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Abstract. The gram negative rod Shigella flexneri uses 
it surface protein IcsA to induce host cell actin assem- 
bly and to achieve intracellular motility. Yet, the IcsA 
protein lacks the oligoproline sequences found in 
ActA, the surface protein required for locomotion of 
the gram positive rod Listeria monocytogenes. Microin- 
jection of a peptide matching the second ActA  oligo- 
proline repeat (FEFPPPPTDE) stops Listeria locomo- 
tion (Southwick, F.S., and D.L. Purich. 1994a. Proc. 
Natl. Acad. Sci. USA. 91:5168-5172), and submicromo- 
lar concentrations (intracellular concentration 80--800 
nM) similarly arrest Shigella rocket-tail assembly and 
intracellular motility. Coinjection of a binary solution 
containing profilin and the ActA  analogue increased 
the observed rates of intracellular motility by a factor 
of three (mean velocity 0.09 __+ 0.07 izm/s, SD n = 16 be- 
fore injection vs 0.3 _ 0.1 p~m/s, n = 33 postinjection, 
intracellular concentration = 80 nM profilin plus 80 nM 
ActA  analogue). Recent evidence suggests the ActA 
analogue may act by displacing the profilin-binding 

protein VASP (Pistor, S.C., T. Chakaborty, V. Walter, 
and J. Wehland. 1995. Curr. Biol. 5:517-525). At con- 
siderably higher intracellular concentrations (10 ~M), 
the VASP oligoproline sequence (GPPPPP)3 thought 
to represent the profilin-binding site (Reinhard, M., K. 
Giehl, K. Abel, C. Haffner, T. Jarchau, V. Hoppe, B.M. 
Jockusch, and U. Walter. 1995. EMBO (Eur. Mol. Biol. 
Organ.) J. 14:1583-1589) also inhibited Shigella move- 
ment. A binary mixture of the VASP analogue and pro- 
filin (each 10 &M intracellular concentration) led to a 
doubling of Shigella intracellular migration velocity 
(0.09 ___ 0.06 izm/s, n = 25 preinjection vs 0.18 _-Z- 0.10 
ixm/s, n = 61 postinjection). Thus, the two structurally 
divergent bacteria, Listeria and Shigella, have adopted 
convergent mechanisms involving profilin recognition 
of VASP oligoproline sequences and VASP recogni- 
tion of oligoproline sequences in ActA  or an ActA-like 
host protein to induce host cell actin assembly and to 
provide the force for intracellular locomotion and cell- 
cell spread. 

T rIE gram-negative rod Shigella flexneri and the 
gram-positive rod Listeria monocytogenes are bio- 
chemically and structurally divergent intracellular 

pathogens. Yet, these two bacteria have developed con- 
vergent solutions for parasitizing host cells: both enter the 
host via the gastrointestinal tract by phagocytosis, and 
they then produce hemolysins allowing escape into the 
host cell's cytoplasm. They subsequently usurp the host 
cell's cytoskeleton to induce actin filament rocket tails for 
intracellular migration to the peripheral cytoplasm, and 
they ultimately form outward membrane projections, or 
filopods, which can be ingested by adjacent cells. This per- 
mits Shigella and Listeria to avoid the harmful conse- 
quences of humoral factors such as antibody, complement, 
as well as those antibiotics that poorly penetrate host cells. 
Understanding how these pathogens accomplish the above 
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tasks promises to provide new insights into the pathogene- 
sis of Listeria and Shigella infections, and to reveal how 
nonmuscle cells remodel their actin cytoskeleton during 
normal motile functions such as chemotaxis and phagocy- 
tosis. 

Listeria-associated actin assembly has been studied by 
time-lapse video microscopy which demonstrated that this 
bacterium can migrate at 0.02-0.4 ~rn/s in the PtK2 renal 
tubular epithelial cell (Dabiri et al., 1990; Sanger et al., 
1992; Theriot et al., 1992). Microinjection of fluorescently 
labeled actin monomers proved that the actin filament 
tails progressively lengthen as the bacterium migrates 
through the cytoplasm (Sanger et al., 1992). The rate of 
monomer incorporation directly correlates with the veloc- 
ity of movement, while the depolymerization rate is inde- 
pendent of migration velocity and remains constant 
throughout the tail (Sanger et al., 1992; Theriot et al., 
1992). Together, these features define the properties of a 
Brownian ratchet model for bacterial propulsion (Peskin 
et al. 1993). Transposon mutation experiments indicate 
that the Listeria surface protein ActA is required for Liste- 
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ria-induced actin assembly. Inactivation of the ActA gene 
blocks actin rocket-tail formation, intracellular movement, 
and cell-cell spreading of Listeria (Kocks et al., 1992; 
Domann et al., 1992). The ActA protein does not bind di- 
rectly to actin (Kocks et al., 1992), and ActA does not 
stimulate polymerization of purified actin (Tilney et al., 
1990). The ActA molecule may enhance actin assembly 
via a series of four nonidentical oligoproline repeats 235- 
DFPPPPTDE, 269-FEFPPPPPTDE, 304-FEFPPPPTED, 
and 350-DFPPIPTEE, which are thought to be the binding 
site for the host actin regulatory protein vasodilator-stimu- 
lated phosphoprotein (VASP)) VASP is normally concen- 
trated in host cell focal contacts, but during Listeria infec- 
tion becomes concentrated on motile bacteria at the 
bacterial-actin tail interface (Chakraborty et al., 1995). 
The ActA oligoproline repeats are very similar to se- 
quences found in the actin regulatory protein vinculin 
found in the focal adhesion plaques of nonmuscle cells 
(Kocks et al., 1992; Domann et al., 1992). Vinculin, there- 
fore, may serve to concentrate VASP at sites of focal ad- 
hesion in host cells. 

Microinjection of a synthetic peptide (CFEFPPPPTDE) 
analogue of the second ActA repeat into bacteria-laden 
PtK2 cells rapidly and completely blocks Listeria-induced 
actin assembly at a final intraceUular peptide concentra- 
tion of N80 nM (Southwick and Purich, 1994a). We have 
also demonstrated that microinjection of mosquito oostatic 
factor, the freely occurring decapeptide YDPAPPPPPP, 
inhibits Listeria locomotion (Southwick and Purich, 1995). 
In a similar concentration range and time frame, both of 
these peptides also result in loss of the host cell's normal 
peripheral actin filament architecture as well as retraction 
of the peripheral membrane. Microinjection of a third 
peptide analogue DFPPPPTDEELRL derived from first 
oligoproline repeat in ActA also results in membrane re- 
traction and loss of the normal actin filament architecture. 
These changes were associated with the dissociation of 
VASP from focal adhesion plaques and redistribution 
throughout the cytoplasm (Pistor et al., 1995). These pep- 
tides, therefore, are likely to block VASP binding to an 
ActA-like host protein (possibly vinculin) as well as block 
VASP binding to the oligoproline regions of ActA. 

In addition to binding to ActA, VASP also binds to pro- 
filin (Reinhard et al., 1995):. Profilin is the only actin-regu- 
latory protein known to bind to poly-L-proline (Tanaka 
and Shibata, 1985), and VASP contains a series of oligo- 
proline repeats consisting of a glycine and five prolines. 
VASP and profilin colocalize in the peripheral lamellae of 
locomoting fibroblasts (Reinhard et al., 1995) and are both 
found at bacterial-actin tail interface of intracellular Liste- 
ria (Theriot et al., 1994; Chakraborty et al., 1995). Profilin, 
therefore, also is likely to be the key host cell component 
responsible for Listeria locomotion. Depletion of profilin 
from Xenopus egg extracts, using beads with covalently 
bound poly-L-proline, blocked in vitro movement of Liste- 
ria and readdition of profilin partially restored motility 
'(Theriot et al., 1994). Profilin enhances the exchange of 
ATP on actin monomers (Mockrin and Korn, 1980; Gold- 
schmidt-Clermont et al., 1991) and may produce higher in- 

1. Abbreviation used in this paper: VASP, vasodilator-stimulated phos- 
phoprotein. 

tracellular concentrations of the more polymerization- 
competent ATP-actin species at sites immediately adja- 
cent to the bacterium/rocket-tail interface (Southwick and 
Purich, 1994b). In addition, in the presence of the mono- 
mer sequestering protein thymosin ~4, profilin may inter- 
act with the barbed ends of actin filaments to lower the 
critical concentration for actin assembly (Pantaloni and 
Carlier, 1993). 

Although the first descriptions of actin filaments being 
associated with intracellular bacteria were reported with 
Shigella-infected cells (Bernardini et al., 1989), video mi- 
croscopy experiments similar to those designed to explore 
actin-based motility in Listeria have not been performed 
in live cells infected with Shigella. We have now per- 
formed time-lapse studies which reveal that Shigella 
moves at rates and trajectories similar to Listeria, suggest- 
ing these two bacteria stimulate actin based motility by 
similar mechanisms. Shigella like Listeria has an outer cell 
wall protein, IcsA, which is necessary for actin-based mo- 
tility (Bernardini et al., 1989; Goldberg et al., 1993) and is 
sufficient to support actin-based movement in Xenopus 
egg extracts (Goldberg and Theriot, 1995). This 120-kD 
protein, however, shares no sequence identity with the 
Listeria ActA protein and lacks oligoproline sequences 
which might recruit host cell components to facilitate actin 
filament assembly. To test the possibility that the IcsA 
protein attracts a host cell oligoproline-containing protein 
to serve in place of ActA, we examined intracellular Shi- 
gella motility after the microinjection of two oligoproline 
analogues derived from ActA and VASP amino acid se- 
quences. Cellular ActA analogue concentrations necessary 
to inhibit Listeria movement (i.e., in the range of 80--800 
nM) blocked Shigella motility as well. The introduction of 
an oligoproline peptide based on the VASP sequence, 
(GPPPPP)3, at considerably higher intracellular concen- 
trations (10 p~M) also blocked Shigella movement. Micro- 
injection of an equimolar binary solution of profilin with 
the ActA or the VASP analogue neutralized the inhibition 
of Shigella movement. Even more surprisingly, the binary 
solutions caused a 200-300% increase in the velocities of 
intracellular bacterial migration. These findings provide 
evidence for a shared mechanism involving certain oligo- 
proline-containing proteins and profilin in actin-based mo- 
tility of both Shigella and Listeria; they also suggest that a 
similar mechanism may regulate actin filament assembly 
at the cytoskeleton-membrane interface of actively mov- 
ing nonmuscle cells. 

Materials and Methods 

Materials 

Peptides were synthesized by the automated Merrifield method and di- 
luted to a stock concentration of 1-1.8 mg/mL in sterile PBS (pH 7.2). the 
pH of each peptide solution was titrated to a pH of 7.2 before microinjec- 
tion. Bodipy-phallacidin was obtained from Molecular Probes (Eugene, 
Oregon). Primary anti-vinculin and anti-actinin antibodies and fluores- 
cein-conjugated anti-lgG antibodies were obtained from Sigma Chem. 
Co. (St. Louis, MO). Profilin was purified from human platelets or from 
supernatants of E. coil expressing recombinant human profilin (pET ex- 
pression vector in E. coli strain BL21 kindly provided by Dr. S. Almo, Al- 
bert Einstein College of Medicine) using a poly-L-proline Sepharose-4B 
affinity column as previously described (Southwick and Young, 1990). 
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Tissue Culture Methods and Infection Procedures 
The PtK2 cell line (derived from the kidney epithelium of the kangaroo 
rat Pororous tridactylis) was seeded at a concentration of 106 ceils per eov- 
erslip in 35-mm culture dishes in 3 ml of culture media (MEM with 10% 
FCS, 1% penicillin-streptomycin) and incubated for 72 h at 37°C and 5% 
C02. Shigella flexneri M90T wild-type strain was inoculated into brain 
heart infusion (Difco, Detroit, MI) and grown overnight at 37~C. Bacteria 
were harvested at mid-log phase and resuspended in MEM without antibi- 
otics to give a final concentration of 107 or a ratio of 10 bacteria per host 
cell. Bacteria in 3 ml of culture media were added to each dish followed by 
centrifugation at 400 g at room temperature for 10 min and then incuba- 
tion for 45 rain at 37°C and 5% CO 2. After incubation, extracellular bacte- 
ria were removed by washing three times with Hank's balanced salt 
(GIBCO BRL, Gaithersburg, MD). The culture media containing gen- 
tamicin sulfate (10 ~.g/ml) was added back to prevent extracellular growth 
of bacteria. The monolayers were then incubated for 1-4 h during which 
microinjection and video microscopy were performed. 

Microscopy and Microinjection 
A Nikon Diaphot inverted microscope was equipped with a charge-cou- 
pled device camera (Dage-MTI, Michigan City, IN), and the microscope 
stage temperature was maintained at 37°C with a MS-200D perfusion mi- 
croincubation system (Narishige, Tokyo). Digital images were obtained 
and processed, using an Imaged computer image analyzer (Universal Im- 
aging, West Chester, PA). Velocities of bacterial movement were deter- 
mined by comparing the images at two time points and measuring the dis- 
tance traveled by each bacterium using the measure curve length function 
(Image I/AT program). Distances were calibrated using a Nikon mi- 
crometer. Differences in migration velocities were analyzed using the un- 
paired Student's t test or the Mann-Whitney nonparametric test. For each 
bacterium, velocity was determined for 3-4 time points before and 3--4 
time points after each microinjection. One to two bacteria were analyzed 
for each injected cell. In each experiment n indicates the number of veloc- 
ity measurements. Individual cells were microinjected with peptide using a 
micromanipulator and microinjector (models 5171 and 5242; Eppendorf, 
Inc. Madison, WI), as previously described (Southwick and Purich, 1994a). 

Immunofluorescence staining using anti--a-actimn antibodies was per- 
formed as previously described (Dabiri et al., 1990). In experiments re- 
quiring phallicidin staining, PtK2 cells were fixed with 3.7% (vol/vol). 
formaldehyde in phosphate-buffered saline for 15 min at 25°C followed by 
treatment with 0.4% Triton X-100 and 1.7 × 10 -7 M bodipy-phallacidin 
(Molecular Probes) for 10 min at 37°C. The relative fluorescence intensi- 
ties of the bodipy-phallacidin stained tails were measured with the Imaged 
system using a Genesis I image intensifier (Dage-MTI) in the linear re- 
sponse range. Gain settings were identical for both the Shigella and Liste- 
ria rocket tails. The relative intensity was measured at different locations 
on the tail with a fixed square template (2 × 2 pixels, brightness function; 
Image-I/AT). Fluorescence intensity of an identical area adjacent to the 
actin rocket tail within the cell was measured and subtracted from each 
value. 

Results 

Characteristics of Shigella Movement and Actin 
Rocket-Tail Formation in PtK2 Cells 

Like Listeria, Shigella moves at relatively rapid velocities 
through the cytoplasm. Although their larger size might be 
expected to resist migration in a viscous medium, the ob- 
served mean rates of Shigella movement in PtK2 cells 
(0.17-0.05 ixm/s) were comparable to Listeria (0.15-0.05 
I~m/s) (Southwick and Purich, 1994a; Southwick and Pu- 
rich, 1995). The maximal velocities of 0.4 txm/s attained by 
Shigella are rarely seen in Listeria-infected PtK2 cells. As 
observed with Listeria infections, the mean rate of migra- 
tion varied considerably from day to day. These differ- 
ences appear to be related to age of the tissue culture cells 
at the time of infection, and in all microinjection experi- 
ments pre- and posttreatment rates were compared in the 
same cells. 

Intracellular movement of Listeria in PtK2 cells is usu- 
ally associated with the formation of phase-dense rocket- 
tails on phase contrast micrographs (Sanger et al., 1992; 
Southwick and Purich, 1994a, 1995). On the other hand, 
motile Shigella are infrequently associated with phase- 
dense tails (Fig. 1 A). Bacteria migrating in regions near or 
within the cell nucleus often display phase-lucent tails 
(Fig. 1 B). However, the majority of Shigella that migrate 
through the cytoplasm fail to produce phase-dense or 
phase-lucent rocket tails (Fig. 6 B). 

Figure 1. (A-C)  Format ion  of  a phase  dense  rocket  tail as a Shi- 
gella bacter ium migrates  upward  and to the  fight th rough  a thin 
region of  the  cytoplasm in a P tK2 host  cell. Images  are taken  at 
~30-s  intervals as indicated by the t ime s tamp.  (Top to bottom) 
( D - F )  Fo rma t ion  of  a phase  lucent  actin rocket  tail as the  bacte-  
r ium in the  lower  right h a n d  c o m e r  of  D migrates  th rough  the 
per inuclear  region of a P tK2 cell. The  a r row points  to the  back of  
the  moving bacter ium.  This bac te r ium has tu rned  to the  fight in E 
and F, and is migrat ing toward  the  top  of  the micrograph.  A thin 
clear area  that  displaces subcellular  organel les  trails beh ind  the  
bac te r ium and is best  seen  in D,  just  be low and to the  right o f  the  
arrow. Leng th  of  t ime s t amp bar, 12 ~m. 
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Figure 2. Comparison of bodipy-phallacidin staining of Shigella and Listeria actin filament 
rocket tails. Simultaneous phase (A) and fluorescent micrographs (B) of an intracelhilar 
Shigella are shown. Arrows point to the baeterial-actin rocket tail interfaces. Note the faint 
fluorescence of the actin rocket tails (B) which extend from the back of many of the bacte- 
ria. The rocket tails are thin and demonstrate relatively low fluorescence intensity as com- 
pared to Listeria actin rocket tails (D). In the phase micrograph of Listeria, phase dense ac- 
tin rocket tails can be readily visualized (C), and the tails exhibit highest bodipy-phallacidin 
fluorescence in the region nearest each bacterium (D). Infections were performed simulta- 
neously using the same stock of cells and stained in parallel. Gain settings were identical for 
both fluorescence images (B and D). The relative fluorescence intensities (vertical axis) of 
various regions of a representative Shigella and Listeria tail were measured digitally and 
graphically depicted in E. Horizontal axis represents the distance from the back of the bac- 
teria of each intensity measurement along the tail (see Materials and Methods). In this ex- 
ample, the relative intensity was 5-6 times higher in the Listeria as compared to the Shigella 
rocket tail. Bar, (left lower corner, D) 10 I~m. 

Fluorescence Staining of  Actin and a-Actinin 
in Shigella Rocket-Tails 

Comparisons of bodipy-phallacidin staining of  the actin 
filament tails reveal that the Shigella-associated structures 
(Fig. 2 B) have significantly lower fluorescence intensities 
than Listeria (P < 0.001, n = 16) (Fig. 2, D and E). This 
observation suggests that Shigella rocket tails have a lower 
actin filament content than Listeria. As observed in Liste- 
ria (Dabiri et al., 1990), the actin filament bundling protein 
and cross-linking protein a-actinin also localizes to the 
Shigella rocket tails (Fig. 3). 

Arrest of  Shigella IntraceUular Movement by 
the Second Oligoproline Repeat Analogue in Listeria 
Act-A Protein 

Bacterial motility ceases within 30 s after injection of the 
A c t A  analogue (800 nM needle concentration, estimated 
intracellular concentration = 80 nM)(Fig. 4, A-D). Phase- 
dense actin tails present before injection also disappear 
within 30 s. Similar results are shown graphically in Fig. 5 A. 
Microinjection of this concentration of peptide consistently 
blocks Shigella movement  (mean preinjection rate of 0.06 +_ 
0.03 ~m/s, SD n = 47 vs a mean postinjection rate of 0.004 _+ 
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Figure 3. Simultaneous phase-contrast (A), anti-a-actinin immu- 
nofluorescence (B) and bodipy-phallacidin stained fluorescence 
(C) images of a Shigella rocket tail. Arrow points to the back of 
the bacterium which in the phase-contrast image refracts poorly 
in this region of the cell. Note the bright anti-a-actinin fluores- 
cence as compared to that associated with phallacidin staining 
(both images were captured with gain settings in the linear re- 
sponse range of the image intensifier). Bar, 10 lzm. 

0.01 ~m/s, n = 85 velocity measurements) (Table I). At 
this low intracellular concentration the inhibitory effects 
of the ActA analogue are not always permanent (Fig. 5 
A). One quarter of the bacteria resume migration 2--4 rain 
after microinjection. The rates of movement, however, are 
in all instances 25-30% of the velocities measured before 
injection (0.01--0.02 ~m/s). The inhibitory effects of the 

ActA are concentration dependent (Fig. 5 B). A lower in- 
tracellular concentration (8 nM) of ActA fails to inhibit, 
while higher intracellular concentrations (400-800 nM) 
consistently block intracellular movement. In some cells 
these higher concentrations also cause membrane retrac- 
tion. 

Effect of Microinjecting a Binary 
Solution of Profilin and ActA Analogue on Shigella 
IntraceUular Movement 

Although high intracellular concentrations of profilin (10 
~M, see below) can markedly inhibit Shigella movement, 
microinjection of an 80-nM intraeellular concentration of 
profilin does not significantly effect ShigeUa locomotion 
(Table I). Nonetheless, microinjection of equimolar binary 
solutions of the ActA peptide analogue and profilin (nee- 
dle concentration = 0.8-1.0 p,M, corresponding to esti- 
mated intracellular concentrations of 80-100 nM) not only 
neutralizes the analogue's inhibition but significantly in- 
creases the velocities by a factor of three (mean rate of 
movement before microinjection 0.09 ___ 0.07 ~m/s, n = 16 
vs 0.3 _+ 0.1 i~m/s, n = 33 postinjection)(Fig. 6 A and 
Table I). The differences in velocities pre- and postinjec- 
tion were highly significant on a statistical basis (P < 
0.0001). 

Velocities increased to nearly 0.5 ~m/s in some in- 
stances. Introduction of the binary solution also frequently 
activated stationary bacteria to move at rapid rates (Fig. 6 A). 
If the stationary bacteria were included in pre- and postin- 
jection velocity comparisons, the differences were also 
highly significant (mean pretreatment velocity 0.06 + 0.07 
~m/s, n = 25 vs mean posttreatment velocity 0.25 _+ 0.12 
~m/s, n = 49, P < 0.0001). The dramatic effects of the bi- 
nary solution are also illustrated in the time-lapse micro- 
graphs (Fig. 6 B). A bacterium can be seen to rapidly ac- 
celerate in response to microinjection of a final intracellular 
concentration of 100 nM of the binary mixture. We have 
found no other treatment to evoke such a marked en- 
hancement of the bacterial motility. Microinjection of a 
lower concentration of this equimolar mixture (20 nM) 
caused a statistically insignificant acceleration of Shigella 
velocity. (Table I). 

Effects of Microinjection of a VASP Oligoproline 
Analogue Alone and in Combination with Profilin on 
Shigella IntraceUular Motility 

Introduction of the VASP analogue (GPPPPPGPPPPGP- 
PPPP) can also inhibit Shigella motility without causing 
significant membrane retraction (Fig. 7 A and Table I). 
This effect is concentration dependent (Fig. 7 B), com- 
plete inhibition being seen at intracellular concentrations 
of 10 ~M, while lower concentrations (2 and 6 t~M) cause 
variable inhibition (note the large standard deviation 
bars at these two concentrations, Fig. 7 B). Introduction of 
poly-L-proline also causes a dose-dependent slowing of 
bacterial velocity (Fig. 8 A). Microinjection of the same 
concentration of an unrelated peptide derived from the se- 
quence of MAP-2 had no effect on Shigella migration (Ta- 
ble I). As previously observed with Listeria (Sanger et al., 
1995), microinjection of profilin also causes a concentra- 
tion-dependent inhibition of Shigella movement, intracel- 
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Figure 5. (A) Velocity of a single Shigella bacterium in a PtK2 
cell before and after microinjection of the ActA analogue (esti- 
mated intracellular concentration 80 nM (needle concentration 
0.8 ~M). The arrow marks the time point at which the peptide 
was introduced. The graph corresponds to the bacterium shown 
within triangle of the micrograph shown in Fig. 4. (B) Effect of 
varying intracellular concentrations of the ActA analogue on Shi- 
gella intracellular velocity. Horizontal axis is in a log scale. Intra- 
cellular concentrations of 8, 80, 400, and 800 nM were studied. 
Bars represent the standard deviation of the mean for 30-80 ve- 
locity determinations per concentration. 

lular concentrations of 10 txM causing nearly total inhibi- 
tion (Fig. 8 B and Table I). Curiously, introduction of an 
intermediate intracellular concentration of profilin (6 tzM) 
resulted in a bimodal behavior. 60% of the bacteria 
stopped moving. The remaining 40% accelerated their ve- 
locity, attaining mean migration rates of 0.19 -+ 0.08 ixm/s 
(n = 17). These postinjection velocities were significantly 
higher than the bacteria's preinjection velocities of 0.14 _ 
0.05 (n = 28, P = 0.039). 

The effect of microinjecting a binary mixture of profilin 
and the VASP oligoproline analogue was also examined 
(Fig. 8 C). In vitro experiments employing profilin tryp- 
tophan fluorescence have recently demonstrated that the 
(GPPPPP)3 peptide binds to profilin with a Kd in the 10 -5 
M range (Kang, F., P. Passaro, M. Bubb, D. Purich, and F. 
Southwick, manuscript in preparation). Based on these 
findings, high equimolar concentrations (10 I~M intracellu- 
lar concentrations) of both profilin and the VASP oligo- 
proline analogue when microinjected (barring interference 
from other intracellular constituents) should exist as a 
complex in the cell. We predicted that such a complex 
might neutralize the inhibitory activity of the two compo- 
nents. In fact, microinjection of this binary mixture accel- 
erates Shigella movement, velocities increasing by a mean 
of 100% (preinjection mean velocity: 0.09 + 0.05 txm/s, n 
= 25 vs postinjection mean velocity: 0.18 _+ 0.10, n = 61, P 
< 0.0001) (Table I). Introduction of an equivalent binary 
mixture of poly-L-proline and profilin inhibits Shigella 
movement (Fig. 8 D and Table I). Microinjection of a 
lower equimolar concentration of the VASP analogue and 
profilin (1 p.M intracellular concentrations) fails to accel- 
erate Shigella migration (Table I). 

Discussion 

Dynamic remodeling of the actin cytoskeleton must be ex- 
quisitely controlled (Stossel, 1993; Condeelis, 1993), and 
bacterial pathogens must use these regulatory processes to 
achieve actin-based motility in host cells in their efforts to 
evade host defense mechanisms. To gain further insights 
into bacterial as well as nonmuscle cell actin-based motil- 
ity, we compared the mechanisms underlying Listeria and 
Shigella movement in PtK2 host cells. While Shigella 
rocket tails have a lower F-actin content than Listeria, the 
average velocities of both pathogens are quite similar. As 
observed with Listeria, we now find that Shigella rocket- 
tails also contain the actin bundling and cross-linking pro- 
tein ~-actinin shown to be critical for Listeria motility 
(Dold et al., 1994). These similarities raised the possibility 
that these two biochemically distinct pathogens may be 
adopting convergent mechanisms to subvert the host cell's 
actin regulatory system to allow their locomotion within 
cells and their spread from cell to cell. To explore this pos- 
sibility, the inhibitory effects of oligoproline peptides 
based on the sequences in the ActA  protein and VASP 
were examined in cells infected with Shigella. Over the 
same concentration range that inhibited Listeria intracel- 
lular motility (Southwick and Purich, 1994a), the ActA an- 
alogue likewise blocked ShigeUa movement. 

We originally hypothesized that the ActA  analogue 
acted by competitively inhibiting profilin binding to bacte- 
rial cell wall ActA protein; however, in vitro experiments 
failed to demonstrate any binding of the ActA oligopro- 
line analogue to profilin (Kang, F., P. Passaro, M. Bubb, 
D. Purich, and F. Southwick, manuscript in preparation). 
The discovery that a second host cell actin regulatory pro- 
tein VASP may serve to link profilin to ActA now pro- 
vides a self-consistent explanation for our results (Rein- 
hard et al., 1995). It is likely that the ActA oligoproline 
analogue FEFPPPPTDE dissociates VASP from both 
Listeria and Shigella. Based on the estimates of Reinhard 
et al. (1992), the concentration of VASP tetramer in plate- 
lets is ,-o0.5-1 IxM. The content of VASP in other cells is 
considerably lower (i.e., N100 nM). The latter value is 
quite close to the estimated intracellular concentrations of 
ActA analogue (80 nM) found to arrest Shigella motility. 
It is noteworthy that Listeria intracellular movement is in- 
hibited by both the ActA analogue and oostatic factor in 
the identical concentration range. This behavior would be 
predicted if the peptides interact directly with the limited 
intracellular pool of VASP. 

Dissociation of VASP from the surface of the bacteria 
would be expected to prevent the concentration of profilin 
at the bacterial-actin tail interface blocking further actin 
assembly at this site, thereby preventing bacterial move- 
ment (Fig. 9). Based on our recent studies demonstrating 
that profilin binds directly to a contiguous triad of GPP- 
PPP repeats spanning positions 172-189 in VASP (Kang, 

Figure 4. Shigella movement and actin rocket tail formation in PtK2 host cells before and after microinjection of the synthetic ActA 
peptide. Before injection the bacteria are seen to move at 0.12 i~m/s, and maximum tail length is 6.0 i~m (A and B). After injection of an 
estimated intracellular concentration of 80 nM of ActA analogue (needle concentration 0.8 p~M ActA peptide) at 160 s, bacterial move- 
ment stops and the actin tails almost completely disappear (C and D). Times (indicated in seconds) are included in the lower left corner 
of each micrograph. The triangle (drawn by connecting three small phase-dense granules in the cytoplasm) served as a stable reference 
point. Solid bar, 10 l~m. 
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Table L Effects of Microinjected Peptides on Shigella lntracellular Motility 

Intracellular Preinjection Postinjection Postinjection/ 
Additions concentration velocity velocity preinjection velocity P value 

mean, tun/s, SD 

Act A peptide 80 nM 0.06 ± 0.03 0.004 ± 0.01 0.07 < 0.001 
CFEFPPPPTDE (n = 47) (n = 85) 

Profilin 80 nM 0.14 _+ 0.04 0.12 + 0.06 0.85 NS* 
(n = 16) (n = 21) 

ActA peptide 80 nM/80 nM 0.09 + 0.07 0.30 ~ 0.11 3.33 < 0.001 
and Profilin (n = 16) (n = 33) 

20 nM/20 nM 0.13 _+ 0.05 0.17 ± 0.08 1.31 NS 
(n = 15) (n = 12) 

VASP peptide 10 p,M 0.13 +- 0.05 0.02 - 0.05 0.15 < 0.001 
(GPPPPP)3 (n = 40) (n = 65) 

Profilin 10 I~M 0.07 --- 0.03 0.02 + 0.05 0.28 < 0.001 
(n = 31) (n = 21) 

VASP peptide 10 p,M/10 p~M 0.09 ± 0.06 0.18 -+ 0.10 2.00 = 0.002 
and profilin (n = 25) (n = 61) 

1 I~M/1 ~M 0.12 -+ 0.06 0.07 _+ 0.04 0.58 NS 
( n = 6 )  ( n =  16) 

Poly-L-proline 2.5 izM/10 p~M 0.14 ± 0.08 0.06 ± 0.11 0.43 < 0.001 
and profilin (n = 29) (n = 45) 

MAP-2 peptide 10 I~M 0.15 - 0.05 0.15 +-- 0.07 1.00 NS 
VKSKIGSTDNIKYZPKGG (n = 17) (n = 44) 

* NS, not significant. 

F., P. Passaro, M. Bubb, D. Purich, and F. Southwick, manu- 
script in preparation), we predicted that microinjection of 
a synthetic peptide containing this 18 residue triad would 
block profilin localization at the bacterial actin interface 
and prevent bacterial induced actin filament assembly and 
intraceUular movement. Our experiments confirmed this 
expectation. The intracellular concentrations of peptide 
required to achieve inhibition of motility were consider- 
ably higher than the ActA analogue (10 ~M GPPPPPGP- 
PPPPGPPPPP vs 80 nM FEFPPPPTDE), reflecting the 
higher concentrations of profilin likely to be present in 
PtK2 cells as compared to VASP and/or a lower affinity of 
profilin for the VASP oligoproline sequence. It is of inter- 
est that other investigators have recently demonstrated 
that the same VASP analogue can dissociate profilin from 
VASP in vitro (Reinhard et al., 1995), providing further 
biochemical support for our inferences about the mecha- 
nism of action of the VASP analogue in Shigella-infected 
ceils. We also find that this same VASP analogue inhibits 
Listeria intracellular movement at identical concentrations 
(Kang, F., P. Passaro, M. Bubb, D. Purich, and F. South- 
wick, manuscript in preparation). Therefore both Shigella 
and Listeria are likely to use VASP and profilin to induce 
actin assembly in host cells. While all of our results are 
consistent with the above interpretation, these synthetic 
peptides may not be entirely specific for the proposed tar- 
gets, and impaired bacterial movement could represent a 
nonspecific side effect. Our other findings argue against 
such an interpretation. First, introduction of high intracel- 
lular concentrations of an unrelated peptide fail to impair 
motility, excluding a nonspecific toxic effect of synthetic 
peptides. Second, the ability of equimolar concentrations 
of profilin to totally reverse the inhibitory effects of the 

peptides suggests specific protein-protein interactions are 
responsible for the observed inhibitory effects. Our obser- 
vations, however, do not exclude the possibility that other 
host cell actin regulatory proteins in addition to VASP and 
profflin may play roles in Listeria and Shigella intraceUular 
motility. 

What then can be said about the results of our experi- 
ments with binary solutions containing profilin and either 
of the aforementioned oligoproline sequences? Simulta- 
neous introduction of a profilin and ActA analogue or 
profilin and the VASP analogue binary solution did more 
than simply neutralize the inhibitory action. In fact, we 
were surprised to find that coinjection actually stimulated 
Shigella to move at rates that were two to three times 
greater than their usual velocities. Introduction of the bi- 
nary solutions even occasionally caused previously quies- 
cent bacteria to commence moving, and these bacteria often 
reached maximal velocity. This stimulation of movement 
was observed following the addition of only 80-100 nM 
concentrations of profilin and the ActA analogue, the same 
concentration range where microinjection of ActA ana- 
logue alone evoked maximal inhibition of both Listeria 
and Shigella movement. Binding experiments monitoring 
tryptophan fluorescence of profilin fail to detect binding 
of the ActA analogue to profilin at concentrations of 100 
trM (Kang, F., P. Passaro, M. Bubb, D. Purich, and F. 
Southwick, manuscript in preparation). Therefore, it is un- 
likely that these two polypeptides alone form a binary 
complex before or after microinjection into the cell. They 
are more likely to form ternary complex with a third host 
cell protein, possibly VASP, and this complex in turn 
could stimulate actin assembly. In vitro binding experi- 
ments indicate that the VASP analogue and profilin will 
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Figure 7. (A) The effect of introducing a 10-~M intracellular 
concentration of the VASP peptide analogue on Shigella motility 
in a PtK2 cell. Arrow represents the approximate time of the mi- 
croinjection. (B) Effect of varying intracellular concentrations of 
the VASP analogue on Shigella intraceUular velocity. The esti- 
mated intracellular concentrations of the microinjected peptide 
are plotted on the horizontal axis. Bars represent the standard 
deviation of the mean for n = 20--40 velocity measurements per 
concentration. 

Figure 6. (A) Velocities of two bacteria in a PtK2 cell before and 
after the microinjection of an ActA analogue/profilin binary so- 
lution (100 nM intracellular concentrations of both reagents, 
shown in parentheses; needle concentrations, 1 ~M). The vertical 
arrow indicates the approximate time when the mixture was in- 
jected. This individual experiment is representative of numerous 
experiments (see Results section and Table I). (B) Time-lapse 
phase micrographs of Shigella motility in a PtK2 before and after 
microinjection of the ActA/profilin binary solution. This compos- 
ite photograph depicts the path and distances covered by a single 
bacterium before and after microinjection of ActA/profilin in an 
equal molar ratio (estimated intracellular concentration 100 nM, 
needle concentration 1 ~M). Images show the position of the bac- 
terium at 30 s intervals and are numbered sequentially. The cell 
as microinjected with the binary solution between images 3 and 4 
of the composite. After microinjection, note the progressive in- 
crease in the distance traveled by the bacteria after each time in- 
terval. The same information is depicted graphically as the upper 
curve of Fig. 6 A. The moving bacterium is 5 ~m in length. 

associate at the concentrations used in our experiments 
(10-5 M range, Kang, F., P. Passaro, M. Bubb, D. Purich, 
and F. Southwick, manuscript in preparation). Therefore, 
the acceleration of Shigella motility by the binary mixtures 
of VASP and profilin suggests that the profilin-VASP 
complex can enhance actin assembly in nonmuscle cells. 
Although further experiments will be required to fully 
characterize these interactions, the present studies do indi- 
cate that under the appropriate conditions profilin can 
stimulate actin assembly. 

Based on our current findings, a working model of how 
Shigella induces actin assembly in host cells can be con- 
structed (Fig. 9). Because the IcsA surface protein of Shigella 
possesses no ActA oligoproline VASP-binding sequence, 
IcsA protein probably attracts a host cell VASP-binding 
protein to the bacterial surface to concentrate VASP 
which in turn binds profilin. Profilin stimulates actin fila- 
ment assembly behind the bacterium, and this polymeriza- 
tion process propels the bacterium through the host cell 
cytoplasm. The mechanism(s) by which profilin stimulates 
actin assembly in cells remain(s) ill-defined. In the pres- 
ence of the monomer sequestering protein, thymosin 134, 
profilin can lower the critical concentration of actin fila- 
ments (Pantaloni and Carlier, 1993). Profilin also enhances 
nucleotide exchange on actin monomers (Mockrin and 
Korn, 1980; Goldschmidt-Clermont et al., 1991). Under 
the rapid assembly conditions, 40-200 monomers per sec- 
ond, associated with Shigella locomotion at rates of 0.1--0.5 
ixrrds, nucleotide exchange could prove to be the rate lim- 
iting step for new actin assembly and profilin could serve 
to accelerate this process. In the present model we have il- 
lustrated ATP - ADP exchange on actin monomers as the 
most likely explanation for profilin's ability to stimulate 
host cell actin assembly. While additional biochemical ex- 
periments promise a rigorous test of this scheme, a key 
finding in support of the model is the recent immunofluo- 
rescence study demonstrating VASP localization on intra- 
cellular Shigella (Chakraborty et al., 1995). 

The observation that the ActA analogue can block both 
Shigella and Listeria actin-based motility suggests that Shi- 
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Figure 8. Dose dependence of (A) poly-L-proline and (B) profi- 
lin inhibition of Shigella intracellular motility. The mean veloci- 
ties of Shigella intracellular migration in PtK2 cells are shown fol- 
lowing the microinjection of increasing intracellular concentrations 
of the two polypeptides. Each point represents the mean of 20--40 
velocity measurements. Introduction of an estimated intracellular 
concentration of 6 p~M profilin (needle concentration 60 IxM) re- 
suited in a bimodal behavior, 40% of the bacteria accelerating 
their velocity while 60% stopped moving (see Results). (C) The 
velocities of a bacterium migrating through a PtK2 cell before 
and after the microinjection of a VASP analogue/profilin binary 
solution and (D) before and after the microinjection of binary so- 
lution of poly-L-proline and profilin. The values in parentheses 
are the estimated intracellular concentrations of the two re- 
agents. Vertical arrows indicate the time when each solution was 
injected. These individual experiments are representative of nu- 
merous experiments for each condition (see Results and Table I). 

gella probably recruits to its surface a host cell protein that 
contains an ActA-like oligoproline sequence. Kaduruga- 
muwa et al. (1991) recently suggested that vinculin, itself 
an oligoproline-containing actin-binding protein, might 
serve in place of A c t A  in Shigella actin-based motility. 
When Shigella infects host cells, vinculin is lost from focal 
adhesion plaques and could be concentrated on the bacte- 
rial surface. Although we clearly observed immunolocal- 
ization of vinculin at focal adhesion contacts, we could not 
demonstrate any accumulation of this protein on the cell 
wall of intracellular Shigella (data not shown). Such obser- 
vations do not completely exclude vinculin as the candi- 
date ActA-like host protein because the amount  of vincu- 
lin needed on the bacterial surface may be below our 
detection limit. Alternatively, yet another oligoproline- 
containing host cell protein may fulfill the requirement for 
an oligoproline recognition site. Determining the identity 
of this protein will be of great interest because this ActA-  

Actin-Based Locomotory Unit 
in Shigellaflexnefi > T> D> D> 

i= _ >'ll °>°; 

o._, ,--, o .D > T> 
cell ws[/ ATP + }ADP) 

I I  L___/ 

Figure 9. Working model showing the primary components likely 
to be involved in the actin-based locomotory unit of Shigella. Shi- 
gella contains on its surface the 120-kD protein IcsA that is likely 
to attract an ActA-like mammalian protein homologue onto the 
bacterial surface. This ActA-like protein contains one or more 
VASP-binding sequences (designated as a hatched region) re "~ 
sponsible for attracting VASP to the bacterial surface. Because of 
its tetrameric structure, VASP is capable of binding up to 16 pro- 
filin molecules, serving to highly concentrate profilin at the bacte- 
rial-actin tail interface. Profilin may promote actin filament as- 
sembly by increasing the rate of ADP-ATP exchange on actin 
monomers (chevrons) or profilin may usher actin subunits onto 
the barbed ends of actin filaments. Microinjection of the ActA 
peptide FEFPPPPTDE is thought to disrupt VASP binding to 
the ActA homologue on Shigella and microinjection of the VASP 
peptide (GPPPPP)3 would be expected to dissociate profilin from 
VASP. Both peptides act at different steps in Shigella-induced ac- 
tin assembly and disperse locomotory elements (VASP and/or 
profilin) from the bacterial surface, thereby blocking actin rocket 
tail formation and bacterial motility. 

homologue is likely to play a key role in the generation of 
new actin filaments required for the extension of lamelli- 
pods and pseudopods in nonmuscle cells. 

In conclusion, our finding that the A c t A  analogue ar- 
rests Shigella motility indicates that its locomotion re- 
quires the presence of an oligoproline-containing protein 
that binds to the bacterium's surface in a manner mimick- 
ing the action of Listeria A c t A  protein. Moreover,  we 
have demonstrated for the first time that microinjection of 
a mixture of profilin and the ActA sequence FEFPPPPTDE 
(or the GPPPPP triad from VASP)  can markedly acceler- 
ate actin-based motility in living cells. This represents an 
unprecedented finding that factors introduced by microin- 
jection can actually stimulate directional intracellular actin 
assembly. These in vivo experiments emphasize the impor- 
tance of a discrete pool of profilin that is likely to be re- 
sponsible for stimulating new actin filament assembly. 
Shigella and Listeria, two bacterial pathogens with struc- 
turally unrelated membrane surface proteins, have thus 
managed to subvert the host 's  contractile system to gener- 
ate force needed for intracellular movement,  an evolution- 
ary achievement that allows these pathogens to spread 
from cell to cell and cause disease. This same system is 
likely to play a role in promoting localized actin assembly 
necessary for dynamic remodeling of the leading edge dur- 
ing chemotaxis and phagocytosis. 
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