectable by Northern analysis (data not shown). There- 
fore, we examined the relative levels of FGF expression in 
MM14 cells by RT-PCR. Proliferating cells expressed 
FGF-1, FGF-2, FGF-6, and FGF-7 (Fig. 1). Differentiated 
cells express FGF-5 and FGF-7, while FGF-6 expression 
was reduced and expression of FGF-1 and FGF-2 was un- 
detectable (Fig. 1). The expression of FGF-family mem- 
bers in the MM14 cells was compared to expression pat- 
terns in differentiation-defective (DD) cells. The latter 
cells are a variant of the MM14 cell line that fails to differ- 

Figure 1. R T - P C R  analysis  o f  F G F - f a m i l y  and  18 s r i bosoma l  
R N A  in M M 1 4  and  d i f fe ren t ia t ion-defec t ive  (DD) cells. 5 Ixg of  
total  R N A  f rom e i ther  pro l i fe ra t ing  M M 1 4  (P),  p ro l i fe ra t ing  D D  
(P),  d i f fe ren t ia ted  M M 1 4  (D),  or  mock-d i f f e ren t i a t ed  D D  ( " D " )  
cells was  reve r se  t r ansc r ibed  and  1/40 o f  this  m i x t u r e  P C R  ampli -  
fied with [et3ep]dCTP. A f t e r  ampl i f ica t ion  for va r ious  cycles (cy- 
cle t i t ra t ion)  to en su re  ampl i f ica t ion  was  exponen t ia l ,  p roduc t s  
were  e l e c t ropho re sed  t h r o u g h  6% po lyac ry lamide  gels, ex p o sed  
to f i lm and  quan t i f i ed  on  a B i o R a d  p h o s p h o r i m a g e r .  R e p r e s e n t a -  
tive results f rom each amplification are shown.  T h e  n u m b e r  of  cycles 
of  ampl i f ica t ion  for each  p roduc t  pair  are  indicated.  ( - )  indica tes  
R N A  expres s ion  was no t  de tec ted .  R N A  isola t ion  and  R T - P C R  
was repl ica ted  twice with s imilar  resul ts .  
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Figure 2. FGF-1 and FGF-2 protein are present in proliferating 
MM14 cells. Cell lysates (25 ~g total protein) from proliferating 
(P MM14 Extract) and differentiated (D MM14 Extract) MM14 
ceils were analyzed by Western blotting with (A) a polyclonal 
anti-FGF-1 antibody and (B) a monoclonal anti-FGF-2 antibody 
as described in Materials and Methods. FGF-1 and FGF-2 Std are 
purified bovine FGF-1 and human recombinant 18 kD FGF-2, re- 
spectively. Molecular mass standards (kD) are indicated. 

only 32 cycles while it was not detected in MM14 cells until 
after 38 cycles, FGF-2 was first observed in DD cells after 
34 cycles compared to detection in MM14 cells after 40 cy- 
cles, and FGF-7 was detectable after 26 cycles in DD cells 
and not until after 30 cycles in MM14 cells (data not 
shown). Expression of FGF-3, FGF-4, or FGF-8 was not 
detectable in either MM14 or DD cells (Fig. 1). Expres- 
sion of FGF-9 was not examined as the mouse FGF-9 
cDNA sequence was not available for PCR primer design. 

Western blot analysis of FGF-1 and FGF-2 proteins in 
proliferating MM14 cell extracts identified a major FGF-1 
protein migrating at 14 kD and three FGF-2 proteins mi- 
grating at 17.5, 19.5, and 21 kD (Fig. 2). The anti-FGF an- 
tibodies are specific for the FGF family member towards 
which they were generated. The anti-FGF-1 polyclonal 
antibodies were specific for FGF-1 as no cross reactivity 
was detected to FGF-2 (Fig. 2). The monoclonal anti- 
FGF-2 antibodies are FGF-2 specific (Savage et al., 1993). 
Higher molecular weight proteins recognized by both the 
anti-FGF-1 and anti-FGF-2 antibodies are either proteins 
recognized nonspecifically by the antibodies or proteins 
that share an epitope with FGFs. Neither FGF-1 nor FGF-2 
was detected 4 d after terminal differentiation (Fig. 2). 
The three detected isoforms of FGF-2 have been de- 
scribed previously and most likely correspond to alternate 
upstream translational initiation of FGF-2 (Florkiewicz 
and Sommer, 1989; Prats et al., 1989; Renko et al., 1990). 
The biological role(s) of the multiple FGF-2 isoforms has 
not been established. 

The presence of FGF-1 and FGF-2 protein in proliferat- 
ing MM14 cells was unexpected as these cells are depen- 
dent on exogenously supplemented FGFs. As it seemed 

unlikely that these proteins were biologically active, espe- 
cially due to their lack of signal sequences, we designed an 
experiment to address the role(s) of these FGFs in regula- 
tion of myogenesis. Proliferating MMI4 cells were tran- 
siently cotransfected with a series of expression vectors en- 
coding a skeletal muscle differentiation-specific reporter 
(luciferase controlled by the a-cardiac actin promoter), 
FGF-1, the 18-kD form of FGF-2 and [3-galactosidase. In 
cells transfected with the differentiation-specific reporter 
and cultured without FGFs, luciferase activity is enhanced 
severalfold, indicative of skeletal muscle cell differentia- 
tion (Fig. 3 A). Addition of exogenous FGF-2 or transfec- 
tion of proliferating MM14 cells with expression vectors 
encoding FGF-1 or FGF-2 inhibits the differentiation-spe- 
cific increase in luciferase activity (Fig. 3 A). Similar re- 
suits were obtained using a luciferase reporter gene con- 
trolled by the troponin-I differentiation-specific cis-acting 
regulatory elements (data not shown). Addition of FGF-7 
protein to the tissue culture medium had no effect on the 
differentiation-specific increase in luciferase activity, con- 
sistent with the observation that MM14 cells do not re- 
spond to FGF-7 (Olwin and Rapraeger, 1992; Patrie et al., 
1995) nor express FGFR-2 (Templeton and Hauschka, 1992), 
a splice variant of which binds FGF-7. 

Transfection of MM14 cells with expression vectors en- 
coding either FGF-1 or FGF-2 mimics exogenously added 
FGF-2. Since exogenously added FGF-2 requires high af- 
finity cell surface binding sites to repress terminal differ- 
entiation (Olwin and Rapraeger, 1992), we determined if 
intracellularly produced FGF-1 or FGF-2 requires a func- 
tioning high affinity cell surface-binding site to repress 
myogenesis. As one component of a high affinity-binding 
site is an FGF receptor tyrosine kinase, an expression vec- 
tor encoding a truncated FGF receptor-1 that functions as 
a dominant negative mutant was cotransfected with ex- 
pression vectors encoding FGF-1 or FGF-2. Cotransfec- 
tion of the construct encoding the dominant negative mutant 
abrogated the activity of exogenously applied or intracel- 
lularly expressed FGFs (Fig. 3 B). In addition, when the 
dominant negative mutant construct and FGF-expression 
construct were cotransfected the differentiation-specific 
reporter gene and CMV-LacZ were activated to levels 
similar to that observed in cells transfected with a control 
vector alone. These results demonstrate that transfection 
of an FGF-1 or FGF-2 expression construct does not spe- 
cifically promote cell death and that cell death or lysis is 
unlikely to be responsible for release of these FGFs. 

Since the transient transfection assays measure only re- 
porter gene activity, we performed single cell analyses to 
determine the effects of transient transfection of FGF-1 
and FGF-2 on cell fusion. Transfected cells were identified 
by expression of ~-galactosidase from a cotransfected 
plasmid encoding lacZ. The nuclei from cells transfected 
with lacZ were blue and easily discernible from nontrans- 
fected cell nuclei in myotubes, allowing the analysis of an 
individual cell's developmental fate (Fig. 4). MM14 myo- 
blasts cotransfected with control DNA and cultured in the 
absence of FGFs were used to determine the maximal myo- 
blast fusion index (~35% of total 13-galactosidase positive 
nuclei were in multinucleated myotubes after 60 h). 
Cotransfection of lacZ with FGF-1 (data not shown) or 
FGF-2 expression vectors inhibited myoblast fusion (Fig. 4). 
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Figure 3. Intracellularly expressed FGF-1 and FGF-2 require a 
functioning high affinity tyrosine kinase receptor to inhibit skele- 
tal muscle-specific gene expression in MM14 cells. (A) Proliferat- 
ing MM14 cells were transiently cotransfected with an oL-cardiac 
actin-luciferase reporter construct, a LacZ expression construct, 
and either a control vector, an FGF-1 expression vector, or an 
FGF-2 expression vector. After transfection with the control vec- 
tor, cells were cultured in the presence of exogenously supple- 
mented FGF-2 (Exogenous FGF-2), exogenously supplemented 
FGF-7 (Exogenous FGF-7), or no additions (Untreated). Cells 
transfected with expression vectors encoding FGF-1 (Transfected 
FGF-1) or FGF-2 (Transfected FGF-2) were incubated for 36 h in 
the absence of exogenous FGF. After a 36-h incubation, lu- 
ciferase activity was determined and normalized to 13-galactosi- 
dase activity as described in Materials and Methods. (B) Trans- 
fections and growth conditions were identical to A except that all 
cells were cotransfected with an expression vector encoding a 
truncated FGFR1. Error bars represent standard deviation of 
triplicate points. All experiments were replicated twice with simi- 
lar results. 

To completely reproduce the effects of  exogenously ap- 
plied FGF, cells transfected with FG F  expression con- 
structs should be proliferated as well as repressed from 
terminal differentiation. Therefore,  a single cell analysis of 
D N A  synthesis was performed. Transfected cells were 
identified by [3-galactosidase expression and D N A  synthe- 
sis was analyzed by scoring the number  of  [3H]thymidine- 
positive cells. We examined cultures transiently transfected 
with expression constructs encoding FGF-1 or FGF-2, or 
cells cultured in the presence of exogenously applied FGF-2. 
Control  cultures not supplemented with FG F  exhibit only 
a low level of [3H]thymidine incorporation indicating the 
majority of  cells withdrew from the cell cycle (Fig. 5, A 
and E). Cells cultured in the presence of exogenous FGF-2 

Figure 4. Transfection of an FGF-2 expression construct inhibits 
fusion of MM14 myoblasts. Proliferating MM14 cells were 
cotransfected with expression vectors containing the Lac Z gene 
and an FGF-2 cDNA or a vector control. Cells cotransfected with 
a Lac Z expression vector and a control vector were cultured in 
the presence of exogenously supplemented FGF-2 (Exogenous 
FGF-2) or with no additions (Untreated) for 60 h. Cells cotrans- 
fected with a Lac Z expression vector and the FGF-2 cDNA ex- 
pression vector (Transfected FGF-2) were incubated for 60 h in 
the absence of exogenous FGF. After the 60-h incubation cells 
were stained for [3-galactosidase and the number of stained cells 
that fused into multinucleated myofibers (three or more nuclei) 
was counted. A minimum of 300 cells/plate were scored. The ex- 
periment was replicated twice with similar results. 

exhibited a maximal level of [3H]thymidine incorporation 
(Fig. 5, B and E). Cells transfected with FGF-1 or FGF-2 
expression vectors exhibited high levels of [3H]thymidine 
incorporation (Fig. 5, C-E) .  

Unexpectedly, transfection of  FGF-1 or FGF-2 exerted 
a global effect on neighboring cells. Although 15% of the 
cell population was transfected as determined by [3-galac- 
tosidase staining, D N A  synthesis was observed in >50% 
of the nontransfected cells (Fig. 5). The maximum number  
of cells transfected was 15% after transfection of either 
0.5, 1.0, 5.0, 10, or 30 txg of C M V - L a c Z  (data not shown). 
These data demonstrate that the number  of FGF-trans- 
fected cells does not exceed 15% and cannot account for 
the global increase in D N A  synthesis. These data indicate 
that protein products of the FGF  expression vectors are 
released from the transfected cells and stimulate D N A  
synthesis in surrounding cells. We confirmed this hypothe- 
sis by demonstrating that the increase in D N A  synthesis 
was blocked when monoclonal  ant i-FGF-2 antibodies 
were added to the medium of cells transfected with an 
FGF-2 expression vector. Maximal levels of [3H]thymidine 
were observed in cells transfected with a control vector 
and not treated with ant i -FGF-2 antibody, while cells 
transfected with an FGF-2 expression vector exhibited 
high levels of [3H]thymidine incorporation (Fig. 6). How- 
ever, in the presence of a monoclonal  ant i -FGF-2 anti- 
body, neither cells treated with exogenous FGF-2 nor 
those transfected with FGF-2 incorporated [3H]thymidine 
(Fig. 6). This effect was specific as an avian-specific anti- 
CFR monoclonal  antibody had no effect (Fig. 6). These 
results demonstrate  that intracellularly produced FGFs 
exported from the cell mimic the biological activities of  ex- 
ogenously applied FGFs. 
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Figure 5. Intracellular production of FGF-1 and FGF-2 stimulate DNA synthesis 
in MM14 myoblasts. Cells were cotransfected with expression constructs encoding 
13-galactosidase and FGF-1, FGF-2, or a control and then cultured in the presence 
or absence of exogenously added FGF-2. 24 h after transfection, [3H]thymidine 
was added and the cells were incubated for an additional 12 h. Cells were then 
fixed, stained for 13-galactosidase, and exposed to an autoradiographic emulsion. 
The number of [3H]thymidine-positive MM14 myoblasts was scored. Control cells 
not supplemented with FGFs (A) withdrew from the cell cycle and exhibited low 
levels of [3H]thymidine incorporation. Cells transfected with a control vector and 
treated with exogenous FGF-2 (B) stimulated maximal [3H]thymidine incorpora- 
tion. The number of cells transfected with either FGF-1 (C) or FGF-2 (D) that in- 
corporated [3H]thymidine was similar to that observed for cells treated with exog- 
enous FGF-2. A quantitative summary of two separate experiments is shown in E. 
Approximately 15% of the cells were transfected as determined by the blue [3-galac- 
tosidase stain. A minimum of 500 cells/plate was scored. The experiment was rep- 
licated twice with similar results. 

Discussion 

A number  of  factors that  regulate  terminal  differentiat ion 
of skeletal  muscle cells in vitro have been identif ied (for 
review see Olwin et al., 1994). The  role(s)  of these factors 
in the deve lopment  or regenera t ion  of skeletal  muscle in 
vivo is unknown, as a direct  involvement  of any of these 
factors in induction,  growth, maintenance,  or regenera t ion  
of skeletal  muscle in vivo has not  been shown. Members  of 
the F G F  family are likely to be critical regulators  of skele- 

tal muscle deve lopment  in vivo as a number  of  F G F  family 
members  and F G F  receptors  are (a) localized to skeletal  
muscle (Joseph-Silverstein et al., 1989; Or r -Ur t rege r  et al., 
1991; Niswander  and Martin,  1992; Peters  et al., 1992; de 
Lapeyr i~re  et al., 1993; Han  and Martin,  1993; Savage et 
al., 1993; Savage and Fallon,  1995); (b) present  in high lev- 
els in diseased and regenerat ing skeletal  muscle (DiMar io  
and Strohman,  1988; DiMar io  et al., 1989; Gar re t t  and 
Anderson ,  1995); and (c) required for the maintenance  of 
pr imary mouse and chick skeletal muscle cultures (Linkhart  
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Figure 6. Intracellularly produced FGF-2 requires cell export in 
order to stimulate D N A  synthesis in MM14 myoblasts. Cells were 
cotransfected with expression constructs encoding [3-galactosi- 
dase and FGF-2 or a control vector and then cultured in the pres- 
ence or absence of exogenously added FGF-2. After  transfection, 
cells were treated every 12 h with either a monoclonal ant i-FGF-2 
antibody, a monoclonal anti-CFR antibody, or no antibody. 24 h 
after transfection, cells were incubated with [3H]thymidine for 12 h. 
Cells were then fixed, stained for [3-galactosidase, and exposed to 
an autoradiographic emulsion. The number  of [3H]thymidine- 
positive MM14 myoblasts was scored. Cells supplemented with 
ei ther no antibody or with ant i -CFR antibody incorporated 
[3H]thymidine when they were supplied with exogenous FG F  or 
were transfected with an FGF-2 expression vector. [3H]Thymi- 
dine incorporat ion was reduced in the presence of an ant i -FGF-2 
antibody when cells were supplied with exogenous FGF-2 or 
were transfected with an FGF-2 expression vector. Approxi- 
mately 15% of the cells were transfected as determined by the 
blue 13-galactosidase stain. A minimum of 500 cells/plate were 
scored. The experiment  was replicated twice with similar results. 

et al., 1980,1981; Kardami et al., 1985a, b; Seed and Hauschka, 
1988; Rando and Blau, 1994). The roles of FGF-1 and 
FGF-2 as in vivo regulators of skeletal muscle develop- 
ment have been questioned as both factors lack signal 
secretory sequences that normally allow secretion via the 
classical secretory pathway. A number of investigators 
have postulated that these FGFs are released only during 
cell lysis and are stored in the extracellular matrix until 
they are to be used (Burgess and Maciag, 1989; Klagsbrun 
and Edelman, 1989; D 'Amore ,  1990; Baird and Klagsbrun, 
1991). Recent data suggest that FGFs may be released 
from living cells although the biological role(s) of the 
growth factors in the cell lines examined is not clear (Mig- 
natti and Rifkin, 1991; Jackson et al., 1992; Mignatti et al., 
1992; Maciag et al., 1994; Bikfalvi et al., 1995; Florkiewicz 
et al., 1995; Jackson et al., 1995). 

We have examined the expression and biological activi- 
ties of FGF-1 and FGF-2 in an FGF-dependent skeletal 
muscle cell line derived from adult mouse satellite cells. 
The MM14 cell line expresses a variety of different FGFs 
in developmentally regulated patterns. These changes in 
FGF expression are not simply due to removal of exoge- 
nous FGF-2 and reduction of serum to 2% (the conditions 

used for differentiation), as the levels of FGF-1, FGF-2, 
and FGF-6 do not decline in DD cells cultured in differen- 
tiation medium as they do in differentiated MM14 cells. In 
addition, FGF-5 is not upregulated in DD cells as it is in 
differentiated MM14 cells. If  5% of the DD cells did dif- 
ferentiate, we would have expected a low level of FGF-5 
expression in the DD ceils grown in differentiation condi- 
tions. Typically DD cell differentiation was <5%,  indicat- 
ing that the expression of FGF-5 was below detectable 
limits. Although possible, it is unlikely that the DD cells 
that express skeletal muscle myosin heavy chain are dis- 
tinct from differentiated MM14 cells in their FGF expres- 
sion patterns. The higher level of FGF-1, FGF-2, and 
FGF-7 expression in differentiation-defective cells is con- 
sistent with a direct role for the involvement of these FGFs 
in regulating skeletal muscle differentiation. 

Although the levels of FGF-1 and FGF-2 mRNA were 
extremely low in MM14 cells, FGF-1 and FGF-2 protein 
were detectable by Western analysis. FGF-2 protein de- 
tected by Western analysis is unlikely to be due to contam- 
inating human recombinant FGF-2 used for maintenance 
of cell growth as (a) FGF-1 protein was also detected by 
Western analysis in proliferating cells fed with FGF-2; (b) 
FGF-2 protein was present in cells fed with exogenously 
applied FGF-1 (data not shown); (c) three forms of FGF-2 
were observed and two of them migrated at a relative mo- 
lecular weight distinct from exogenously supplied recom- 
binant FGF-2; (d) loss of mRNAs for FGF-1 and FGF-2 
correlates with loss of protein; and (e) the extraction pro- 
cedure used to isolate proteins for Western analysis would 
not release exogenously applied FGFs bound to heparan 
sulfate. Despite the presence of detectable FGF-1 and 
FGF-2 protein, MM14 cells remain absolutely dependent 
on exogenously supplied FGFs. These data suggest that 
FGF supplied by both paracrine and autocrine mecha- 
nisms may be critical for maintenance of myoblast growth. 

To test if FGF supplied by an autocrine loop could sup- 
port MM14 growth, cells were transiently transfected with 
expression vectors encoding FGF-1 or FGF-2. Expression 
of either factor blocked terminal differentiation and in- 
duced D N A  synthesis in transfected cells. Unexpectedly, a 
global effect was observed as the majority of untransfected 
cells were also inhibited from terminal differentiation and 
stimulated to synthesize DNA. This activity required a 
functional high affinity FGF-binding complex as a domi- 
nant negative FGF receptor mutant inhibited the activity. 
Moreover, an anti-FGF-2 antibody blocked the ability of 
transfected FGF-2 to stimulate DNA synthesis. Therefore, 
the factor released from the FGF-2 transfected cells that 
acts on surrounding cells to repress myogenesis and to 
stimulate DNA synthesis is likely to be FGF-2. Other re- 
cent data have also implicated an autocrine acting FGF-1 
as an important regulator of the differentiation of the Sol 8 
skeletal muscle cell line. However, it was not determined if 
the FGF-1 was acting intracellularly or extracellularly or if 
FGF-1 activity was dependent on FGF receptor tyrosine 
kinases (Fox et al., 1994). In our studies, the export of in- 
tracellular FGF-1 or FGF-2 is not likely to be by cell death 
or lysis as several experimental results indicate the cells 
transfected with FGF expression vectors are not dying. 
First, the level of 13-galactosidase activity is similar in cells 
transfected with a control expression vector or an FGF ex- 
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Disruption of the autostimulatory loop and consequent terminal differentiation could be accomplished 
naling complex, by inhibition of FGF synthesis or by inhibition of FGF export. 

Figure 7. A model for regula- 
tion of myogenesis involving 
autocrine and paracrine action 
of FGFs. (A) Paracrine-medi- 
ated stimulation of intracellu- 
lar FGF production by FGFs 
or unidentified factors. (B) In- 
tracellular FGF is exported 
from the muscle cell and binds 
an FGF signaling complex on 
the cell surface acting as an au- 
tocrine (C) or paracrine (D) 
factor stimulating FGF pro- 
duction. An FGF positive- 
feedback loop is initiated by an 
exogenous factor and main- 
tains myoblast proliferation. 
by inactivation of the FGF sig- 

pression vector. Second, cells cotransfected with expres- 
sion vectors encoding FGF and the dominant negative mu- 
tant receptor differentiated as well as the control cells. 
Third, cells transfected with an FGF expression vector dif- 
ferentiated when cultured with an anti-FGF-2 antibody. 
Recent data have demonstrated that FGF-2 can be ex- 
ported from cells via an uncharacterized pathway indepen- 
dent of the Golgi (Bikfalvi et al., 1995; Florkiewicz et al., 
1995). It is likely that this pathway operates in skeletal 
muscle cells. 

We favor a model whereby intracellularly produced 
FGFs, particularly those FGFs lacking classical signal pep- 
tide sequences, are exported and act via an autocrine loop 
(Fig. 7). Exported FGFs would also function as paracrine 
regulators of skeletal muscle cells and would stimulate a 
positive-feedback loop for FGF production and release 
(Fig. 7 D). A similar positive-feedback loop may be intact 
in the Sol 8 skeletal muscle cell line. These cells synthesize 
sufficient endogenous FGF to support growth and thus do 
not require supplemental FGF. After transfection with an 
antisense FGF-1 construct, this FGF positive-feedback 
loop is disrupted and the Sol 8 cell line acquires an abso- 
lute dependency for exogenously applied FGF that is in- 
distinguishable from the MM14 cell FGF requirement 
(Fox et al., 1994). There are four possibilities that may ac- 
count for why this FGF positive-feedback loop is dysfunc- 
tional in some skeletal muscle cells such as MM14 cells. (1) 
Cells are unable to produce sufficient intracellular FGF to 
support growth; (2) cells differ in their efficiency of FGF-1 
or FGF-2 export; (3) loss of receptor signaling complexes; 
and (4) FGFs may be posttranslationally modified so they 
are inactive. Consistent with the third hypothesis are the 
observations that FGF receptors are undetectable in differ- 
entiated skeletal muscle cell cultures (Olwin and Hauschka, 
1988; Moore et al., 1991; Templeton and Hauschka, 1992) 
and in differentiated skeletal muscle tissue (Orr-Urtreger 
et al., 1991; Peters et al., 1992). However, we favor one or 
both of the first two hypotheses, as transfection of an 
FGF-1 or FGF-2 expression construct increases intracellu- 
lar FGF, bypasses the requirement for exogenously sup- 
plied FGF, and initiates a functioning FGF positive-feed- 
back loop. Many primary skeletal muscle cell cultures 
from neonates or adults also exhibit a dependency on ex- 

ogenously supplied FGFs (Linkhart et al., 1980; Allen et 
al., 1984; Rando and Blau, 1994) while embryonic cultures 
seldom display an absolute dependency on supplemented 
FGF (Seed and Hauschka, 1988). If both responding cell 
types were present in developing skeletal muscle, our 
model provides a mechanism for how asynchronous differ- 
entiation might occur during expansion of the premuscle 
masses in the developing limb. A similar model proposes 
that TGF-13 regulates growth of primary and secondary fi- 
bers in vivo (Cusella-DeAngelis et al., 1994). In summary, 
our data demonstrate that complex mechanisms involving 
both autocrine and paracrine regulation by FGFs are 
likely to affect the ultimate fate of a myoblast: to divide or 
not to divide. 
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